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Abstract: 

 In this article, we propose a new model of dark matter. According to this new model, 

dark matter is a substance, that is a new physical element not constituted of classical particles,   

called dark substance and filling the Universe. Assuming some very simple physical 

properties to this dark substance, we will theoretically justify the flat rotation curve of 

galaxies and the baryonic Tully-Fisher’s law. Then we will give a physical interpretation of 

the CMB Rest Frame (CRF). With the new model of dark matter, we will be naturally led to 

propose a new geometric model of the Universe, finite and not proposed by the Standard 

Cosmological model (SCM). We then will propose a first mathematical model of expansion 

of the Universe, based on General Relativity as the SCM, and in which the CMB rest frame 

plays an important role. This 1
st
 model leads to the same mathematical predictions as the 

SCM. But we will propose also a 2
nd

 mathematical model of expansion of the Universe, which 

is mathematically much simpler than General Relativity, but with theoretical predictions in 

agreement with the experimental data given by astronomical observations. Moreover this 2
nd

 

mathematical model does not need the existence of a dark energy, and consequently brings a 

solution to the enigma of dark matter. After this we will  study according to the new proposed 

theory the different models of distribution of dark matter in galaxies. Then we will study the 

velocities of galaxies in clusters according to this distribution of dark matter, the evolution of 

the temperature of dark substance in the Universe and we will make appear the existence of a 

dark energy, due to our model of dark matter and to the expansion of the Universe.  

  

Key words: Tully-Fisher’s law, dark matter, dark halo, CMB, galaxy clusters, gravitational 

lensing, galaxy rotation curve, orbital velocity galaxies. 

 

1.INTRODUCTION 

 

 In this article, we propose that a new physical element, called dark substance, 

constitutes the dark matter. According to our model, this dark substance fills all the Universe 

and has physical properties close to the physical properties of an ideal gas. We then show that 

it is possible, using those properties, to justify theoretically the flat rotation curve that is 

observed for some galaxies. If moreover we assume simple thermal properties to this dark 

substance, we see that we can justify theoretically the baryonic Tully-Fisher’s law, despite the 

great specificity of this law. We recall that up to date, neither the flat rotation curve of 

galaxies nor the baryonic Tully-Fisher law have been justified theoretically in a satisfying 

way. It is true that a simple density of dark matter (in 1/r
2
) permitting to obtain this flat 

rotation curve has already been proposed, but this expression of density (in 1/r
2
) has not been 

theoretically justified. A theory called MOND theory 
(1)

 proposes also a theoretical 

justification of the flat rotation curve, but it is contrary to Newton’s attraction law (which is 

difficultly acceptable) and moreover it is contradicted by some astronomical observations.   

 We also know that the CMB (Cosmic Microwave Background) Rest Frame (CRF), has 

not physical interpretation, concerning its nature and its main physical properties, in the 

Standard Cosmological Model (SCM). In this article, we are going to give a Physical 

Interpretation of the CRF, which permits new definitions of Cosmological variables (in 

particular the Cosmological time and the different kinds of distances used in Cosmology), that 
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are in agreement with their definitions in the SCM. Considering the importance of this frame 

in Cosmology, we will also call it the local Cosmological frame. This will lead us to propose a 

new geometric model of Universe, flat and finite, that is not predicted by the SCM. 

Nonetheless, our Physical Interpretation of the CRF is compatible with Special and General 

Relativity. This Physical Interpretation of the CRF proposes 2 mathematical models of 

expansion of the Universe. The 1
st
 model is as the SCM based on the equations of General 

Relativity. We then show that in this 1
st
 model the observable Universe is identical to the 

observable Universe predicted by the SCM (Provided that some conditions be verified). 

Indeed in this 1
st
 mathematical model, the different kinds of distances used in Cosmology and 

Hubble’s constant , and also the cosmological redshift z  have the same mathematical 

expression as in the SCM. 

  The 2
nd

 mathematical model of our Interpretation of the CRF is not based on the 

equations of the SCM but is much simpler. Despite of this, its theoretical astrophysical 

predictions (In particular Hubble’s law and Cosmological distances) are in agreement with 

astronomical observations. Moreover this 2
nd

 model solves the enigma of the dark energy. 

 We will then study according to our model of dark matter the different models of 

distribution of dark matter in galaxies. We will also give a theoretical explanation to 

experimental data linked to the dark mass of clusters, in particular the  velocities of galaxies 

in clusters, and the gravitational lensing that is the deviation of luminous rays, predicted by 

General Relativity, by the mass of clusters. Then we will study the density of dark matter in 

the Universe, that is at the origin of some anisotropies of the CMB. Finally we will study the 

evolution of the temperature of the dark substance in the Universe.   

 

 We remind that for many astrophysicists and physicists, the enigmas in the SCM, in 

particular the enigmas concerning dark matter and dark energy, make necessary a new 

paradigm for the SCM 
(2)

. Our article proposes such a new paradigm. 

 In this article we will express the main physical properties of the dark substance and 

the CRF in some Postulates, divided in points a),b)..  

 In our model of dark substance and in our Physical Interpretation of the CRF, we will 

keep all the points of the SCM, except the points of the SCM that are not compatible with our 

Postulates or that become useless because of them.   

 

2. DARK SUBSTANCE-CMB REST FRAME 

 

2.1 Physical properties of the dark substance. 
 

 As we have seen in 1.INTRODUCTION, we admit the Postulate 1 expressing the 

physical properties of the dark substance: 

Postulate 1: 

 

a)A substance, called dark substance, fills all the Universe. 

b)This substance does not interact with photons crossing it. 

c)This substance has a mass and obeys to the Boyle’s law (called also Mariotte’s law), to the 

Charles’law (called also Gay-Lussac’s law), and to the following law that is their synthesis: 

An element of dark substance with a mass m, a volume V, a pressure P and a temperature T 

verifies, k0 being a constant: 

PV=k0mT 
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The preceding law is valid for a given ideal gas G0, replacing k0 by a constant k(G0), 

and this is a consequence of the universal gas equation, which is also obtained using Boyle 

and Charles’laws. For this reason we will call it the Boyle-Charles’law. 

 

We have 2 remarks consequences of this Postulate1: 

-Firstly despite of its name, the dark substance is not really dark but transparent. Indeed, 

because of the preceding Postulate 1b) it does not interact with photons crossing it. 

-Secondly because of the Postulate 1a), what is usually called “vacuum” is not empty in 

reality: It is full of dark substance.   

 

2.2 Flat rotation curves of galaxies.  

 
 Using the fact that the dark substance behaves as an ideal gas (Postulate 1c), we are 

going to show that a spherical concentration of dark substance in thermodynamic and 

gravitational equilibrium can constitute the dark matter in a galaxy with a flat rotation curve. 

 According to Postulate 1c) an element of dark substance with a mass m, a volume V, a 

pressure P and a temperature T verifies the law, k0 being a constant:   

 

 PV=k0mT (1) 

 

Which means, setting k1=k0T : 

 

 PV=k1m (2) 

 

Or equivalently, ρ being the mass density of the element: 

 

 P=k1ρ  (3a) 

 

We then emit the natural hypothesis that a galaxy can be modeled as a concentration of 

dark substance with a spherical symmetry, at an homogeneous temperature T. 

We then consider the spherical surface S(r) (resp. the spherical surface S(r+dr)) that is 

the spherical surface with a radius r (resp. r+dr) and whose the center is the center O of the 

galaxy. S(O,r) is the sphere full of dark substance with a radius r and the center O. 
 

 

S(O,r) (full sphere) 
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Figure 1:The spherical concentration of dark substance 

 

The mass M(r) of the sphere S(O,r)is given by: 
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Using Newton’s law (ΣF=0 for a material element in equilibrium, in the case of a spherical 

symmetry FG(r)=mG(r), FG(r) gravitational force acting on the element, G(r) gravitational 

field defined by Newton’s universal law of gravitation) and Gauss theorem in order to obtain 

G(r),we obtain the following equation (4) of equilibrium of forces on an element dark 

substance with a surface dS, a width dr, situated between the 2 spheres S(O,r) and S(r+dr): 
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Eliminating dS, we obtain the equation: 
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And using the equation (3) obtained using the Boyle-Charles’law assumed in the Postulate 1, 

we obtain the equation: 
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We then verify that the density of the dark substance ρ(r) satisfying the preceding equation of 

equilibrium is:  
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(A density of dark matter expressed as in Equation (7) has already been proposed in 

order to explain the flat rotation curve of spiral galaxies, but it has not been justified 

theoretically. Here we give a theoretical justification of this expression (7), consequence of 

the model of dark substance as an ideal gas, Postulate 1)  

  

The constant k2 is given by, G being the Universal attraction gravitational constant:  

 

 
G
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k 01
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Using the preceding equation (7), we obtain that the mass M(r) of the sphere S(O,r) is given 

by the equation:  
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r

2

0

2
)(4)( == ∫ ρπ  (9) 

 

 We then obtain, neglecting the mass of stars in the galaxy, that the velocity v(r) of a 

star of a galaxy situated at a distance r from the center O of the galaxy is given by 

v(r)
2
/r=GM(r)/r

2  
and consequently : 

 

 v(r)
2
=Gk2=2k1=2k0T  (10) 

 

So we obtain in the previous equation (10) that the velocity of a star in a galaxy is 

independent of its distance to the center O of the galaxy. 

 

 2.3 Baryonic Tully-Fisher’s law. 

 

2.3.1 Recall. 

 

Tully and Fisher realized some observations on spiral galaxies with a flat rotation 

curve. They obtained that the luminosity L of such a spiral galaxy is proportional to the 4
th

 

power of the velocity v of stars in this galaxy. So we have the Tully-Fisher’s law for spiral 

galaxies, K1 being a constant: 

 

 L=K1v
4
  (11) 

 

But in the case studied by Tully and Fisher, the baryonic mass M of a spiral galaxy is 

usually proportional to its luminosity L. So we have also the law for such a spiral galaxy, K2 

being a constant: 

 

 M=K2v
4
 (12) 

 

This 2
nd

 form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law. 

 

The more recent observations of Mc Gaugh 
(3)

 show that the baryonic Tully-Fisher’s 

law (equation (12)) seems to be true for all galaxies with a flat rotation curve, including the 

galaxies with a luminosity not proportional to their baryonic mass.  

We are going to show that using the Postulate 1 and a Postulate 2 expressing very 

simple thermal properties of the dark substance, (in particular its thermal interaction with 
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baryonic particles), we can justify this baryonic law of Tully-Fisher despite of its great 

specificity. 

 

2.3.2 Theory of quantified loss of calorific energy (by nuclei). 

 

 We saw in the previous equation (10) that according to our model of dark substance 

the square of the velocity of stars in a galaxy with a flat rotation curve is proportional to the 

temperature of the concentration of dark substance constituting this galaxy. So we need to 

determinate T: 

-A first possible idea is that the temperature T is the temperature of the CMB. But this is 

impossible because it would imply that all stars of all galaxies with a flat rotation curve be 

driven with the same velocity and we know that it is not the case. 

-A second possible idea is that in the considered galaxy, each baryon interacts with the dark 

substance constituting the galaxy, transmitting to it a calorific energy. We can expect that this 

thermal energy is then very low, but because of the expected very low density of the dark 

substance and of the considered times (we remind that the diameter of galaxies is if the order 

of 100000 light-years), it can lead to appreciable temperatures of dark substance.  A priori we 

could expect that this loss of calorific energy for each baryon (transmitted to the dark 

substance) depends on the temperature of this baryon and of the temperature T of the dark 

substance in which the baryon is immerged, but if it was the case, the total calorific loss for 

all baryons would be extremely difficult to calculate and moreover it should be very probable 

that we would then be unable to obtain the very simple baryonic Tully-Fisher’s law. 

 We are then led to make the simplest hypothesis defining the thermal transfer between 

dark substance and baryons, expressed in the following Postulate 2a) (Postulate 2 gives the 

thermal properties of the dark substance): 

 

Postulate 2a): 

-Each nucleus of atom in a galaxy is submitted to a loss of calorific energy, transmitted to the 

dark substance in which it is immerged. 

-This thermal transfer depends only on the number n of nucleons constituting the nucleus (So 

it is independent of the temperature of the nucleus). So if p is the thermal power dissipated by 

the nucleus, it exists a constant p0 (thermal power dissipated by nucleon) such that: 

 

 p=np0    (13)         

 

According to the equation (13), the total thermal power transmitted by all the atoms of a 

galaxy towards the spherical concentration of dark matter constituting the galaxy is 

proportional to the total number of nucleons of the galaxy and consequently to the baryonic 

mass of this galaxy. So if m0 is the mass of one nucleon, M being the baryonic mass of the 

galaxy, we obtain according to the equation (13) that the total thermal power Pr received by 

the spherical concentration of dark substance constituting the galaxy from all the atoms is 

given by the following equation, K3 being the constant p0/m0: 

 

Pr=(M/m0)p0=K3M  (14) 

 

Concerning the preceding Postulate 2a): 

-It is possible (but not compulsory) that it be true only for atoms whose temperature is 

superior to the temperature T of the concentration of dark substance.  

-It permits to obtain the very simple Equation (14). We will see that this equation is essential 

in order to obtain the baryonic Tully-Fisher’s law. 
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2.3.3 Obtainment of the baryonic Tully-Fisher’s law. 

 

 In agreement with the previous model of galaxy (Section 2.2), we model a galaxy with 

a flat rotation curve as a spherical concentration of dark substance, at a temperature T and 

surrounded itself by a medium constituted of dark substance (called “intergalactic dark 

substance”) at a temperature T0  and with a density ρ0. 

 In order to obtain the radius R of the concentration of dark substance constituting the 

galaxy, it is natural to make the hypothesis of the continuity of ρ(r): R is the radius for which 

the density ρ(r) of the concentration of dark substance is equal to ρ0. So we have the equation: 

 

ρ(R)=ρ0   (15) 

 

Consequently we have according to the equations (7) and (8): 
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2
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So we obtain that the radius R of the concentration of dark substance constituting the 

galaxy is given approximately by the equation: 
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0
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The constant K4 being given by : 
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0
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4
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ρπG

k
K =   (19) 

We will call R the dark radius of the galaxy. We can then consider that the sphere 

with a radius R of dark substance constituting the galaxy at the temperature T is in thermal 

interaction with the medium constituted of intergalactic dark substance at the temperature T0 

surrounding it. The simplest and more natural thermal transfer is the classical convective 

transfer. We admit this in the Postulate 2b): 

 

Postulate 2b): 

The thermal interaction between the spherical concentration of dark substance 

constituting the galaxy (at the temperature T) and the surrounding intergalactic dark substance 

(at the temperature T0) can be modeled as a classical convective thermal transfer. 

