A STUDY ON (T, S)-INTUITIONISTIC FUZZY SUBNEARRINGS OF A NEARRING

1M. PALANIVELRAJAN*, 2K. GUNASEKARAN, 3K. KALIRAJU

1Department of Mathematics, Government Arts College, Paramakudi- 623 707, (T.N.), India.

2,3Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College, Kumbakonam – 612 001, (T.N.), India.

(Received On: 31-08-15; Revised & Accepted On: 22-09-15)

ABSTRACT

In this paper, we made an attempt to study the algebraic nature of a (T, S)-intuitionistic fuzzy subnearring of a nearring.

2000 AMS Subject classification: 03F55, 06D72, 08A72.

Key Words: T-fuzzy subnearring, anti S-fuzzy subnearring, (T, S)-intuitionistic fuzzy subnearring, product.

INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh[16], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov[4, 5], as a generalization of the notion of fuzzy set. Azriel Rosenfeld[6] defined the fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan [13, 14]. In this paper, we introduce the some Theorems in (T, S)-intuitionistic fuzzy subnearring of a nearring.

1.PRELIMINARIES:

1.1 Definition: A (T, S)-norm is a binary operations T: [0, 1]×[0, 1] → [0, 1] and S: [0, 1]×[0, 1] → [0, 1] satisfying the following requirements;

(i) T(0, x)= 0, T(1, x) = x (boundary condition)
(ii) T(x, y) = T(y, x) (commutativity)
(iii) T(x, T(y, z))= T (T(x,y), z) (associativity)
(iv) if x ≤ y and w ≤ z, then T(x, w) ≤ T (y, z) (monotonicity).

(v) S(0, x) = x, S (1, x) = 1 (boundary condition)
(vi) S(x, y) = S (y, x) (commutativity)
(vii) S (x, S(y, z))= S (S(x, y), z) (associativity)
(viii) if x ≤ y and w ≤ z, then S (x, w) ≤ S (y, z) (monotonicity).

1.2 Definition: Let (R, +, .) be a near ring. A fuzzy subset A of R is said to be a T-fuzzy sub nearring (fuzzy subnearring with respect to T-norm) of R if it satisfies the following conditions:

(i) µA(x−y)≥ T (µA(x), µA(y))
(ii) µA(xy)≥ T (µA(x), µA(y)) for all x and y in R.

1.3 Definition: Let (R, +, .) be a nearring. An intuitionistic fuzzy subset A of R is said to be an (T, S)-intuitionistic fuzzy subnearring (intuitionistic fuzzy subnearring with respect to (T, S)-norm) of R if it satisfies the following conditions:

(i) µA(x−y)≥ T (µA(x), µA(y))
(ii) µA(xy)≥ T (µA(x), µA(y))
(iii) νA(x−y)≤ S (νA(x), νA(y))
(iv) νA(xy)≤ S (νA(x), νA(y)) for all x and y in R.

Corresponding Author: 1M. PalanivelaRajan*
1.4 Definition: Let A and B be intuitionistic fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B = \{(x, y), \mu_A(x, y), \nu_A(x, y)\}$ for all $x \in G$ and $y \in H$, where $\mu_A(x, y) = \min\{\mu_A(x), \mu_B(y)\}$ and $\nu_A(x, y) = \max\{\nu_A(x), \nu_B(y)\}$.

1.5 Definition: Let A be an intuitionistic fuzzy subset in a set S, the strongest intuitionistic fuzzy relation on S, that is an intuitionistic fuzzy relation on A is given by $\mu_A(x, y) = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x, y) = \max\{\nu_A(x), \nu_A(y)\}$ for all x and y in S.

1.6 Definition: Let $(R, +, \cdot)$ and $(R^1, +, \cdot)$ be any two nearrings. Let $f : R \rightarrow R^1$ be any function and A be an (T, S)-intuitionistic fuzzy subnearring in R, V be an (T, S)-intuitionistic fuzzy subnearring in $f(R) = R^1$, defined by $\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$ and $\nu_V(y) = \inf_{x \in f^{-1}(y)} \nu_A(x)$ for all x in R and y in R^1. Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.7 Definition: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring $(R, +, \cdot)$ and a in R. Then the pseudo (T, S)-intuitionistic fuzzy coset $(aA)^p$ is defined by $((a\mu_A)^p)(x) = p(a)\mu_A(x)$ and $((a\nu_A)^p)(x) = p(a)\nu_A(x)$ for every x in R and for some p in P.