 

We know that if φ is the thermal flow of thermal energy on the borders of the spherical 

concentration of dark substance with a radius R, Pl being the total power lost by the spherical 

concentration of dark substance constituting the galaxy is given by the equation:    

 

Pl=4πR2φ    (20) 
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But we know that according to the definition a convective thermal transfer between a 

medium at a temperature T and a medium at a temperature T0 and according to the previous 

Postulate 2b) the flow φ between the 2 media is  given by the expression, h being a constant 

depending only on ρ0: 

 

φ=h(T-T0)   (21)   

 

Consequently the total power lost by the concentration of dark substance is: 

 

Pl=4πR2
h(T-T0)  (22)  

 

We can consider that at the equilibrium, the total thermal power Pr received by the 

spherical concentration of dark substance constituting the galaxy is equal to the thermal power 

Pl lost by this spherical concentration. Consequently according to the equations (14) and (22), 

(M being the baryonic mass of the galaxy), we have: 

 

K3M=4πR2
h(T-T0)  (23)  

 

Using then the equation (18) : 

 

K3M=4πK4
2
hT(T-T0)  (24) 

 

Making the approximation T0<<T  : 
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Consequently we obtain the expression of T, defining the constant K5 :  
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And then according to the equation (10) : 
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So : 
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So we finally obtain : 

 

M=K6v
4
   (28b) 

     

 The constant K6 being defined by: 
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So we obtain the baryonic Tully-Fisher’s law (12), with K2=K6. It is natural to assume 

that h depends on ρ0. The simplest expression of h is h=C1ρ0, C1 being a constant. With this 

relation, K6 is independent of ρ0, and we can use the baryonic Tully-Fisher’s law in order to 

define candles used to evaluate distances in the Universe.  

 

2.4 Temperature of the intergalactic dark substance. 
 

 We introduced the temperature T0 of the intergalactic dark substance. We could make 

the hypothesis that this temperature is the temperature of the CMB but we remind that in 

order to get the baryonic Tully-Fisher’s law we supposed T0<<T (T temperature of the 

spherical concentration of dark substance in a galaxy). Consequently the previous hypothesis 

would lead to very high temperatures of spherical concentrations of dark substance 

constituting galaxies. We will see further that according to the theory of dark matter exposed 

here, the temperature T0 of the intergalactic dark substance is not equal to the temperature of 

the CMB, except for a particular cosmological redshift z. 

  

 We could be in the following cases: 

a)The temperature T0 of the intergalactic dark substance at the present age of the Universe 

(equation (21)) is far less than the temperature of the CMB. (If the temperature of the dark 

halos of galaxies corresponding to the 1
st
 model is inferior (approximately) to 300°K.)  

b)Baryons can emit thermal power towards dark substance as assumed in the Postulate 2a) 

even if their temperature is inferior to the one of dark substance. (If the temperature of the 

dark halos of galaxies corresponding to the 1
st
 model is superior to the temperature of gas 

whose the mass is used in the baryonic mass M intervening in the baryonic Tully-Fisher’s law 
(3)

 M=K6v
4
 (equation (28b)) . We remind that dark substance being not ordinary baryonic 

matter, it can own very special thermal properties.) 

  

 We remind that according to the Postulate 1b), the dark substance does not interact 

with photons and in particular with the photons of the CMB. Consequently dark substance 

does not receive radiated energy.   

 

2.5 Form of the Universe 

 
If the Universe was completely isotropic, we could expect by symmetry that the 

thermal flow through a great surface be nil. Consequently the temperature of the dark 

substance inside a great sphere S of the Universe (For instance with a radius of 1 billion 

years) should increase and probably tend to a uniform temperature of dark substance inside 

the sphere S, because the thermal flow on S would be nil. We know that it is not possible in 

our model of dark substance because in this model spherical concentrations of dark substance 

constituting galaxies have not the same temperature (Because the velocity of stars is not 

always the same in all galaxies and we know that the temperature of the spherical 

concentration of dark substance is proportional to she squared velocities of stars inside this 
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concentration (Equation (10)) and moreover because we admitted that the temperature T0 of 

the intergalactic dark substance is by far inferior to the temperature  of the spherical 

concentrations of dark substance constituting galaxies. So an infinite or finite isotropic 

Universe would contradict our model of thermal properties of the dark substance . 

Nonetheless with our model of dark substance, it is much easier to define a finite 

Universe than in the SCM. Indeed we can consider that the Universe is a sphere (We could 

have chosen any other finite convex volume, but the spherical volume is by far the most 

attractive) constituted of dark substance surrounded by a medium called “nothingness” that is 

not constituted of dark substance. This was not possible in the SCM that admitted the 

Cosmological Principle according to which the Universe was isotropic observed from any 

point. Moreover the SCM did not assume the existence of the concept of a dark substance 

filling all the Universe and it is precisely this concept that permits us to define this new finite 

model of Universe with borders. 

We can expect that in this new simple geometric model, the Universe appears to be 

isotropic not only if it is observed from O the centre of the sphere constituting the Universe, 

but also if it is observed from a point sufficiently far from its borders. We also remark that the 

existence of the medium that we called “nothingness” is also compatible with the MSC. 

Indeed we can consider that it was the medium before the Big-Bang. 

In order to obtain the Cosmological redshift z with this new geometric model, we can 

apply the same equations as in the SCM. Indeed we keep the assumptions of the SCM 

according to which the densities of dark energy, of dark baryonic matter and of dark energy 

(if the latter exists) are homogeneous in all the Universe and we keep their values admitted in 

the SCM. The new model of Universe is no more isotropic (because of its borders), but 

nonetheless we can apply the same equations as in the SCM in any point situated at a distance 

sufficiently far from the borders of the Universe. And we will admit that this distance is quasi-

nil or very small relative to the radius of the spherical Universe.  

Concerning the CMB, we can admit as in the SCM that it appeared for an expansion 

factor 1+z of the order of 1500. The hypothesis according to which at the age of the Universe 

corresponding to this factor of expansion the temperature of dark substance and the 

temperature of the CMB were equal, is very attractive. Indeed with this hypothesis, assuming 

that the dark substance was homogeneous in temperature when the CMB appeared (for z of 

the order of 1500), because it is natural to assume that the dark substance in the Universe 

before the apparition of galaxies was homogeneous in temperature and density. In fact we 

assume that in the early Universe, the Homogenization Effect (concept defined in Section 2.4) 

prevailed in all the Universe. So the new theory of dark matter exposed here proposes a 

phenomenon different from the phenomenon called inflation in order to explain the quasi-

isotropy of the CMB. But this theory remains sufficiently compatible with the SCM in order 

to explain the anisotropies of the CMB the same way as the SCM..     

 

In the case in which Universe is a sphere (or any finite convex volume with a finite 

surface) constituted of dark substance, we avoid the previous problem concerning the 

temperature of the intergalactic dark substance. Indeed, we can assume, generalizing the 

Postulate 2b), that at the borders of the Universe, there is a convective thermal transfer. This 

new kind of thermal transfer is modeled as a convective transfer between a medium 

constituted of intergalactic dark substance at a temperature T0 and a medium at a temperature 

equal to 0 (The nothingness). Then the thermal flow lost by the Universe is, hn being a 

variable or a constant:  

 

φ=hn(T0-0)=hnT0    (28d) 
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M being the baryonic mass of the Universe assumed to remain approximately 

constant, we obtain from equation (14) that the equation of thermal equilibrium is: 

 

K3M = 4πRE(t)
2
 φ =4πRE(t)

2
 hnT0(t)   (28e) 

  

 So we see that if the Universe increases from a factor 1+z, according to the equation 

(29a), if hn is a constant (independent of the density of the intergalactic dark substance), the 

temperature T0(t) of the intergalactic dark substance diminishes from a factor (1+z)
2
. If we 

had supposed that hn=C2ρ0, ρ0 being the mass density of the intergalactic dark substance and 

C2 being a constant, we would have obtained that if the Universe increases from a factor 1+z, 

then T also increases by a factor 1+z which is impossible.   

 We also remark that the hypothesis of an infinite Universe, or a finite Universe 

without borders, that are geometric models proposed by the SCM 
(6)(7) 

, seems to be 

impossible to be conceived by the human mind, which is not the case with the finite spherical 

Universe, full of dark substance (or any finite convex volume with a finite surface), proposed 

by the theory exposed here. 

 

 

 

 

2.6 Physical Interpretation of the CRF. Local and Universal Cosmological frames. 
  

2.6.1 The 2 models of the Physical Interpretation of the CRF. 

 

We remind that the CMB presents a Doppler effect that is canceled in a frame called 

for this reason the CMB Rest Frame (CRF). But this CRF has none physical interpretation in 

the SCM. We are going to give here a Physical Interpretation of the CRF, which permits to 

obtain a new model of Universe, that is spherical as in the preceding section 2.5. This new 

Physical Interpretation of the CRF is in agreement with the SCM in many points, in particular 

it admits Special and General Relativity. Also it permits to define Cosmological variables 

(Cosmological time, distances used in Cosmology, Hubble Constant) in a more precise way 

than in the SCM but nonetheless in a way that is in agreement with their definition in the 

SCM. Our Physical Interpretation of the CRF proposes 2 mathematical models of expansion 

of the Universe. (Because the Universe is in expansion in our Physical Interpretation of the 

CRF as it is in the SCM). The 1
st
 mathematical model is based on General Relativity as the 

SCM. We will see that according to this 1
st
 model the mathematical expressions of 

Cosmological variables are identical to their expression in the SCM. The 2
nd

 mathematical 

model is much simpler, but nonetheless its theoretical predictions are in agreement with 

observation. 

Concerning the physical properties of the CRF: 

-Firstly it is natural that in each point of the Universe (and not only on the earth), we can 

define a CRF. We then can suppose that all CRF have parallel corresponding axis. 

 

-Secondly we can think that the CRF permits to define very easily the Cosmological time, 

identified to the age of the Universe. The simplest definition of the Cosmological time would 

be that the time of the CRF (meaning the time given by the clocks at rest in the CRF) be 

precisely the Cosmological time. And we will see that this hypothesis is in agreement with  

observations. For instance we will see that its validity is illustrated by a very simple 

observation concerning the inertial frame linked to the sun. Indeed we recall that according to 

Special Relativity, if HS is a clock linked to the sun and giving the time of the inertial frame 
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RS linked to the sun, if RLC is a local inertial frame giving the Cosmological time RS being 

driven with a velocity VS relative to RLC, if TS is a time measured by HS corresponding to a 

Cosmological time TC of RLC, then: TS=TC(1-VS
2
/c

2
)
1/2

. Consequently if VS<<c, we get 

TS≈TC. Therefore it is completely impossible that locally all the inertial frames (with Lorentz 

transformations) give all the Cosmological time.   

Consequently if VS<<c we get TS≈TC.  

 

-Thirdly we know that according to Special Relativity (We remind that we admit it as in the 

SCM) the velocity of a photon relative to the CRF in which it is situated is equal to c in norm. 

Moreover according to Special Relativity its velocity considered as a vector c keeps itself in 

this CRF. We will call local velocity this velocity c. An attractive hypothesis would be that 

the local velocity of the photon keeps itself the photon traveling in all the Universe. We will 

see that this hypothesis involves theoretical predictions that are in agreement with 

observation. In particular we will see that it permits to justify very simply the effect of the 

expansion of the Universe on the lengths of wave of photons and on the distances between 2 

photons following one another. (This effect is also predicted by the SCM) .          

 So we express the preceding hypothesis in the following Postulate 3: 

 

Postulate 3: 

a)At each point of the Universe, we can define a CRF. We will assume that all CRF have 

parallel corresponding axis. 

b)The Cosmological time (identified with the age of the Universe) is the time of all the CRF. 

c)The local velocity of a photon, meaning measured in the CRF in which it is situated, keeps 

itself, the photon traveling in all the Universe.  

 

 We could think that the CRF are defined only after the apparition of the CMB, 

meaning at a very low Cosmological time but not at a Cosmological time equal to 0. In reality 

we will see in the Postulate 4 that in reality the RRC are defined since the beginning of the 

Universe. But CMB is presently the only way for detecting the CRF. This can be considered 

as a consequence of Special Relativity. We will see that the RRC is also the Referential in 

which the intergalactic dark substance is at rest. Considering the importance of this 

Referential we will also call it the local Cosmological frame. 

 

 Because of the Postulate 3b), and since we know that the inertial frame RS linked to 

the sun is driven with a velocity vS<<c relative to the local CRF, the time of this frame RS is 

very close to the time of the CRF, that is the Cosmological time, which is an agreement with 

observation. So the Postulate 3b) justifies that the time of RS can be identified to the 

Cosmological time which was not at all evident. In fact, according with our models and 

astronomical  observations, all galaxies of the Universe have a local velocity negligible 

(relative to c) relative to the local CRF and consequently the time given by the inertial frame 

linked to any star of any galaxy is very close to the Cosmological time.       

 

 We know need to define all the CRF. Each CRF has an origin and by analogy with the 

SCM, we can expect that if A(t) and B(t) are 2 origins of any 2 CRF (t Cosmological time), 

then the distance the distance A(t1)B(t1) becomes (1+z)A(t2)B(t2) if the factor of expansion of 

the Universe between t1 and t2 is equal to 1+z.  

 

We saw in the previous section 2.5 that we could expect that the Universe had a finite 

convex volume with a finite surface, and we will assume in what follows that the Universe is 

a sphere (centre O), full of dark substance, surrounded but what we called “nothingness”. We 
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remind nonetheless that what follows can be generalized if the Universe is a finite convex 

volume with a finite surface filled of dark substance and surrounded by what we called “the 

nothingness”. We saw that this medium can be identified with the medium preceding the Big-

Bang: 

If we consider that before the Big-Bang, a medium existed we call “nothingness” this 

medium and if we consider that before the Big-Bang nothing existed, we identify this 

“nothing” to the medium called “nothingness”. 

 

In order to define completely the CRF, we introduce a new kind of frame, called 

(Universal) Cosmological frame, having its origin in O, centre of the sphere. This (Universal) 

Cosmological frame RC will be used in order to define Cosmological variables. In particular 

the time of this Referential RC is the Cosmological time of the CRF. Moreover we will 

assume that the axis of RC are parallel to the corresponding axis of the CRF and that locally 

they give the same distances as the CRF. Nonetheless, the Cosmological frame RC permits to 

measure distances between any 2 points of the Universe contrary to CRF that permit to 

measure only local distances. We will call (primary) Cosmological distance (in RC) the 

distances measured in RC. We will see that we can express all the classical Cosmological 

variables (For instance the comoving distances, the angular distance, the light-travel 

distance..) as a function of (primary) Cosmological distances measured in RC ,of the time of 

RC (Cosmological time) and of the expansion redshift z. 

     

So we assume that the Universe is a sphere with a centre O, full of dark substance, and 

in expansion. Let RE(t) be the radius of this sphere , t being the Cosmological time. In analogy 

with the SCM, we assume that RE(t)=RE(t0)(1+z), 1+z being the factor of expansion of the 

Universe between t0 and t. We will see further how we can get 1+z. 

 

We are now going to define very important and particular points of the frame RC, 

called comoving points of the swelling sphere.  

   

We assume that P(t) is any point belonging to the border of the swelling sphere, t 

being the Cosmological time, with OP(t) (O is the centre of the swelling sphere) remaining in 

the same direction u, fixed vector RC. 

A comoving point A(t) of the swelling  sphere is defined by : 

 

-A(t) remains on the segment [O,P(t)] 

-OA(t)=aOP(t), a being a constant belonging to [0,1]. (28f) 

 

So in particular O and P(t) are comoving points of the swelling sphere. Moreover if 

A(t) and B(t) are 2 comoving points of the swelling sphere, belonging both to a radius 

[O,P(t)], and if t1 and t2 are 2 ages of the Universe, if 1+z=OP(t2)/OP(t1)), (Here 1+z is the 

factor of expansion between t1 and t2) then we have the 2 relations: 

  

A(t2)B(t2)=(1+z)A(t1)B(t1)  (28g)  

 

And : 

 

 [A(t2),B(t2)]//[A(t1),B(t1)]  (28h) 
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(We classically note, P,Q being 2 points of RC, PQ is the distance between P and Q 

measured in RC, [P,Q] is the segment with extremities P and Q, (P,Q) is the straight line 

containing P and Q) 

 

Using Thales theorem we obtain the 2 previous relation (28g) (28h) A(t) and B(t) 

being any comoving points of the swelling sphere (not compulsory belonging both to the 

same radius [O,P(t)]). We just use the relation: OA(t2)/OA(t1)=OB(t2)/OB(t1)=f. 

So we see that the comoving points of the swelling sphere verify the expected relations 

between the origins of the CRF (Meaning that the distance between them increases by the 

factor of expansion of the Universe.) 

 

 

  
 

   Figure 2:The model of the swelling sphere of the Universe. 

 

Consequently the comoving points of the swelling sphere previously defined permit to 

complete the definition of the CRF, in the Postulate 4: 

 

Postulate 4: 

The origins of the CRF are the comoving points that we defined previously. 

 

 Now we need to express the factor of expansion 1+z as a function of the Cosmological 

time. We propose 2 models. 

 According to our 1
st
 model, 1+z is obtained as it is obtained in the SCM: We apply  

locally the equations of General Relativity, assuming that the densities of dark substance, 

baryonic matter and dark energy own identical values to their values in the SCM and are 

homogeneous in all the Universe. A priori, we cannot apply the equations of General 

Relativity as in the SCM in a zone close to the borders of the Universe because we have no 

more isotropy of density in this zone. But we will assume that the dimensions of this zone are 

very small relative to the radius of the swelling sphere. Moreover, we will see that according 

to our model, in many cases this zone cannot be observed. And consequently in this 1
st
 model, 

if the previous zone is sufficiently small, the factor of expansion 1+z used in the expression of 

RE(t) and to define the comoving points of the swelling sphere remains identical to its 

RE(t)=RE(t0)(1+z) 
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expression in the SCM. We will see that this equality involves that our 1
st
 model of our 

Physical Interpretation of the CRF predicts distances used in Cosmology and a Hubble 

Constant that are mathematically equal to those predicted by the SCM.  

 

 Nonetheless, a priori, it is possible that the factor of expansion 1+z be not obtained by 

the equations of General Relativity. It is possible that as for the (local) velocity of light, the 

Cosmological velocity of the borders of the Universe relative to RC (defined by 

VE(t)=d(RE(t))/dt, t Cosmological time) be as simplest as possible, meaning that it is equal to 

a constant C. There is no reason for which C should be equal or inferior to the velocity of 

light c because C is not the local velocity (defined in Postulate 3) of a photon or of a particle. 

So in our 2
nd

 model, we assume that the Cosmological velocity of the borders of the Universe 

is equal to a constant C. We will see that we can give an inferior limit to this constant C. And 

we will also see that despite of this great simplicity, the predictions of this 2
nd

 mathematical 

model are in agreement with all astronomical observations. Then if P(t) is a point of the 

border of the sphere OP(t)=Ct. And we have a very simple expression of 1+z: Between t0 and 

t, 1+z=t/t0.  

 We saw that the SCM needed the existence of a mysterious dark energy, and it is also 

the case for our 1
st
 model. But we see that in the 2

nd
 model this enigma is solved because it 

does not need the existence of a dark energy. And this is a very attractive point of this 2
nd

 

model. This 2
nd

 model is also clearly the simplest mathematical model of expansion of the 

Universe that can exist. 

 

2.6.2 The theoretical consequences of our Physical Interpretation of the CRF. 

 

 As a consequence of our Physical Interpretation of the CRF, we can prove that as it 

was also the case in the MSC, if 2 photons ph1 and ph2 move in the same direction on a 

straight line towards the point O origin of RC (We will see further that this remains true 

replacing O by any comoving point O’ of the swelling sphere), then between 2 Cosmological 

times t1 and t2, the Cosmological distance measured in RC between the 2 photons and the 

length of wave of each photon increase by the factor of expansion 1+z between t1 and t2 . 

 

 Indeed let us consider 2 photons defined as previously. So they have an identical local 

velocity c (with a direction being the direction of the straight line). We take the following 

notations: At the Cosmological time t ph1 is in the point ph1(t) of RC, and ph2 is in the point 

ph2(t). Let us suppose that for a given Cosmological time t, ph1(t) coincides with a comoving 

point A1(t) and ph2(t) with a comoving point A2(t). Let 1+dz the factor of expansion of the 

swelling sphere between t and t+dt. Then we have according to the property (28g) of 

comoving points: 

A1(t+dt)A2(t+dt)=(1+dz)A1(t)A2(t)=(1+dz)ph1(t)ph2(t). 

Moreover, the local velocity of photons being equal to c: 

A1(t+dt)ph1(t+dt)=A2(t+dt)(ph2(t+dt)=cdt 

And consequently : 

ph1(t+dt)ph2(t+dt)=A1(t+dt)A2(t+dt)=(1+dz)(ph1(t)ph2(t) 

 

 We obtain the same way that because of the expansion of the Universe, the length of 

wave of a photon is also increased by the factor of expansion of the Universe 1+z. We 

identify a photon with a system between a segment [a(t),b(t)], the length a(t)b(t) being the 

length of wave of the photon, a(t) and b(t) being driven with the same local velocity c, c being 

the velocity of the photon, and the line (a(t),b(t)) being parallel to the velocity of the photon c. 
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 We can show in an analogous way that if we suppose only that ph1 and ph2 own the 

same local velocity (as a vector), and are not compulsory moving on a straight line towards O, 

then the primary Cosmological distance between ph1(t) and ph2(t) is increased by the factor 

of expansion 1+z and moreover (ph1(t1),ph2(t1))//(ph1(t2),ph2(t2)) 

 

 We remark that in any commoving point of the swelling sphere O’(t) we can define a  

Cosmological frame RC’ whose the axis are parallel to the corresponding axis of RC and 

defining the same Cosmological variables as RC (primary Cosmological distance at a given 

Cosmological time t and Cosmological time).  We will call RC’ secondary Universal 

Cosmological frame. 

 Then if A(t) is any commoving point of the swelling sphere defined previously, t1 and 

t2 being 2 Cosmological times, according to the properties of commoving points (28g)(28h), if 

1+z is the factor of expansion of the Universe between t1 and t2: 

O’(t2)A(t2)=(1+z)O’(t1)A(t1) et (O’(t2),A(t2))//(O’(t1),A(t1)) 

And consequently (O’(t1),A(t1)) et (O’(t2),A(t2) ) are in the same direction u. 

Consequently the properties (28f), replacing RC by RC’ and O by O’, remain valid, P(t) being 

still a point of the border of the sphere. (But here O’(t)P(t) is no more equal to RE(t)). 

Consequently the expressions of distances used in Cosmology and Hubble’s constant are 

obtained in RC’ exactly the same way as in RC. 

  

 We will see that according to our Physical Interpretation of the CRF we cannot 

observe all the Universe from O(t0) (or O’(t0), (t0 present age of the Universe), which was also 

the case in the SCM. Moreover the properties of RC’(t) involve that if O’(t0) is sufficiently far 

from the borders of the Universe, then according to our Physical Interpretation of the CRF the 

Universe observable from O’(t0) is identical to the Universe observable from O(t0). In 

particular in that case the Universe is isotropic observed from O’(t0), as it was observed from 

O. 

 It is possible to elaborate a complete physical theory of the CRF 
(4)

, but the validity of 

the models exposed in this article is completely independent of this theory. 

 The spherical form of the Universe could be confirmed if some celestial bodies 

(quasars?) would not own a homogeneous density in the Universe, but a density presenting a 

spherical symmetry relative to a point O. According to our models, O would be then the 

centre of the spherical Universe. 

  

2.7 Hubble’s law-Distances used in Cosmology. 
 

 We keep the preceding model and notations. Let us suppose that a photon is emitted 

from a star S at a point Q(tE) of RC (Q(t) is a commoving point of the swelling sphere) at a 

Cosmological time tE towards O(tE) origin of RC. We suppose that the photon reaches O(t0) at 

the present Cosmological time t0. We assume that between tE and t0 the factor of expansion of 

the Universe is 1+z0. 

 Between t and t+dt, we know that the photon covers the local distance cdt. 

Consequently between tE and t0 the sum of the local distances covered by the photon will be : 

 

DT=c(t0-tE)  (29a) 

 

 We will call this distance, which is completely identical to the light- travel distance in 

the SCM, by the same name. We can also call it time-back distance because it permits to 

obtain the Cosmological time between the emission and the reception of the photon.  
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 We will see further how in the 1
st
 mathematical model of expansnsion   distances used 

in Cosmology and Hubble’s Constant have the same mathematical expressions as their 

expressions in the SCM, and are also obtained the same way.       

 But in the 2
nd

 model we obtain very easily the Hubble’s Constant using the light-travel 

distance defined previously. 

 Indeed according to this 2
nd

 model: 

 

1+z0=(Ct0)/(CtE)=t0/(t0-DT/c)  (29b) 

 

When DT/ct0<<1 we obtain z0≈DT/ct0 and consequently the Hubble’s constant is equal 

to 1/t0. The preceding equation (29b) is very simple and can easily be verified. For instance 

taking t0=15 billion years, for z0=0.5,we obtain DT=5 billion light years and for z0=9 we 

obtain DT=13.5 billion years. These predicted values are in agreement with the usual admitted 

experimental values for the light-travel distance DT. 

We took a present Cosmological time (age of the Universe) equal to 15 billion years 

corresponding to a Hubble’s constant H=1/t0 approximately equal to 65 km/sMpc
-1

 despite 

that it is generally admitted that the Hubble’s constant H is approximately equal to 

72km/sMpc
-1

 corresponding to a time t0=1/H approximately equal to 13,5 billion years.  

Nonetheless many astrophysicists disagree with a Hubble’s constant approximately 

equal to 72 km/s Mpc
-1

 and find a Hubble’s constant approximately equal to 65km/sMpc
-1

, for 

instance Tammann and Reindl 
(5)

 in a very recent article (October 2012). There is also a 

second possibility: light-travel distance could be superior to present estimations by a factor of 

5% to 7%.  

 So it is very remarkable that according to the 2
nd

 model, the value of Hubble’s 

constant is very easily obtained and is equal to 1/t0, t0 present age of the Universe, in 

agreement with the observation. In the SCM (and in the 1
st
 model), the obtainment of 

Hubble’s constant was much more complicated and moreover it was not exactly equal to 1/t0.   

 

We assume that a photon is emitted by a star S (galaxy, star, cluster..) at a commoving 

point Q(tE), tE age of the Universe, and reaches the origin O(t0) of the Universal Cosmological 

frame at the present age of the Universe t0. We will obtain all the distances used in 

Cosmology assuming that the local velocity of any star S is small relative to c, meaning that S 

is approximately at rest in its local Cosmological frame. The predictions of the theoretical 

distances used in Cosmology are then in agreement with astronomical observations, which 

confirms the validity of this assumption. We remark that we could expect that the star S  

remain close to the commoving point Q(t) because its local velocity is small relative to c. 

 

We then can define in our model of spherical Universe in expansion other kinds of 

distances used in Cosmology in a completely analogous way to their definition in the SCM: 

We have seen that we can express the light-travel distance as: 

∫=
0t

tE

T cdtD      (29c) 

The local distance covered by the photon between t and t+dt is, according to the 

Postulate 3 equal to cdt. This local distance, considered  as a distance between 2 commoving 

points of the swelling sphere, is increased by the factor of expansion of the Universe 1+z=t0/t 

between t and t0 (See equation (28g)).  