2- PROPERTIES

2.1 Theorem: Intersection of any two (T, S)-intuitionistic fuzzy subnearrings of a nearring R is a (T, S)-intuitionistic fuzzy subnearring of a nearring R.

Proof: Let A and B be any two (T, S)-intuitionistic fuzzy subnearrings of a nearring R and x and y in R. Let $A = \{(x, \mu_A(x), \nu_A(x)) : x \in R\}$ and $B = \{(x, \mu_B(x), \nu_B(x)) : x \in R\}$ and also let $C = A \cap B = \{(x, \mu_A(x), \nu_A(x)) : x \in R\}$ where $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$. Now $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ and $\nu_{A \cap B}(x) = \max\{\nu_A(x), \nu_B(x)\}$. Therefore $\mu_{A \cap B}(x) \geq \mu_A(x)$ and $\nu_{A \cap B}(x) \leq \nu_B(x)$.

2.2 Theorem: The intersection of a family of (T, S)-intuitionistic fuzzy subnearrings of a nearring R is an (T, S)-intuitionistic fuzzy subnearring of a nearring R.

Proof: It is trivial.

2.3 Theorem: If A and B are any two (T, S)-intuitionistic fuzzy subnearrings of the nearrings R_1 and R_2 respectively, then $A \times B$ is an (T, S)-intuitionistic fuzzy subnearring of $R_1 \times R_2$.

Proof: Let A and B be two (T, S)-intuitionistic fuzzy subnearrings of the nearrings R_1 and R_2 respectively. Let x_1, y_1 and x_2, y_2 be in R_1 and R_2, respectively. Then $A = \{(x_1, y_1) : (x_2, y_2) \in R_1 \times R_2\}$ and $B = \{(x_2, y_2) : (x_1, y_1) \in R_1 \times R_2\}$. Now $\mu_{A \times B}(x_1, y_1) = \min\{\mu_A(x_1), \mu_B(y_1)\}$ and $\nu_{A \times B}(x_1, y_1) = \max\{\nu_A(x_1), \nu_B(y_1)\}$. Therefore $\mu_{A \times B}(x_1, y_1) \geq \mu_A(x_1)$ and $\nu_{A \times B}(x_1, y_1) \leq \nu_B(y_1)$.

© 2015, IJMA. All Rights Reserved
2.4 Theorem: If A is a (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +,), then \(\mu_A(x) \leq \mu_A(0) \) and \(v_A(x) \geq v_A(0) \) for x in R, the identity element 0 in R.

Proof: For x in R and 0 is the identity element of R. Now \(\mu_A(0) = \mu_A(x-x) \geq T(\mu_A(x), \mu_A(0)) \geq \mu_A(x) \) for all x in R. So \(\mu_A(x) \leq \mu_A(0) \). And \(v_A(0) = v_A(x-x) \leq S(\mu_A(x), v_A(0)) \leq v_A(0) \) for all x in R. So \(v_A(x) \geq v_A(0) \).

2.5 Theorem: Let A and B be (T, S)-intuitionistic fuzzy subnearring of the nearrings R_1 and R_2 respectively. Suppose that 0 and 0 are the identity element of R_1 and R_2 respectively. If A\times B is an (T, S)-intuitionistic fuzzy subnearring of R_1\times R_2, then at least one of the following two statements must hold. (i) \(\mu_{A \times B}(0) \geq \mu_A(x) \) and \(v_{A \times B}(0) \leq v_A(x) \) for all x in R_1, (ii) \(\mu_{A \times B}(0) \geq \mu_B(y) \) and \(v_{A \times B}(0) \leq v_B(y) \) for all y in R_2.