In complete analogy with the SCM, we will call comoving distance between O and S 

the primary Cosmological distance between Q(t0) and O(t0) (Meaning their distance measured 
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in the Cosmological frame RC), which is the sum of all the local distances cdt covered by the 

photon, increased by the factor 1+z. Let DC be this distance:  

 

∫ +=
0

)1(

t

tE

C dtzcD      (29d) 

 

From this expression we define the luminosity-distance DL between O and S (at the 

Cosmological time t0) and the angular-distance DA between O and S in complete analogy 

with their definition in the SCM: 

 

DL=(1+z0)DC 

 

DA=DC/(1+z0)   (29e)  

 

The distance DA appears to be the primary Cosmological distance (distance in RC) 

between Q(tE) and O(tE). In complete analogy with the SCM it permits to obtain some angles 

with a summit O in RC. 

The distance DL , in complete analogy with its definition in the SCM, appears to be 

obtained measuring the luminous flow of a supernova taking into account the effect of the 

expansion of the Universe on the lengths of wave of the photons and on the distances between 

2 photons (moving on the same axis). We saw in the section 2.6.2 that this effect, predicted by 

the SCM, was also true in the Physical Interpretation of the CRF. 

The mathematical expressions of the different kinds of distances used in Cosmology 

(29c)(29d)(29e) are in agreement with their mathematical expression in the SCM, in which 

they are usually expressed as a function of the variable z. 

 

In the 1
st
 mathematical model of expansion, since 1+z has the same mathematical 

expression as in the SCM (as a function of the Cosmological time t) the final expression of 

those distances used in Cosmology as a function of z is identical to their final expression in 

the SCM. Consequently we also obtain an identical Hubble’s constant. 

 

In the 2
nd

 model, the expressions of distances used in Cosmology are much simpler. 

Using 1+z=t0/t we obtain: 

 

∫ ∫=+=
0 0

0 )/()1(

t

tE

t

tE

C dtttcdtzcD  

 

So we obtain finally the expression of the comoving distance, using 1+z0=t0/tE: 

  

DC=ct0Log(t0/tE)=ct0Log(1+z0)    (29f) 

 

Here also this simple expression is in agreement with the usual admitted experimental 

values for the comoving distance. We remark that in our 2
nd

 model, according with the 

previous equations we have as in the SCM for z0<<1, DT≈DC≈DA≈DL≈ct0z0. 

 

We obtain easily that according to the 2
nd

 model, the Cosmological velocity of the 

borders of the sphere being constant and equal to C (in RC), then the Cosmological velocity of 

any comoving point of the swelling sphere is constant and inferior or equal to C (measured in 

RC, using that with our notations OA(t)=aRE(t) (equation (28f)). Let VQ be the Cosmological 
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velocity of Q(t). Then consequently the distance in RC between O(t0) and Q(t0), that we called 

DC is also equal to VQt0. Consequently because of the previous equation (29f) we have: 

 

VQ=cLog(1+z0) 

 

We can interpret in our model of spherical Universe in expansion the observation of 

the explosion of a supernova 
(6)

 the same way as in the SCM, taking into account the effect of 

the expansion of the Universe on the lengths of wave of photons and on distances between 

photons moving on the same axis. We remind that we obtained this effect, that is also true in 

the SCM, in the section 2.6.2. 

 

2.8 Cosmological limits of the observable Universe. 
 

In our model of spherical Universe in expansion we cannot, as it was also the case in 

the SCM, observe the Universe (observing the galaxies) before a given time tOU. This implies 

that observing the Universe from a comoving point O’(t0) (t0 present Cosmological time) 

sufficiently far from the borders of the Universe, the observable Universe is isotropic and also 

that in many cases, the borders of the Universe cannot be observed from O’(t0). Here we are 

going to see how we can obtain this time tOU according to our model of finite Universe in 

expansion, and more precisely according to the 2
nd

 mathematical model of expansion of the 

Universe, that is much simpler than the mathematical model of the SCM.  

It is clear that according to our model of spherical Universe in expansion, as in the 

SCM, the Universe cannot be observed before the end of the dark age, at a Cosmological time 

tD, because we admit as in the SCM that before tD light cannot propagate inside the Universe. 

Moreover, galaxies cannot be observed before the Cosmological time tG, that is the time of the 

apparitions of the first galaxies. It exist another limit according to our model of spherical 

Universe in expansion. This is very clear in our 2
nd

 model: 

According to the equation (29g), VQ being compulsory inferior to C, we have: 

 

C≥cLog(1+z0)   (29h) 

 

 Consequently, with the notations of the previous section: 

 

 t0/tE=1+z0=≤exp(C/c)  (29i) 

 

Which implies that the Universe cannot be observed in O(t0) before the time tI defined by: 

  

tI=t0exp(-C/c)   (29j) 

 

 So in our Physical Interpretation of the CRF, tOU is the greatest time between tI, tG and 

tD. Moreover if tOU>tI, we cannot observe the borders of the Universe from O(t0).  

 We remark that the equation (29h) permits to give an inferior limit to the constant C of 

the 2
nd

 model: The fact that we have observed some redshift z equal to 10 implies that 

C>2,3c. If we take C=10c, we obtain tI of the order of 1million years. 

 The previous equations permit to obtain, according to the 2
nd

 model, the minimal 

distance in RC’ (Cosmological frame with an origin O’(t) defined in section 2.6.2) between 

O’(t0) and the borders of the Universe (at the Cosmological time t0)  for which the Universe 

appears to be isotropic observed from O’(t0) (Which means that the borders of the Universe 

cannot be observed from O’(t0)). 
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2.9 The Cosmic Microwave Background. 
      

 In complete agreement with the SCM, we admit the apparition of a CMB at a 

Cosmological time very close to the Big-Bang (We admit as in the SCM that the Big Bang 

occurs at a Cosmological time equal to 0). Proceeding exactly as in the SCM, taking into 

account the effect of the expansion of the Universe on the lengths of wave of photons and on 

photons moving on the same axis (effect obtained in section 2.6.2) , we obtain in the Physical 

Interpretation of the CRF that if the CMB appears at a Cosmological time tiCMB corresponding 

to a temperature TiCMB, then at an absolute time t superior to tiCMB, if the factor of expansion 

between tiCMB and t is 1+z, then the CMB at a Cosmological time t corresponds to a 

temperature TCMB(t)=TiCMB/(1+z). (This is obtained exactly the same way as in SCM, because 

we have in both Cosmological models that with the same notations the density of photons is 

divided by (1+z)
3
 and the lengths of wave of photons are increased by a factor (1+z)). And 

consequently our Physical Interpretation of the CRF is in agreement with the observation of 

the CMB corresponding to a great redshift z0 
(7)(8)

 . 

 We remind that we saw in section 2.5 that with the hypothesis of an initial equality of 

the temperature of the CMB and the temperature of the dark substance, taking a thermal 

model similar to the thermal model used in order to obtain the baryonic Tully-Fisher’s law, 

then at the present age of the Universe the temperature of the intergalactic dark substance 

(evolving in 1/(1+z)
2
) is approximately 1500 times less than the temperature of the CMB 

(evolving in 1/(1+z)).      

But now we have given a very complete physical interpretation of the CRF that did not 

exist in the SCM. In our Physical Interpretation of the CMB we interpret the interpretation of 

the anisotropies of the CMB as the SCM. 

     

It is important to know what happens to a photon reaching the borders of the spherical 

Universe. It could be absorbed but it is not the only possible hypothesis. The simplest 

hypothesis according which the photon is not absorbed, that we will admit in our Physical 

Interpretation of the CRF, expresses that the photon is reflected, taking exactly the opposite of 

its local velocity (as a vector). With this last hypothesis we could expect to see reflected 

images of some galaxies. But there are several explanations to the fact that it is not the case: 

We keep the notations of the previous section 2.8, defining the limits of the 

Cosmological time before which it cannot be observed: 

We obtain easily that if tG>tI or tI<tD then we cannot observe the reflection of images 

of galaxies on the borders of the Universe. Indeed in the 1
st
 case the reflected images of 

galaxies reach O after t0 and in the 2
nd

 case the reflected photons are absorbed. 

 

2.10 Dipole contribution of the CMB. 
 

 We know that according to the SCM we have the following fluctuations of 

temperature of the CMB 
(7)

:  
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In the previous expression l=1 is the dipole contribution, corresponding to the motion 

of the earth relative to the CRF. In our Physical Interpretation of the CRF, we keep the 

previous expression, but then we can interpret the dipole contribution of this equation, which 

was not the case in the SCM. 
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3.COMPLEMENTS 

  

 In the Part 2 of this article, we presented a new model of dark matter, called dark 

substance, and a Physical Interpretation of the CRF. In this Part 3, we study the consequences 

of these models, as for instance the motion of a spherical concentration of dark substance 

(constituting some galaxies with a flat rotation curve according to the preceding article), the 

thermal effects on the spherical concentration of dark substance due to this motion, and the 

effects of this motion on the mass and the velocity of this spherical concentration. We will see 

that it exists 2 kinds of radius in a galaxy, the 1
st
 one being the baryonic radius (visible) and 

the 2
nd

 one, called dark radius, being the radius of the spherical concentration of dark 

substance. We will give the mathematical expression of this dark radius as a function of the 

Cosmological time, and we will study a particular case, the case of the Milky Way at a 

Cosmological time equal to 5 billion years. We will also study the concentration of dark 

substance around stars and planets, and we will make appear the existence of new kinds of 

galaxies. Then we will propose a distribution of dark matter in clusters, and different 

dynamical models of clusters permitting to obtain the mass of clusters from the observation of 

velocities of galaxies in clusters. To end we will study according to our Cosmological theory 

the evolution of the temperature of the intergalactic dark substance as a function of the age of 

the Universe.  

 

3.1 Motion of a galaxy inside the intergalactic dark substance. 
 

 We could think that a spherical concentration of dark substance constituting a galaxy, 

moving through the intergalactic dark substance, is submitted to some modifications of its  

mass and velocity because of this motion. 

 In fact, we have the 2 following properties for the concentration of dark substance: 

 

a) The moving spherical concentration keeps its mass. 

b) The moving spherical concentration keeps its velocity: It is not slowed down nor 

accelerated. 

 

 Indeed, let us consider a spherical concentration of dark substance constituting the 

dark matter of a galaxy (centre O) driven with a local velocity V relative to the intergalactic 

dark substance (In fact we can assume that locally, the dark substance is at rest relative to the 

local CRF, and consequently V is also the local velocity (relative to the local CRF) of the 

spherical concentration of dark substance). Let us consider the disk whose the center is O, the 

radius is the radius of the spherical concentration, and that is perpendicular to the velocity V. 

Let S be the surface of the disk. Then in an interval of Cosmological time dt, we have the 2 

phenomena: 

 

c) A volume SVdt of dark substance is absorbed by the spherical concentration.(In front of the 

sphere). 

d) A volume SVdt is emitted by the spherical concentration (to the back of the sphere). 

 

Moreover we remark that according to our model the emitted and the absorbed dark 

substance have the same  density, that is the one of the intergalactic density. Consequently the 

emitted mass and the absorbed mass are equal, which implies that the spherical concentration 

keeps its mass (Property a)). Moreover we can assume that the emitted dark substance(in its 

final state) and the absorbed dark substance have the same local velocity (velocity of the 
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surrounding intergalactic dark substance, which we can assume being equal to 0), and 

consequently the velocity of the spherical concentration is not modified (Property b) ). 

 

 We have a second possible justification: 

Let us suppose that the moving spherical concentration of dark substance lose a little 

more dark substance than it absorb. Let us suppose for instance that the total loss be δm. Then 

the equation of equilibrium (6) remaining the same, we can assume that the spherical 

concentration of dark substance will absorb also the missing mass δm, coming back to the 

equilibrium. Consequently the mass of the concentration of dark substance remains the same. 

Moreover we can assume as previously that lost dark substance (in its final state) and 

absorbed dark substance have the same velocity (velocity of the surrounding intergalactic 

dark substance). Consequently, this is a second and more general justification that the 

spherical concentration of dark substance is not accelerated nor slowed down. 

 

It is also possible that lost dark substance and absorbed dark substance have not 

exactly the same local velocity. Then the velocity of the traveling concentration of dark 

substance is slightly modified, but it is possible that this effect be completely negligible and 

that the velocity of this galaxy in its galaxy cluster as a function of the Cosmological time 

remains constant. We remark also that it is very difficult to observe the evolution of the local 

velocity of a galaxy as a function of the Cosmological time. 

      

3.2 Baryonic and dark radius of a galaxy. 
 

We know that the galaxy Andromeda is approximately  at 2.5 billions year-light of our 

galaxy the milky way. We consider for instance the case of the milky way in order to study 

the 2 kinds of radius of a galaxy. We suppose that we are in the 2
nd

 mathematical model of the 

Physical Interpretation of the CRF (Section 2.6.1) because of its great simplicity. 

We saw in the Section 2.2 that if r is the distance to the center O of a spherical 

concentration of dark substance constituting a galaxy, then the expression of the density of 

dark substance ρ(r) is given by, k3 being a constant (See section 2.2, equation (7) k3=k2/4π):     

2

3)(
r

k
r =ρ   (31) 

So we obtain, M(r) being the mass of the sphere having its center in O and a radius r (See 

equation (9)): 

 

M(r)=4πk3r  (32) 

 

Consequently, v being the velocity of a star at a distance r of O (see equation (10)): 
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Consequently: 
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We know also that if ρ0 is the local density of the intergalactic dark substance surrounding the 

spherical concentration of dark substance constituting the galaxy, then the radius R of this 

concentration of dark substance is given by the expression (See equation (15)): 
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Consequently: 
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In previous sections, we called R the dark radius of the considered galaxy. 

So in a galaxy for which it exists a spherical concentration of dark substance with a 

density in 1/r
2
, we have 2 different kinds of radius: 

The 1
st
 kind of radius, called dark radius, is the radius of the spherical concentration 

of dark substance. The 2
nd

 kind of radius is the radius of the smallest sphere containing all the 

stars. We will call baryonic radius this second kind of radius. We remark that at a given time, 

the dark radius must be greater than the baryonic radius. 

 

Let ρ0(5) be the density of the intergalactic dark substance when the age of the 

universe (Cosmological time) was 5 billion years, and ρ0(15) this density at an age of 15 

billion years (meaning presently).  

We will see further that ρ0(z) is approximately the mean density of the Universe 

corresponding to a Cosmological redshift z. Consequently, if we admit that the total mass of 

dark substance keeps itself, we obtain that ρ0(z)=ρ0(0)(1+z)
3
. Consequently if f=1+z is the 

factor of expansion of the universe between 5 and 15 billion years we obtain: 

 

ρ0(15)=ρ0(5)/f
3
 (37)  

 

Moreover according to the 2
nd

  mathematical model of expansion that we exposed 

previously, f=15/5=3 (See Section 2.6.1). 

 

We note rB(15) the present baryonic radius of the milky way. We know that rB(15) is 

approximately equal to 50000 years light . If R(15) is the present dark radius of the milky 

way, let us suppose that R(15) is approximately 10 times greater than rB(15) (meaning 

approximately 500000 light-years): 

 

R(15)≈10rB(15) (38) 

 

Of course we ignore the real value of R(15),we can only know its minimal value (It 

must be superior to the baryonic radius). We are going to see that our hypothesis (38) leads to 

coherent results. Let rB(5) be the baryonic radius of the milky way when the age of the 

Universe was 5 billion years. Considering that the baryonic radius increases with time, we 

have the relation: 

 

rB(15)≥rB(5)  (39) 

 

We have seen and justified theoretically in the Section 2.3 of this article that according 

to the baryonic Tully-Fisher’s law the velocity of stars in a galaxy with a flat rotation curve 

depended only on the baryonic mass of this galaxy. Consequently if we suppose that between 

5 and 15 billion years, the baryonic mass of the galaxy remains approximately the same, the 

velocity v used in the equation (36) remains unchanged between 5 and 15 billion years. Using 

this equation (36) and the equation (37), taking f=3 and √(27)≈5, we obtain, R(5) being the 

dark radius of the milky way at an age of the Universe equal to 5 billion years: 

 

R(5)≈R(15)/5≈2rB(15) (40) 
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Using the equations (39) and (40) we obtain that at an age of the Universe of 5 billion 

years, the dark radius was greater than the baryonic radius: 

 

rB(5)≤rB(15)≈R(5)/2≤R(5)  (41) 

 

We remark that the previous relation (41) would have also be valid for a galaxy with 

the same dark radius R’(15)=500000 light-years but with a baryonic radius r’B(15) twice 

greater than the radius of the milky way meaning 100000 light-years. (We just take r’B(15) ≈ 

100000 years light and replace the equation (38) by the equation: R’(15)≈5r’B(15)). Our 

model remains obviously valid if the final baryonic radius is reached after 5 billion years.  

 

3.3.Thermal transfer of a moving galaxy. 

 

 We remark that the phenomenon of absorption and of emission of dark substance by a 

galaxy that we described in the Section 3.1 modifies the thermal equilibrium that we used in 

the Section 2.3 of this article in order to obtain the Tully-Fisher’s law. Indeed the absorbed 

dark substance (cold, because it is intergalactic dark substance) is not at the same temperature 

than the lost dark substance (hot, because it is the temperature of the spherical concentration 

of dark substance). 

Nonetheless we can consider that the previous phenomenon leads to a power ε(t) 
dissipated by the spherical concentration of dark substance.  ε(t) mainly depends on the  

radius of the moving spherical concentration, of its velocity relative to the local intergalactic 

dark substance, of the density of the intergalactic dark substance, and of the temperature of 

the concentration of dark substance. 

If we assume that ε(t) is negligible compared with the power emitted by the baryons of 

a galaxy towards the spherical concentration of dark substance (whose we supposed the 

existence in order to obtain the baryonic Tully-Fisher’s law, see Postulate 2a in section 2.3), 

then our thermal model used in order to get the Tully-Fisher’s law remains valid. We can a 

priori neglect ε(t) because in one year, the distance covered by the moving spherical 

concentration (the local velocity of the spherical concentration of dark substance is assumed 

to be of the order of 300km/s (10
-3

c)), is very low relative to the dark radius of the considered 

galaxies (At least of the order of 100000 light-years).     

 

3.4 Other models of distribution of dark matter in galaxies. 
 

 We have previously exposed a 1
st
 model of distribution of dark matter in galaxies with 

a flat rotation curve. In this 1
st
 model we could neglect the gravitational effect due to the 

baryonic mass of the galaxy. 

 At least 2 more models of distribution of dark matter in galaxies are possible: 

 

 In the 2
nd

 model, in order to obtain the density ρ(r,u) of the dark substance, we also 

apply Newton’s laws, but we neglect contrary to the 1
st
 model the gravitational attraction due 

to the dark substance and we consider only the gravitational attraction due to the baryonic 

matter of the galaxy. This case is most of the time very complex because the density of 

baryonic matter usually does not own a spherical symmetry and moreover its is difficult to 

obtain it. To begin with, we consider the case in which we have a spherical symmetry for the 

density of baryonic matter. If the galaxy is immerged in a medium of dark substance with a 

density ρ0 and a temperature T0, (ρ0 and T0 are not compulsory the density and the 

temperature of the intergalactic dark substance. For instance in the case of a galaxy G1 
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satellite of another galaxy G2, G2 belonging to the 1
st
 model and G1 being inside the dark 

halo of G2. In this case we know the value of ρ0 (equation (8)) we can assume as for the 1
st
 

model that it exists a minimal radius RS, called dark radius of the galaxy, such that for r>RS 

we have ρ(r)=ρ0 and a temperature of the dark substance equal to T0. If we know RS, we 

obtain ρ(r) for r<RS using Newton’s laws and the condition ρ(RS)=ρ0. 

 A priori we ignore RS but it is interesting to consider the case in which we have 

RS=RB, RB baryonic radius of the galaxy. We will justify further the possibility to consider 

this particular case.  

 

 Let us now consider an example in which the distribution of baryonic matter is the 

simplest possible, with a constant baryonic density ρB inside a sphere of radius RB. It is very 

possible that such galaxies do not exist, but this example permits to show how we can get ρ(r) 
and to obtain its order of magnitude. We first consider the case RS=RB. 

 

 We proceed as in the 1
st
 model: 

 We assume that we have a spherical concentration of dark substance with a 

homogeneous temperature T and a radius RS=RB. We consider an element of dark substance 

with a surface dS, perpendicular to the radius, a width dr and situated at a distance r from the 

center of the galaxy. Applying the Newton’s law, using the Gauss theorem and the Boyle-

Charles’law (Postulate 1), we obtain proceeding as in the 1
st
 model the equation: 
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With the condition RS=RB and consequently ρ(RB)=ρ0, we obtain for r<RB: 
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We remark that if the Newton’s laws could be applied for r>RB then we would have obtained 

the differential equation for r>RB, MB being the baryonic mass of the galaxy : 
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And so we would have obtained for r>RB=RS, with the condition ρ(RS)=ρ0 : 
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We see in this example that if we apply the equations of Newtonian mechanics with 

RS=RB, then we obtain ρ(r)≤ρ0 for r>RS, and it was also the case in the 1st model. This 

justifies the possibility to consider the case RS=RB, in this example and more generally in the 

2nd model when we have a spherical symmetry for the distribution of baryonic matter.  

 

 

In this 2nd model, assuming a spherical symmetry and RS=RB, let RMD be a value in 

[0,RB] such that ρ(RMD) be maximal. We will distinguish the 1st case  “RMD is superior to ρ0.” 

and the 2
nd

 case “RMD is inferior to ρ0”. We will also consider the 3
rd

 case in which for r in 

[0,RB], we have always ρ(r)≈ρ0. 
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In the preceding example (constant baryonic density ρB), we have according to the 

expression of ρ(r) RMD=0, and : 
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 We have ρ(r)≈ρ0 if : 
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We will see that in the case ρ(RMD)≥ρ0, it is interesting to consider the case RS=RMD. 

We justify the possibility to consider this case the same way we justified the possibility to 

consider the case RS=RB, because with ρ(RMD)=ρ0, the equations of Newtonian mechanics 

give in this case ρ(r)≤ρ0 for r>RMD. 

   

 We consider now the case, inside the 2nd model, in which we have no more a spherical 

symmetry of the distribution of baryonic matter. We assume that we know the baryonic 

density for any unitary vector u ρB(r,u). For any vector u and any radius r, we can obtain 

(using div(GB(r,u)=ρB(r,u)/ε0)) the gravitational field due to baryonic matter GB(r,u). 

Moreover we can define for any vector u the baryonic radius RB(u). We proceed then as in the 

case with a spherical symmetry defining for any vector u a dark radius RS(u). We first 

consider, in analogy with when we had a spherical symmetry, the case RS(u)=RB(u) for any 

vector u. Then using the equations of Newton mechanics we can obtain the density ρ(r,u). But 

the calculation could be very difficult, and could need a computer, especially when we have 

not always GB(r,u)//u. We can then define for any vector u RMD(u) the same way as when we 

had a spherical symmetry.  

 

A 3
rd

 possible model of distribution of dark substance in a galaxy is the model in 

which we have RS=0, meaning that we have for any radius r ρ(r)=ρ0, and the temperature of 

the dark substance is always equal to T0, ρ0 and T0 being the density and the temperature of 

the dark substance in which the galaxy is immerged. This model is due to an effect, called 

Homogenization Effect ,according to which the intergalactic dark substance tends to be 

homogeneous in temperature and density. In the 2 preceding models, this effect prevails for 

r>RS, and the laws of Newtonian mechanics prevail for r<RS. This effect of homogenization is 

also the origin of the homogeneity in density and temperature of the intergalactic dark 

substance. We can then easily obtain the gravitational field GS(r) that is due to dark matter. 

This field, added to the gravitational field GB(r) due to baryonic matter, permits to obtain the 

velocities of stars in the galaxy, using Newton’s laws. We can expect that usually GS(r) be 

small relative to GB(r). It should be possible to obtain for some galaxies the experimental 

values of GB(RB) and GS(RB) and to compare GS(RB) with its theoretical prediction.         

 

We obtain using Newton’s law: 

 

GS(RB)=-G(4/3)πRBρ0 ur  (48) 
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 It is possible that the 2nd model exposed previously do not exist, and that only galaxies 

belonging to the 1st and the 3rd model do exist. Indeed, we remind that in the 1st model, if we 

applied the Newton’s law we found ρ(r)<ρ0 for r>RS. It is possible that we can generalize this 

property in the following property HF1, that would be an illustration of the Homogenization 

Effect defined previously: 

Property HF1: If, in a model A of distribution of dark matter (around a galaxy of any star, 

planet..), we find for some r, u ρ(r,u)<ρ0, then we must replace the model A by a model B in 

which we replace always ρ(r,u)=ρ0 when we had in the model A ρ(r,u)<ρ0.    

So in the 2nd model of distribution of dark matter in galaxies we have, under the 

condition RS=RB ρ(RMD)<ρ0, then according to the preceding property, RS=0. If under the 

condition RS=RB ρ(RMD≥ρ0, taking a new condition RS=RMD and applying the preceding 

property, we obtain RS=0. 

It is also possible that we have a 2nd property HF2, that is also an illustration of the 

Homogenization Effect : 

Property HF2: If, in a model A of distribution of dark matter (around a galaxy of any star, 

planet..), we find always ρ(r)≈ρ0, then RS=0. 

 It appears that the 2nd model is by far the most complicated, but we at not sure that it 

really exists. Some astronomical observations should permit to know if it really exists. 

Nonetheless, the observation of galaxies shows that some of them could belong to the 2nd or to 

the 3rd model, for instance (4). 

 So further in this article we will assume that only the 1st and the 3rd  models (around 

galaxies) exist because we saw that the 2nd model could not exist and moreover we will see 

that this assumption leads to theoretical predictions, in particular concerning the distribution 

of dark matter in clusters, that are confirmed by astronomical observations. 

 

 We remark that the distribution of dark matter around stars and planets should belong 

to the 2nd  or to the 3rd model exposed previously. The 2nd model is nonetheless easier to be 

studied because stars and planets present a spherical symmetry. It is possible as for galaxies 

that the 2nd model does not exist around stars and planets.              

 

3.5 Other observations of dark matter. 
 

We are now going to interpret using the new theory of dark matter experimental data 

linked to the velocities of galaxies in clusters obtained by astronomical observations. 

According to what precedes, the velocity of a galaxy in a cluster is determined by: 

 

-The baryonic mass inside the cluster (stars, gas..) 

-The mass of the dark halos of galaxies. 

-The mass of the intergalactic dark substance. 

 

 We suppose that only the 1st model and the 3rd model of distribution of dark substance 

presented in the section 2.4 exist. Consequently all dark halos of galaxies belong to the 1st 

model.  

 We obtain a very interesting result concerning the mean density of galaxies 

corresponding to the 1
st
 model (density of dark substance in 1/r

2
): 

 Indeed, according to the equation (18), for those galaxies the dark radius is: 

 

RS=(2k0T/4πGρ0)
1/2  (49) 

 

According to the equation (8) : 
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k2=2k0T/G   (50) 

  

Consequently : 

 

RS=(k2/4πρ0)
1/2  (51) 

 

So according to the equation (9) the total mass of the dark halo is: 
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Let us now calculate the mass of a sphere with the same radius RS and a density equal 

to the density of the intergalactic dark substance ρ0 : 
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Consequently : 

 

MI(RS)=MS(RS)/3  (54) 

 

So the mean density of the halos of galaxies belonging to the 1st model is equal to 3ρ0, 

whatever be the radius and the temperature of the considered halo, and consequently whatever 

be the orbital velocity of stars in the considered galaxy. 

 

According to the previous equation (54) we can expect that the dark mass of a cluster 

be much greater than the baryonic matter in the galaxies of this cluster. Indeed we have seen 

that according to the theory of dark matter exposed here, for a galaxy corresponding to the 1
st
 

model, RB being the baryonic radius of the galaxy, then the mass MB(RB) of baryonic matter 

contained in the sphere with a radius RB (centre O, centre of the galaxy) was much smaller 

than the mass MS(RB) of the dark substance contained in the same sphere. And consequently, 

because RB<RS, the total mass of the dark halo MS(RS) is much greater than the total mass of 

baryonic matter contained by the galaxy . But according to the equation (54), the mean 

density of the halo is only 3 times of the minimum density of dark matter inside the cluster. 