Proof: Let A\times B be an (T, S)-intuitionistic fuzzy subnearring of R_1\times R_2. By contrapositive, suppose that none of the statements (i) and (ii) holds. Then we can find a in R_1 and b in R_2 such that \(\mu_{A \times B}(a) > \mu_A(0) \), \(v_{A \times B}(b) < v_B(0) \) and \(\mu_{A \times B}(b) > \mu_B(0) \), \(v_{A \times B}(b) < v_B(0) \). We have \(\mu_{A \times B}(a, b) = \min\{\mu_A(a), \mu_B(b)\} = \min\{\mu_A(0), \mu_B(0)\} = \mu_{A \times B}(0, 0) \). And \(v_{A \times B}(a, b) = \max\{v_A(a), v_B(b)\} = \max\{v_A(0), v_B(0)\} = v_{A \times B}(0, 0) \). Thus A\times B is not an (T, S)-intuitionistic fuzzy subnearring of R_1\times R_2. Hence either \(\mu_{A \times B}(0) \geq \mu_A(x) \) and \(v_{A \times B}(0) \leq v_A(x) \) for all x in R_1 or \(\mu_{A \times B}(0) \geq \mu_B(y) \) and \(v_{A \times B}(0) \leq v_B(y) \) for all y in R_2.

2.6 Theorem: Let A be an intuitionistic fuzzy subset of a nearring R and V be the strongest intuitionistic fuzzy relation on R. We have \(A(x1y1), V(x1) \) for all x in R and 0 is the identity element of R. Now \(A(0) = A(x-x) \geq S(\mu_A(x), \mu_A(0)) \geq \mu_A(x) \) for all x in R. So \(\mu_A(x) \leq \mu_A(0) \). And \(V(x-x) \leq S(\mu_A(x), v_A(0)) \leq v_A(0) \) for all x in R. So \(v_A(x) \geq v_A(0) \).
max \{v_\alpha(x,y), v_\alpha(x,y_2)\} \leq \max \{S(v_\alpha(x_1), v_\alpha(y_1)), S(v_\alpha(x_2), v_\alpha(y_2))\} \leq S(\max\{v_\alpha(x_1), v_\alpha(x_2)\}, \max\{v_\alpha(y_1), v_\alpha(y_2)\}) = S(v_\alpha(x_1, x_2), v_\alpha(y_1, y_2)) = S(v_\alpha(x), v_\alpha(y)). Therefore, v_\alpha(x,y) \leq S(v_\alpha(x), v_\alpha(y)), for all x and y in R \times R. This proves that V is an (T, S)-intuitionistic fuzzy subnearring of R \times R. Conversely assume that V is an (T, S)-intuitionistic fuzzy subnearring of R \times R, then for any x = (x_1, x_2) and y = (y_1, y_2) are in R \times R, we have min\{\mu_\alpha(x_1, y_1), \mu_\alpha(x_2, y_2)\} = \mu_\alpha(x_1, y_1, x_2, y_2) = \mu_\alpha((x_1, x_2), (y_1, y_2)) = \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)).

2.8 Theorem: If A is an (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +, \cdot), then H = \{x / x \in R : \mu_\alpha(x) = 1, v_\alpha(x) = 0\} is either empty or is a subnearring of R.

Proof: It is trivial.

2.9 Theorem: If A be an (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +, \cdot), then (i) if \mu_\alpha(x, y) = 0, then either \mu_\alpha(x) = 0 or \mu_\alpha(y) = 0 for all x and y in R. (ii) if \mu_\alpha(x) = 0, then either \mu_\alpha(x) = 0 or \mu_\alpha(y) = 0 for all x and y in R. (iii) if v_\alpha(x, y) = 1, then either v_\alpha(x) = 1 or v_\alpha(y) = 1 for all x and y in R. (iv) if v_\alpha(x) = 1, then either v_\alpha(x) = 1 or v_\alpha(y) = 1 for all x and y in R.

Proof: It is trivial.