(Because we supposed that only the 1st and the 3rd model did exist for galaxies). Consequently 

we can expect that the dark mass of clusters be much greater than the baryonic mass of the 

galaxies belonging to this cluster. 

  So for a cluster A with a mean density ρmA, we obtain if we neglect the baryonic 

density : 

 

ρ0<ρmA<3ρ0   (55) 

 

Consequently the mean densities of clusters permit to obtain an estimation of the 

density ρ0 of the intergalactic dark substance. Moreover if A1 and A2 are 2 clusters with mean 

densities ρmA1 and ρmA2 with for instance ρmA1<ρmA2, then according to the previous relation : 

 

ρmA2<3ρmA1  (56) 
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We will see that the preceding theoretical prediction is in agreement with astronomical 

observations. 

It is interesting to introduce the mean volume of dark halo per galaxy VolSG. Then if 

clusters contain the same kind of galaxies in the same proportions (which is not always the 

case), we can express the mean density of dark substance ρmA as a function of NA the number 

of galaxies inside the cluster A, and VolSG. Indeed we immediately obtain, VolA being the 

volume of the cluster and assuming that the cluster contains at least 400 galaxies (in order to 

be able to use the mean volume of dark halo per galaxy VolSG). 
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So we obtain, ρmAG being the mean density of the number of galaxies in the cluster, 

ρmAG=NA/VolA: 

 

ρmA=ρmAG(2ρ0VolSG)+ρ0    (58) 

 

So if we draw the curve ρmA(ρmAG) we obtain a straight line permitting to obtain 

precisely ρ0 and VolSG. But a 1st particular case is the case in which we have for all clusters, 

ρmAG is approximately the same. Then the prediction is that ρmA is also approximately 

constant. A second particular case is the case in which  we have always ρmAGVolSG<<1. Then 

we have always ρmA≈ρ0 whatever be ρmAG. The previous expression is valid for a given z. It is 

not true for 2 clusters that do not contain the same kind of galaxies. But, VolA(H) being the 

volume of dark halo of galaxies belonging to the 1st model in the cluster A, we have always: 
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We remind that we assumed that we could neglect the contribution of baryonic matter 

in order to obtain the mean density of the cluster ρmA. In what follows we will assume that we 

have generally for clusters VolA(H)/VolA<<1 and consequently ρmA≈ρ0. We remind that ρ0 

depends on t, age of the Universe. We will see further that the previous assumption is in 

agreement with experimental data given by astronomical observations. 

 

Now we are going to propose different dynamical models of clusters permitting to 

obtain some new relations between the mass of clusters and the velocities of galaxies 

belonging to clusters, and also to obtain an estimation of the density of intergalactic dark 

substance ρ0(z).  
 

According to a 1st dynamical model of clusters, galaxies turn around the centre of a 

cluster the same way planets turn around the sun or stars turn around the centre of the milky 

way. So we will call the planetary dynamical model of clusters this 1
st
 model.  

RA being the radius of a cluster A, VMA being the orbital velocity of a galaxy at a 

distance RA from the centre OA of A (We will obtain that VMA is also the maximal orbital 

velocity of galaxies according to this 1st model), MA being the mass of the cluster A, we 

obtain assuming a spherical symmetry of the distribution of the dark substance and neglecting 
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the baryonic matter, using as in the previous sections the Newton’s Universal law of 

attraction, the Gauss theorem and the classical Newton’s dynamic law FG=mγ : 

      

 

A

MA

A

A

R

V

R

GM 2

2
=   (61) 

 

2

MA

A

A V
R

GM
=   (62) 

 

ρmA being the mean density of the cluster A, MA=(4/3)πRA
3ρmA and therefore : 

 

(4/3)πρmAGRA
2=VMA

2 (63) 

 

VMA=RA[(4/3)πρmAG]1/2  (64) 

 

If we assume that inside the cluster A the density is approximately constant and equal 

to ρmA, we obtain that VMA is indeed the maximal orbital velocity of galaxies inside the cluster 

A. Consequently VMA can be easily obtained experimentally measuring the maximal and the 

minimal recession velocity of galaxies belonging to the cluster A.    

Nonetheless, some astronomical observations that are very important in order to study 

the validity of our different dynamical models of clusters have been realized concerning the 

Coma cluster that we will name A4 
(10)

. Using some astronomical observations of the Coma 

cluster, some astrophysicists realized a graph giving for some galaxies G belonging to the 

Coma cluster the recession velocity v(G) observed from a point OT linked to the earth as a 

function of the angle a(G) between the lines (OT,O4) and (OT,OG), with O4 the centre of the 

Coma cluster and OG the centre of the galaxy G. 

According to this graph, the gap between the maximal recession velocity and the 

minimal recession velocity is maximal for an angle a(G)=0 (5000 km/s). Then it decreases. 

And this contradicts the 1st planetary dynamical model of clusters because according 

to this model for a galaxy with a(G)=0 the velocity of G (as a vector) is perpendicular to the 

line (OT,OG) and consequently the recession velocity v(G) should be close to 0 for a(G)=0. 

And also according to this model the gap between the maximal recession velocity and the 

minimal recession velocity should increase with a(G). So the previous astronomical 

observations concerning the Coma cluster contradict the 1st planetary dynamical model of 

clusters. 

   

A 2nd possible dynamical model of clusters is the model generally used in the Standard 

Cosmological Model (SCM) based on the Virial’s theorem. So we will name this model the 

Virial’s dynamical model of clusters. 

According to this model, if σA is the velocity dispersion inside a cluster A, MA being 

the mass of the cluster and RA its radius:  
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In the previous expression, αA is of the order of the unity and depends on the cluster A. 

Some authors (6) replace in the previous expression RA by a fixed radius called the Abel 

radius.   

Nonetheless in order to establish the Virial’s theorem, we consider N objects with 

masses m1,…,mN, and we suppose that they are in equilibrium. But according to our model of 

dark matter, we are not in this hypothesis. Indeed, we can consider that we have N galaxies, 

but those galaxies interact not only between themselves, but also with the dark substance in 

which they are immerged. 

Nonetheless, despite that the hypothesis of the Virial’s theorem are not verified, the 

Virial’s dynamical model permits theoretical predictions that are in good agreement with 

experimental data obtained using astronomical observations. We will justify further the origin 

of this good agreement. Let us for instance consider 3 clusters with z<<1 (z<0,01), A1 the 

Antlia cluster, A2 the Virgo cluster and A3 the Fornax cluster. Mi and σi being respectively 

the mass and the dispersion velocity of galaxies of the cluster Ai, we have the experimental 

data (obtained using Virial’s theorem): M1≈3,3 10
14

 s.m, 360km/s<σ1<560km/s, M2≈1,2 10
15 

s.m, σ2≈700km/s, M3≈2 1014 s.m, σ3≈374 ± 24km/s  We are going to see that according to the 

2nd Virial’s dynamical model of clusters, these experimental data are compatible with our 

model of distribution of dark matter in clusters, and in particular with the fact that according 

to this model, not only the mean densities of clusters must verify the equation (56), but also  

the ratio of 2 mean densities of 2 different clusters (with the same Cosmological redshift z) 

must be close to 1. (We assume that in the equation (60), VolAi(H)<<VolAi for i=1,2,3). 

Taking αA constant and equal to α in the equation (65), we obtain the same way we 

obtained the equation (64): 

 

σA=RA[(4/3)πρmAGα]
1/2

  (66)    

 

Applying the previous equation to the clusters A1 and A2 we obtain : 
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Moreover according to the definition of the mean density ρmi of the cluster Ai : 

 

M1=(4/3)πR1
2ρm1 

 

M2=(4/3)πR2
2ρm2   (68) 

 

Consequently according to the previous equalities: 
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Using the 2 previous equations (43) and (45) we obtain : 
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In the hypothesis ρm1/ρm2)
1/6≈1, we obtain : 
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And we obtain the same relation replacing in (71) σ1 and M1 by σ3 and M3. We can 

verify that the previous theoretical prediction is in agreement with the previous experimental 

data of the σi and Mi for the clusters Ai. Indeed according to the relation (47) we should have 

σ1≈ (M1/M2)
1/3σ2 ≈ 480km/s in agreement with the experimental value of σ1, and σ3≈ 

(M3/M2)
1/3 σ3 ≈ 360km/s in agreement with the experimental value of σ3. 

Let us now consider the theoretical prediction of the Virial’s dynamical model of 

clusters concerning the Coma cluster A4 (z≈0,03) and the Virgo cluster A2 (z<0,01). The 

experimental data are  σ2≈ 700km/s, σ4 ≈1000 km/s and R4≈2R2≈10 millions l.y  

Using the equation (67) with the hypothesis (ρm2/ρm4)
1/2≈1, we obtain (We assume that 

in the equation (60), VolAi(H)<<VolAi for i=2,4): 
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With the previous experimental data the left term of the previous relation is equal to 

0,5 and the right term is equal to 0,7. We also obtain according to the equation (67): 

 

5,0)()( 2

4

22

2

4

2

4 ≈=
R

R

m

m

σ

σ

ρ

ρ
  (73) 

 

Even if this result is close to the unity and in agreement with the equation (56) it does 

not give the result closer to 1 that we expected. We remind that if Ni is the number of galaxies 

of the cluster Ai, the experimental data obtained by astronomical observations are N2≈1000 et 

N4≈10000. ρGi being the density of galaxies in the cluster Ai we therefore obtain using the 

previous experimental data of R2 and R4 ρG4≈1,2ρG2. 

According to the equation (57) we obtain that if ρ0(z) is the density of the intergalactic 

dark substance for a Universe corresponding to a Cosmological redshift z, VolSGi being the 

mean volume of dark halo per galaxy in the cluster Ai : 
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 With the approximations ρ0(0,03)≈ρ0(0) and VolSG4≈VolSG2, we obtain: 
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 So if the previous relation was true, we should obtain ρm4/ρm2 very close to 1, which is 

not the case in the relation (73). This gap with the theoretical prediction of ρm4/ρm2 could be 

due to the non validity of some of the numerous approximations that we made, for instance 

ρ0(0,03)≈ρ0(0), VolSG4≈VolSG2, α4≈α2 (in the equation (65)). This gap could also be due to 

errors on the experimental values of σ2, R4 or R2 . 

 But a more attractive possible origin of the gap between the experimental value and 

the theoretical prediction can be found analyzing the astronomical observations of the Coma 

cluster that we reminded previously and that invalidated the 1st planetary dynamical model of 
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clusters (8). Keeping our notations of v(G) and a(G), we note σ4(a) the velocity dispersion 

calculated for galaxies G such that a(G)=a. According to the astronomical observations, σ4(a) 

is maximal for a=0 and then decreases. But the experimental value of σ4 that we used has 

been obtained considering galaxies corresponding to any angle. It is clear that then the 

obtained dispersion velocity σ4 depends on the distance between O4 centre of the cluster A4 

and OT (observation point) despite that it should be independent of this distance. So it seems 

much more logical to calculate the dispersion velocity σ4 considering the recession velocities 

observed from the centre of the cluster O4. This is equivalent to identify σ4 with σ4(0) 

(corresponding to the maximal dispersion velocity), because we assume a spherical symmetry 

for the dispersion velocity. The gap between the maximal recession velocity and the minimal 

recession velocity for a=0 being approximately 5000 km/s, it is very probable that σ4(0) be 

much greater than the value that we used for σ4 (1000km/s). And with only σ4(0)≈1400 km/s, 

we find according to the equation (73) ρm4/ρm2≈1.  

 So we see that despite that the hypothesis of the Virial’s theorem are not verified, the 

theoretical predictions of the Virial’s dynamical model of clusters are in a relative good 

agreement with the experimental data obtained by astronomical observations of clusters. We 

will further give an explanation of this relative good agreement.   

 

 We are now going to propose a 3rd dynamical model of clusters that seems to be the 

only one compatible with the experimental data and also with our model of distribution of 

dark matter in clusters. According to this model, GA being a galaxy of a cluster A at a point P, 

we neglect the gravitational potential generated in P by the moving galaxies, and we consider 

only the gravitational potential generated in P by the dark substance.  So we will name this 

model the dynamical model of the dark potential of clusters. 

 Then assuming a spherical symmetry in the distribution of dark substance in the 

cluster A, U(r) being the gravitational potential at a distance r from the centre OA of the 

cluster, GA being a galaxy situated at a distance r from OA, m(GA) and V(GA) being the mass 

and the velocity of GA the total energy ET(GA) is therefore:   

  

ET(GA)=(1/2)m(GA)V(GA)2+m(GA)U(r)  (75b)        

 

 The total energy of all galaxies keeps itself. Consequently, if the cluster A contains NA 

galaxies GA1,..,GANA : 
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With ET(A) total energy of all galaxies of the cluster A being constant. So we see that 

the galaxies of the cluster A interact according to the previous equation, and that the energy of 

a given galaxy can evolve. 

We are now going to give an estimation of the gravitational potential U(r). In order to 

get this estimation, we make the approximation that the density of dark substance in the 

cluster A is constant and approximately equal to ρmA, the mean density of the cluster A. 

Applying as in the previous sections the Newton’s Universal law of gravitational attraction 

and the Gauss theorem, M(r) being the mass of the sphere with the centre OA and the radius r, 

the gravitational field G(r) is then:    

   

uG
2r

M(r)
-Gr)( =     (76) 

And consequently : 
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uG mArGr ρπ
3

4
)( −=    (77) 

By definition G=-Grad(U), so we obtain, CAU being a positive constant at a given age of the 

Universe: 

 

 

U(r)=G(4/6)πr2ρmA-CAU  (78) 

 

This equation can also be written, in the approximation that the density of dark matter in the 

cluster is approximately constant an equal to ρmA, M(r) being the mass of the sphere with the 

centre OA and a radius r : 

 

U(r)=GM(r)/2r-CAU   (79a) 

 

We cannot obtain CAU using the Newtonian mechanics because of the expansion of the 

Universe. Nonetheless let us consider the very interesting following particular model in order 

to obtain CAU: 

In analogy with Newtonian mechanics, we admit in this particular model  U(RA)=-

GMA/RA. Consequently we have, MA=M(RA) being the mass of the cluster: 
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So we finally obtain, with MA and RA depending a priori on t, age of the Universe: 
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Moreover in the considered particular model, in order to obtain RA(t) we make the 

hypothesis that CAU is constant, meaning that MA(t)/RA(t) is constant, which involves great 

simplifications. Then we obtain that RA(t) evolutes in 1/(ρmA(t))1/2, and consequently in 

1/(ρ0(t))
1/2, because of the equation (60) with VolA(H)/VolA<<1. We remark that this 

evolution in 1/(ρ0(t))
1/2 is the same as the evolution of dark radius of galaxies with a flat 

rotation curve (Equation (18)). Consequently in this considered particular model 

VolA(H)/VolA is constant, and also ρmA(t)/ρ0(t). 

We will consider further galaxies GA with a radial velocity meaning that their velocity 

in vector is parallel to the line (OA,OGA) , OA centre of the cluster and OGA centre of GA. We 

will see that such a galaxy GLA situated at r=RA owns a nil velocity V(GLA) and therefore its 

energy ET(GLA) is, according to the equation (74):  
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Therefore in the considered particular model, for a galaxy GLA the ratio 

ET(GLA)/m(GLA) is constant because in this particular model we have MA(t)/RA(t) is constant. 

Therefore the considered particular model is very interesting because we have as in 

Newtonian mechanics U(RA)=-GMA/RA, and moreover CAU is constant and the ratio 

ET(GLA)/m(GLA) of a galaxy with a radial velocity in r=RA is constant. 
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We can modify this particular model replacing RA by a radius RMA>RA, keeping the 

hypothesis that CAU is constant in order to obtain the evolution of RMA(t). We then obtain a 

2nd model very close to the 1st particular model. Both previous models are justified if we 

admit that because of the physical properties of the expanding Universe it exists a radius RMA 

such that for r>RMA we must not take into account the mass of dark substance situated 

between RMA and r in order to calculate the gravitational field G(r) and the gravitational 

potential U(r). RMA must depend only on the distribution of dark substance and the simplest 

hypothesis in order to obtain RMA is that RMA is the minimal radius for which we have strictly 

for r>RMA(t) a density equal to ρ0(t) (ρ0(t) density of the intergalactic dark substance at the age 

of the Universe t). 

The preceding hypothesis, due to the physical properties of the Universe in expansion, 

can be expressed formally in the following law: 

 

If we have an isolated celestial body S presenting a spherical symmetry immerged in 

the intergalactic dark substance (S can be a galaxy with or without dark halo, a star, a 

cluster..), we will define the Newtonian radius of S as being the minimal radius RN(S) such 

that for r>RN(S) we have the intergalactic dark substance with a density strictly equal to ρ0(t). 

Then according to this law and in order to obtain the gravitational field G(r) and the 

potential U(r), we can proceed as in Newton’s mechanics but without taking into account the 

mass of dark substance situated in r>RN(S).  

 

We obtain with the previous law that for a cluster A, RN(A) is equal to RA, baryonic 

radius of the cluster and consequently RMA is equal to RA. So we obtain exactly the particular 

model exposed previously. The previous law permits to determine the gravitational field G(r) 

and gravitational potential U(r) for any galaxy immerged in the intergalactic dark substance 

and at any point P the Universe, which would be not possible or would have led to incoherent 

results if we had kept Newton’s mechanics.   

For instance we obtain using the previous law that in a point P far from any cluster, 

galaxy, star, then the gravitational field and the gravitational potential are nil despite that in P 

the density is equal to ρ0(t) and is very close to the mean density of clusters. In order to obtain 

this property we identify P with an isolated celestial body S with RN(S)=0, and we apply the 

previous law. 

In what follows we will assume that we are in the hypothesis of the particular model 

exposed previously, with CAU constant. Nonetheless we can generalize what follows even in 

the case in which CAU depends on the age of the Universe t.  

 

Therefore, using the equation (74) : 
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CA(GA) being equal to ET(GA)+m(GA)CAU. 

 

u being a given unitary vector, we consider all the galaxies GA whose the velocity is parallel 

to u (in vector) and with moreover the line (OA,OGA) is parallel to u, OGA being the centre of 

the galaxy GA. If we assume that at any age t of the Universe, the maximal ratio 

ET(GA)/m(GA) is approximately the same for any distance r between GA and OA, then a galaxy 

situated at the limit of the cluster meaning in r=RA owns this maximal ratio, its velocity 

V(GLA) is nil and consequently because of the previous equation:    
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 So if moreover we assume that the energy ET(GA) of most galaxies GA keeps itself, 

then we obtain reciprocally that CAU is constant (independent of t, age of the Universe) 

because of the equation (79c). 

 Let us now suppose that we can neglect the interactions between any galaxy GA and 

the other galaxies, and that consequently any galaxy GA keeps its energy and also the ratio 

ET(GA)/m(GA). Then we have moreover for any galaxy GA, in the case with CAU constant, 

CA(GA) constant. We still consider the galaxies GA whose the velocity is parallel to u (in 

vector) and with moreover the line (OA,OGA) is parallel to u. Such a galaxy GA remains on the 

same straight line (OA,u), because the gravitational field G(r) is parallel to u (Equation (76)) 

and we neglect the interactions between GA and the other galaxies. We obtain according to the 

equation (80b) that the maximal radius rM(GA) reached by GA before coming back towards OA 

is given by the equation:    
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Nonetheless even in the case with CA(GA) constant, rM(GA) is not always the same for 

a given galaxy GA because M(rM(GA)) depends on ρmA that depends on ρ0(t). 

 

In the same way the maximal velocity of GA vM(GA) is obtained for r=0 and is given 

by the equation : 
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Therefore, the maximal velocity of the considered galaxies is reached for galaxies with a 

maximal ratio ET(GA)/m(GA). Moreover we have always the equality, according to the 

equations (80c) and (81a), in the case with CAU constant: 
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 Moreover assuming that at any age of the Universe, for any radius r the maximal value 

of CA(GA)/m(GA) is the same, meaning equal to CA(GAL)/m(GAL) (Equation (80b)), we obtain 

that at any age of the Universe, VMA being the maximal velocity of galaxies in OA (r=0), 

according to equations (80b) and (81a): 
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    (81c) 

 In order to obtain the previous relation, we did not use that CAU was constant. 

Consequently it remains valid even in the case in which CAU depends on t, age of the 

Universe.   

So it is remarkable that the previous equation be exactly the same form as the 

equations (61) and (65) despite that we obtained it using a completely different way. 

Nonetheless it owns only an approximate validity because in order to obtain this equation we 

neglected all the interactions between galaxies and moreover we assumed that for any radius r 

the maximal value of CA(GA)/m(GA) was the same. And in reality such interactions exist 
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expressed by the equation (75). But the approximate validity of this equation explains why the 

2 dynamical models of clusters (planetary model and Virial’s model) exposed previously give 

some theoretical predictions that are in relative good agreement with experimental data 

despite that those 2 dynamical models are wrong. In order to take into account those 

interactions between galaxies and also of the fact that for any radius r the maximal value of 

CA(GA)/m(GA) is not compulsory exactly the same, we introduce a constant βA depending on 

the cluster, of the order of the unity, such that, VMA being the maximal recession velocity 

observed from OA.       
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V β=2             (81d) 

 

 We have seen that the experimental data for the Virgo cluster A2 and the Coma cluster 

A4 were R4≈R2≈10 millions l.y and we have the maximal recession velocity VM2 and VM4 

observed from O2 and O4 (obtained taking the half of the gap between the maximal and the 

minimal recession velocities observed from OT) are  VM2≈1000 km/s et VM4≈2500 km/s. 

 If the equation (81c) was true, we would obtain, the same way we obtained the 

equation (67) : 
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We find with this equation (81e) and the experimental data given previously the 

experimental value ρm4/ρm2≈1,5. And this experimental value, despite that it is acceptable, (of 

the order of the unity) is not satisfying. This means, in the hypothesis of the validity of the 3rd   

dynamical model of the dark potential, that we cannot neglect the interactions between 

galaxies and that we must use the equation (81d) with β2≠β4. 

We did not take into account the fact that ρ0(0,03)≠ρ0(0) (We remind that for the Virgo 

cluster z2<0,01 and for the Coma cluster, z4≈0,03). And we will see further, that according to 

our model of dark matter, ρ0(0,03)≈1,1ρ0(0). So taking into account this correction, we should 

obtain ρm4/ρm2≈1,1. Moreover some astronomical observations give R4≈12,5 millions l.y. 

With this experimental data and keeping the other experimental data (R2≈5 millions l.y), we 

obtain  ρm4/ρm2≈1. 

 

 It is remarkable that we always find, in agreement with the theoretical predictions of 

this 3rd dynamical model of clusters and with our model of distribution of dark matter in 

clusters, that ρmi/ρmj is always of the order of the unity for all the clusters Ai and Aj despite 

that we consider clusters with very different sizes. 

   

 

The density of the intergalactic dark substance depends on the age of the Universe. We 

will use the symbol ρ0(0) in order to represent the density of dark matter at the present age of 

the Universe (z=0) and ρ0(z) in order to represent the density of the intergalactic dark 

substance at the age of the Universe corresponding to a cosmological redshift z. The 

estimation of the intergalactic density ρ0(0) obtained using the previous dynamical models of 

clusters permit other theoretical predictions. 
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Indeed, according to the equation (18), for a galaxy corresponding to the 1st model 

immerged in the intergalactic dark substance, the radius RS of this galaxy is given by, at the 

present age of the Universe: 
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Therefore, v being the orbital velocity of stars in this galaxy, according to the equation 

(10): 
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But it is possible to determine a minimal experimental value of RS: RS is superior to 

the baryonic radius of the galaxy, but also to the distance between the centre of the galaxy and 

the galaxies satellites driven with the same orbital velocity of the stars belonging to this 

galaxy. For instance in the Milky Way it is the case of the Small and of the Large Magellanic 

Clouds. Let RmS be the minimal experimental value of the dark radius of the galaxy. Then if 

the equation (82b) is true, we have, using the obtained estimation of ρ0(0):  
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And it is easy to compare the preceding relation with astronomical observations. Let 

us for instance consider the case of the Milky Way. In order to get ρ0(0), we apply the 3rd 

dynamical model of the dark potential to the Virgo cluster (z<0,01). According to the 

equation (62) we obtain, ρmA being the mean density of the cluster A: 
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Identifying ρmA (mean density of the Virgo cluster or of a cluster with z<<1) with 

ρ0(0) (We assume that in the equation (60), VolA2(H)<<VolA2 and consequently ρmA2≈ρ0(0)) 

we obtain: 
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Taking as cluster A the Virgo cluster A2, with the experimental data R2=5 millions l.y, 

VM2≈1000 km/s and v≈210 km/s, we find the dark radius of the Milky Way RSM.W≈600000 

l.y. This result is not only coherent, but it gives also a dark radius of the Milky Way superior 

to the distance between the centre of the Milky Way and the Magellanic clouds 

(approximately 250000 l.y). It is also in agreement with the value of RSM.W used in Section 3.2 

(500000 l.y)). 

 

We know that we observe an effect called gravitational lensing, predicted by General 

Relativity, that consists in a deviation of luminous rays due to the mass of clusters. If we 

analyze this effect, we obtain that the mass of a cluster is mainly constituted of dark mass. 

Moreover, we obtain that the mass of a cluster calculated using the gravitational lensing is 

precisely equal to the mass of the cluster obtained using the previously exposed dynamical 
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models of clusters. Therefore, the previous dynamical models of clusters and model of 

distribution of dark matter in clusters permit to justify theoretically the gravitational lensing 

observed for clusters.  

 

Moreover we know that the study of the CMB shows the existence of anisotropies due 

to the density of dark substance in the Universe. 

If ρmU(z) is the mean density of dark substance in an Universe corresponding to a 

Cosmological redshift z, we obtain as in the case of clusters: 

 

ρ0(0)<ρmU(0)<3ρ0(0)   (84a) 

 

As for clusters, it is interesting to introduce a density of dark halos in the Universe ρUH 

such that if VolU(z) is the volume of the Universe corresponding to a cosmological redshift z 

and VolU(H)(z) the volume of dark halos in the Universe, then VolU(H)(z)=ρUH VolU(z). Then 

we obtain as for clusters the equality:  

 

ρmU(0)=ρ0(0)(1+2ρUH(0))  (84b) 

 

Using the dynamical models of clusters exposed previously we obtain an estimation of 

ρ0(0). We also remark that if we assume that the dark mass of the Universe keeps itself, 1+z 

being the factor of expansion of the Universe between the age of the Universe corresponding 

to the redshift z and the present age of the Universe:   

 

ρmU(z)=ρmU(0)(1+z)
3
   (85)  

 

We can expect ρmU(0)<<1. Then according to equation (84b) ρmU(0)≈ρ0(0) and using 

the previous equation we obtain  ρmU(z)≈ρ0(z)≈ρ0(0)(1+z)3 . Using the dynamical models of 

clusters exposed previously we obtain an estimation of ρ0(0) and it should be possible to 

verify the previous approximation of  ρmU(z) and ρ0(z), observing some galaxies or clusters 

situated far from us (z>3). 

  

Moreover using the previous dynamical models of clusters in order to obtain an 

estimation of ρ0(0), we could compare this value with the value obtained from the anisotropies 

of the CMB.  

 

 

3.6 Link between the CMB and the temperature of the intergalactic dark substance. 
 

 In the Sections 2.5 and 2.6 , we have seen that according to our Physical Interpretation 

of the CRF, the Universe was a sphere filled of dark substance, surrounded by a medium 

called “nothingness”. We saw in the Section 2.5 that we could model a convective thermal 

transfer between this spherical Universe and the nothingness. The convective flow F was then 

in agreement with the expression F=hnT0(t), T0(t) being the temperature of the intergalactic 

dark substance at a Cosmological time t. It is easy to verify that it is impossible that we have a 

constant C2 such than hn=C2ρ0(t) contrary to the case in which we had also a convective 

transfer but between 2 mediums constituted  of dark substance in section 2.3. (Indeed in this 

case we would obtain that T0(t) increases). We saw in Section 2.5 that it is nonetheless 

possible that hn be constant, independent of the density of the intergalactic dark substance. 