2.10 Theorem: If A is an (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +, \cdot), then \Box A is an (T, S)-intuitionistic fuzzy subnearring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Consider A = \{x, \mu_\alpha(x), v_\alpha(x)\}, for all x in R, we take \Box A = B = \{x, \mu_\alpha(x), v_\alpha(x)\}, where \mu_\alpha(x) = \mu_\alpha(x), v_\alpha(x) = v_\alpha(x). Clearly \mu_\alpha(x, y) \geq \mu_\alpha(x, y) for all x and y in R and \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R. Since A is an (T, S)-intuitionistic fuzzy subnearring of R, we have \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R, which implies that 1 – \mu_\alpha(x, y) \leq 1 – T((1 – \mu_\alpha(x, y))) = 1 – \mu_\alpha(x, y). Therefore \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R. Moreover, \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R, which implies that 1 – \mu_\alpha(x, y) \leq 1 – T((1 – \mu_\alpha(x, y))) = 1 – \mu_\alpha(x, y). Therefore \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R. Hence B = \Box A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R.

2.11 Theorem: If A is an (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +, \cdot), then A is an (T, S)-intuitionistic fuzzy subnearring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring R. That is A = \{x, \mu_\alpha(x), v_\alpha(x)\} for all x in R. Let A = \{x, \mu_\alpha(x), v_\alpha(x)\} where \mu_\alpha(x) = 1 – v_\alpha(x), v_\alpha(x) = v_\alpha(x). Clearly v_\alpha(x, y) \leq S(v_\alpha(x), v_\alpha(y)) for all x and y in R and v_\alpha(x, y) \leq S(v_\alpha(x), v_\alpha(y)) for all x and y in R. Since A is an (T, S)-intuitionistic fuzzy subnearring of R, we have v_\alpha(x, y) \leq S(v_\alpha(x), v_\alpha(y)) for all x and y in R, which implies that 1 – v_\alpha(x, y) \leq 1 – S(1 – v_\alpha(x), v_\alpha(y)) = 1 – v_\alpha(x, y). Therefore \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R. Moreover, v_\alpha(x, y) \leq S(v_\alpha(x), v_\alpha(y)) for all x and y in R, which implies that 1 – v_\alpha(x, y) \leq 1 – S(1 – v_\alpha(x), v_\alpha(y)) = 1 – v_\alpha(x, y). Therefore \mu_\alpha(x, y) \geq T(\mu_\alpha(x, y)) for all x and y in R. Hence A = \Box A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R.

2.12 Theorem: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring (R, +, \cdot), then the pseudo (T, S)-intuitionistic fuzzy coset (aA)^p is an (T, S)-intuitionistic fuzzy subnearring of a nearring R, for every a in R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring R. For every x and y in R, we have \((a_\alpha)^p(x, y) = p(a)\mu_\alpha(x, y) \geq p(a)T(\mu_\alpha(x, y)) = T(p(a_\alpha(x, y)), (a_\alpha)^p(y)). Therefore \((a_\alpha)^p(x, y) \geq T((a_\alpha)^p(x, y)), (a_\alpha)^p(y)). Now \((a_\alpha)^p(x, y) = p(a)(\mu_\alpha(x, y) = T(p(a_\alpha(x, y)), (a_\alpha)^p(y)) \geq T((a_\alpha)^p(x, y)), (a_\alpha)^p(y)). Therefore \((a_\alpha)^p(x, y) \geq T((a_\alpha)^p(x, y)), (a_\alpha)^p(y)). For every x and y in R, we have \((a_\alpha)^p(x, y) = p(a_\alpha(x, y) \leq p(a)S(v_\alpha(x, y)) = S(p(a)v_\alpha(x, y)), (a_\alpha)^p(y)). Therefore \((a_\alpha)^p(x, y) \leq S((a_\alpha)^p(x), (a_\alpha)^p(y)).

© 2015, IJMA. All Rights Reserved
Proof: Let \(x \) and \(y \) in \(R \) and \(A \) be an \((T, S)\)-intuitionistic fuzzy subnearring of a nearring \(H \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x) - \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(y), \mu_A(x)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). And \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Therefore \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). In the following Thm \(6 \) is the composition operation of functions.

2.13 Theorem: Let \(A \) be an \((T, S)\)-intuitionistic fuzzy subnearring of a nearring \(H \) and \(f \) is an isomorphism from a nearring \(R \) onto \(H \). Then \(A^f \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \).

Proof: Let \(x \) and \(y \) in \(R \) and \(A \) be an \((T, S)\)-intuitionistic fuzzy subnearring of a nearring \(H \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x) - \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(y), \mu_A(x)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). And \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). And \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Therefore \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \).

2.14 Theorem: Let \(A \) be an \((T, S)\)-intuitionistic fuzzy subnearring of a nearring \(H \) and \(f \) is an anti-isomorphism from a nearring \(R \) onto \(H \). Then \(A^f \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \).

Proof: Let \(x \) and \(y \) in \(R \) and \(A \) be an \((T, S)\)-intuitionistic fuzzy subnearring of a nearring \(H \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x) - \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(y), \mu_A(x)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). And \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \geq T(\mu_A(x), \nu_A(y)) = T(\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Then we have \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). And \((\mu_A, \nu_A(x-y)) = (\mu_A(x), \nu_A(y)) \) which implies that \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \). Therefore \((\mu_A, \nu_A(x-y)) \geq T(\mu_A(x), \nu_A(y)) \).

2.15 Theorem: Let \((R, +, .) \) and \((R^1, +, .) \) be any two nearrings. The homomorphic image of an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \).

Proof: Let \(f : R \rightarrow R^1 \) be a homomorphism. Let \(V = f(A) \) where \(A \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \). We have to prove that \(V \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \). Now for \(f(x), f(y) \) in \(R^1 \), \(\mu_A(f(x)-f(y)) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \). Again \(\mu_A(f(x)-f(y)) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \). And \(\mu_A(f(x)-f(y)) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \). Therefore \(\mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \).

2.16 Theorem: Let \((R, +, .) \) and \((R^1, +, .) \) be any two nearrings. The homomorphic preimage of an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \).

Proof: Let \(V = f(A) \), where \(V \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \). We have to prove that \(A \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \). Let \(x \) and \(y \) in \(R \). Then \(\mu_A(x-y) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). And \(\mu_A(x-y) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). And \(\mu_A(x-y) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). Therefore \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \).

2.17 Theorem: Let \((R, +, .) \) and \((R^1, +, .) \) be any two nearrings. The anti-homomorphic image of an \((T, S)\)-intuitionistic fuzzy subnearring of \(R \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \).

Proof: Let \(f : R \rightarrow R^1 \) be an anti-homomorphism. Then \(f(x+y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \) for all \(x \) and \(y \) in \(R \). Let \(V = f(A) \), where \(V \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \). We have to prove that \(V \) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R^1 \). Now for \(f(x), f(y) \) in \(R^1 \), \(\mu_A(f(x)-f(y)) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). Again \(\mu_A(f(x)-f(y)) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). And \(\mu_A(x-y) = \mu_A(f(x)-f(y)) \geq T(\mu_A(x), \mu_A(y)) \) which implies that \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \). Therefore \(\mu_A(x-y) \geq T(\mu_A(x), \mu_A(y)) \).
2.18 Theorem: Let \((R, +, .)\) and \((R', +, .)\) be any two nearrings. The anti-homomorphic preimage of an \((T, S)\)-intuitionistic fuzzy subnearring of \(R\) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R'\).

Proof: Let \(V = f(A)\), where \(V\) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R\). We have to prove that \(A\) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R\). Let \(x, y\) in \(R\). Then \(\mu_A(x - y) = \mu_V(f(x - y)) = \mu_V(f(y) - f(x)) \geq T(\mu_V(f(y)), \mu_V(f(x))) = T(\mu_V(f(x)), \mu_V(f(y))) = T(\mu_V(f(x)), \mu_V(f(y))) = T(\mu_A(x), \mu_A(y))\) which implies that \(\mu_A(x - y) \geq T(\mu_A(x), \mu_A(y))\). Again \(\nu_A(x - y) = \nu_V(f(x - y)) = \nu_V(f(y) - f(x)) \leq S(\nu_V(f(y)), \nu_V(f(x))) = S(\nu_V(f(x)), \nu_V(f(y))) = S(\nu_V(f(x)), \nu_V(f(y))) = S(\nu_A(x), \nu_A(y))\) which implies that \(\nu_A(x - y) \leq S(\nu_A(x), \nu_A(y))\). Hence \(A\) is an \((T, S)\)-intuitionistic fuzzy subnearring of \(R\).

REFERENCE

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]