Indeed in this case, because of the Postulate 2a) we have the equation of thermal equilibrium 

K3M=4πRE(t)2(hnT0(t)), with K3 constant (Equation (14)) , M baryonic mass of the Universe, 
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RE(t) radius of the Universe at a Cosmological time t. We obtain that T0(t) evolutes in 

1/(1+z)2, (1+z) factor of expansion of the Universe. We admit as in the SCM that the 

apparition of the CMB in the Universe corresponds to a redshift z approximately equal to 

1500. If we admit that for this value of z, the temperature of the intergalactic dark substance 

was equal to the temperature of the CMB, we obtain that presently (with an age of the 

Universe of 15 billion years), the temperature of the intergalactic dark substance is 1500 times 

lower than the temperature of the CMB, which is an acceptable value, justifying our 

approximation in Section 2.3 expressing that the temperature of the intergalactic dark 

substance can be neglected in comparison with the temperature of spherical concentrations of 

dark substance (corresponding to galaxies with flat rotation curve, see Section 2.). 

 Moreover the hypothesis of the initial temperature of the CMB and the temperature of 

the intergalactic dark substance implies, because we assumed that the latter was homogeneous 

in all the Universe (see the homogenization effect in the previous section) , that the initial 

temperature of the CMB was also homogeneous in all the Universe. And so this hypothesis 

justifies the isotropy of the CMB observed from the CRF, without needing to introduce the 

phenomenon of inflation, as it was the case in the SCM.   

 

3.7 Evolution of the temperature of the dark substance. 
 

 We saw in section 3.6 that the hypothesis of an initial equality of the temperature of 

the CMB and the temperature of the dark substance (For z≈1500) and a thermal model similar 

to the thermal model used in order to get the baryonic Tully-Fisher’s law, led to obtain that at 

the present age of the Universe the temperature of the intergalactic dark substance (evolving 

in 1/(1+z)
2
 ) was approximately 1500 times less than the temperature of the CMB (evolving in 

1/(1+z)). This is in agreement with our hypothesis used in order to obtain the baryonic Tully-

Fisher’s law according to which we could neglect the temperature of the intergalactic dark 

substance relative to the temperatures of dark halos of galaxies with a flat rotation curve. 

 Nonetheless in order to obtain the evolution in 1/(1+z)2 of the temperature of the 

intergalactic dark substance, we used in the section 3.6 the equation, MB baryonic mass of the 

Universe and RU(t) radius of the Universe for the age of the Universe t: 

 

K3MB=4πRU(t)2hnT0(t)  (86) 

 

With K3 constant defined in the equation (14), and we did not take into account the evolution 

of the internal energy of the dark substance nor the energy lost because of the dilatation of the 

volume of the intergalactic dark substance. We will call 1st model of the evolution of the 

temperature of the intergalactic dark substance the preceding model. We remark that we 

assumed its validity only for z<1500. 

 Let us consider a 2nd model in which on the contrary we neglect (i) the thermal energy 

transferred from the baryons towards the dark substance (energy that is obviously nil before 

the apparition of baryons) and also (ii) the energy lost by the intergalactic dark substance 

through  the convective transfer between intergalactic dark substance and the medium that we 

called nothingness and we consider only (iii) the variation of the internal energy of the 

intergalactic dark substance and also relative to (iv) the energy lost because of the variation of 

the volume of the intergalactic dark substance. We suppose that in this model, the dark 

substance is homogeneous in all the Universe, because we consider its validity only for 

z>1500, and for this cosmological redshift z the galaxies did not exist. Consequently the dark 

substance obeys to the Boyle-Charles law (Postulate 1) and moreover we assume that it also 

obeys to Joule’s law for ideal gas: It exists a constant KES such that T(t) being the temperature 
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of the dark substance, MS being the total mass of the dark substance and U(T(t)) being the 

total internal energy of the dark substance for an age of the Universe t: 

 

U(T(t))=KESMST(t)  (87).     

 

Moreover the energy lost that is the work corresponding to a variation of the volume of the 

dark substance dV under the pressure P is equal to: 

 

W=-PdV   (88) 

 

We assume in this 2nd model of the evolution of the temperature of the dark substance that the 

transformation is adiabatic reversible. Consequently we can apply the Laplace’s law: It exists 

a constant γ such that, V being the volume of the Universe for a temperature T at an age of the 

Universe t, and V1 its volume for a temperature T1 at an age t1: 

 

TVγ-1=T1V1
γ-1     (89) 

 

Consequently if 1+z is the factor of expansion of the Universe between t1 and t, 

V(t)=V(t1)(1+z)3 and: 

 

T(t)=T(t1)/(1+z)3(γ-1)    (90) 

 

In a 3rd model of evolution of the temperature of the (intergalactic) dark substance we 

take into account every kind of energy received or lost by the dark substance. Nonetheless, we 

consider in this model that the dark substance is homogeneous in density and temperature in 

all the Universe, without taking into account the dark halos of galaxies with a flat rotation 

curve, and we have seen that this was justified because the total volume of those dark halos 

was very small relative to the total volume of the Universe. We will take the following 

notations: 

dW(t,t+dt) is the energy received by the dark substance as a work (negative) due to the 

variation of volume of the dark substance between the ages of the Universe t and t+dt. 

 

dETF(t,t+dt) is the energy received by the dark substance (negative) due to the thermal transfer 

between the dark substance and the medium that we called “nothingness” between t and t+dt. 

RU(t) being the radius of the Universe at the age of the Universe t, we have seen (equation 

(86)): 

 

dETF(t,t+dt)=(-hnT(t))(4πRU(t)2)dt  (91) 

 

dETB(t,t+dt) is the energy transferred by the baryons to the dark substance (positive), 

(Equation (14)) between t and t+dt, MB(t) being the mass of the baryons at the age t of the 

Universe we have: 

 

dETB(t,t+dt)=K3MB(t)dt   (92) 

 

Then the equation of equilibrium of the energy received and lost by the dark substance is: 

 

dU(t,t+dt)=dW(t,t+dt) + dETF(t,t+dt) + dETB(t,t+dt)  (93)  
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We remind that according to the Boyle-Charles law, MS being the total mass of the dark 

substance (assumed to be constant):  

 

P(t)V(t)=k0MST(t)    (94) 

 

And, RU(t) being the radius of the Universe, V(t)=(4/3)πRU(t)3 and d(RU(t))=dzRU(t) (1+dz 

being the factor of expansion of the Universe between t and t+dt), 

dV(t)=4πRU(t)2dRU(t)=4πRU(t)3dz and consequently dV(t)/V(t)=3dz. So we have: 

 

dW(t,t+dt)=-PdV(t)=-k0MST(t)(dV(t)/V(t)) 

 

dW(t,t+dt)=-3k0MST(t)dz   (95) 

 

So we obtain the following differential equation in T(t), because dz and RU(t) can be 

expressed as a function of t: 

 

d(KESMST(t))=-3k0T(t)dz-hnT(t)(4πRU(t)2)dt+K3MB(t)dt 

 

KESMS(dT(t)/dt)=-3k0MST(t)(dz/dt)-hn(4πRU(t)2)T(t)+K3MB(t) (96) 

 

We remark that with the previous notations, the parameter γ used in Laplace’s equation (89) 

can be expressed by: 

 

γ=1+k0/KES 

 

Consequently k0 should be of the order of KES. Using the previous equation (96) we can 

express the conditions of validity of the 1st model, in which we neglected the variation of 

internal energy and the work received by the dark matter due to the variation of its volume. 

Those conditions are: 

 

-KESMS(dT(t)/dt)<< K3MB(t) 

 

-KESMS(dT(t)/dt)<< hn(4πRU(t)2)T(t)  

 

3k0MST(t)(dz/dt)<< K3MB(t) 

 

3k0MST(t)(dz/dt)<< hn(4πRU(t)2)T(t)  (97) 

 

The conditions for which the 2nd model of the evolution of the temperature of dark substance 

be valid are the inverse conditions (replacing “<<” by “>>”) 

 

3.8 Evolution of the temperature of dark substance- 2
nd

 model of expansion. 
 

 We are going to consider the application of the preceding section 3.7 in the case of the 

2
nd

 model of expansion of the Universe, meaning with RU(t)=Ct, (C constant), and 

consequently between t and t+dt, 1+dz=(t+dt)/t, so dz=dt/t. 

 We remark that in the 1st model of evolution of the temperature T(t) evolves in 

1/(1+z)2, consequently for this 2nd model of expansion in 1/t2.  In the 2nd model of the 

evolution of the temperature, T(t) evolves in 1/(1+z)3(γ-1) with γ>1, consequently in this 2nd 

model of expansion in 1/t3(γ-1) . So in both cases T(t) evolves in 1/tp, with p>0. For such a 
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function T(t), we obtain that for t tending towards the infinite both functions T(t) and 

(dT(t)/dt)/T(t) tend towards 0. So for t sufficiently great the equations (97) are valid and the 

1st model of evolution of the temperature of dark substance is also valid. 

On the contrary for t tending towards 0, the functions (dT(t)/dt)/T(t) and T(t) tend towards the 

infinite and consequently for t sufficiently small (for instance just after the Big-Bang), the 

inverse of the relations (97) are valid and consequently the 2nd model of evolution of the 

temperature of dark substance is also valid.   

 

3.9 Dark energy in the Universe. 
 

 We defined in the Postulate 1 the Boyle-Charles’law for an element of dark substance 

with a pressure P, a volume V, a temperature T and a mass m, k0 being a constant: 

  

 PV=k0mT   (98) 

 

 Using the previous law and the Newton’s Universal law of gravitation, we obtained 

the equation (10), valid for all galaxies with a flat rotation curve. For instance for the Milky 

Way, TMW being the temperature of the dark halo of the Milky Way and vMW being the orbital 

velocity of stars in Milky Way, we have the equation: 

 

vMW
2≈2k0TMW   (99) 

 

Consequently taking vMW≈2. 105m/s we obtain k0TMW≈2. 1010 U.S.I .  

Let us compare the equation (98) with the analogous equation valid for hydrogen modeled as 

an ideal gas. We know that it exists a constant  kH such that for a hydrogen element with a 

mass mH, a volume V, at a temperature T and a pressure P:   

 

PV=kHmHT   (100) 

 

We know that for a mole of hydrogen, for T=TK=273°K, V=20. 10-3, P=105 Pa, mH=10-3 kg, 

we have: 

 

kHTK≈PV/mH=105×20. 10-3×103= 2. 106 U.S.I  (101) 

 

If we assume that dark substance and hydrogen obeys to Joule’s law, we therefore 

obtain that the internal energy of a kg of hydrogen at the temperature TK is of the order of 

kHTK meaning 2. 106 Joules despite that the internal energy of a kg of dark substance 

belonging to the halo of the Milky Way is of the order of k0TMW meaning 2. 1010 Joules, and 

therefore the latter energy is by far superior to the former. Considering this important 

difference of energy, we must consider a 2nd possible model of energetic transfer from 

baryons towards the dark substance, permitting a transmitted power much greater than a 

power corresponding to a diminution quasi imperceptible of the temperature of the baryonic 

matter. In this 2nd model, the transferred energy is dark energy. In this 2nd model, baryonic 

particles contain a very important quantity of dark energy, but this dark energy must not be 

taken into account in the mass appearing in the classical equations E=mc
2
 or Ep=mU. 

Consequently we cannot detect this dark energy using classical experiments. The power of 

dark energy transmitted from baryons towards dark substance has the same expression as in 

the 1st model of power (calorific power):         
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Pr=K3SM    (102) 

 

With M the mass of the considered baryonic particles and K3S constant. p0S being the power 

of dark energy lost by nucleus and m0 being the mass of a nucleus we obtain K3S=p0S/m0. 

Moreover if we consider that baryonic particles have been created just after the Big-Bang 

with a total dark energy per nucleus equal to E0, we get with the previous 2nd model that the 

dark energy of a mass M at an age of the Universe t is:   

 

ES(M,t)=(M/m0) (E0-p0St) (103) 

 

It is very possible that E0 be of the order of m0c
2. We ignore what happens in this 2nd model 

when baryonic particles have lost all their dark energy. 

 

  

4.CONCLUSION  

 

 So in this article we proposed the existence of a dark substance whose physical 

properties are in agreement with observations connected to dark matter. In particular those 

physical properties, despite of their simplicity, permitted to us to justify theoretically the flat 

rotation curve observed for many galaxies and the baryonic Tully-Fisher’s law. In order to 

obtain those laws, we interpreted galaxies with a flat rotation curve as spherical 

concentrations of dark substance in thermal equilibrium. 

 We have also exposed a Physical Interpretation of the CMB Rest Frame (CRF) that we 

also called the local Cosmological frame. This Interpretation permitted to us to define in a 

simple and new way the Cosmological time, in agreement with all astronomical observations 

and with the definition of Cosmological time in the SCM. This Interpretation has also 

permitted to us to introduce a new kind of frame, called (Universal) Cosmological frame, that 

is fundamental for the description of the Universe. Then using these new concepts, we 

proposed a new model of Universe, flat and finite, not proposed by the SCM. Despite of this 

difference we have seen that according to a 1st mathematical model of expansion of the 

Universe ,based as the SCM on General Relativity, the observable Universe was identical to 

the one predicted by the SCM (in particular it is isotropic), provided that it be observed from a 

point sufficiently far from the borders of the Universe. We also have proposed a 2nd 

mathematical model of expansion, much simpler than the mathematical model of the SCM, 

and we have seen that the theoretical predictions of this 2
nd

 were nonetheless in agreement 

with astrophysical observations. Moreover this 2nd mathematical model did not need a dark 

energy, contrary to the SCM, and consequently brings a solution to the enigma of dark 

energy. 

 In section 3 we studied the effects of the motion of a spherical concentration of dark 

substance on its velocity and its mass. We also studied the 2 kinds of radius for a galaxy, the 

dark radius and the baryonic radius. We also studied the different possible models of 

distribution of dark matter in galaxies. Then we exposed the theoretical predictions 

concerning the velocities of galaxies in clusters and we saw that those predictions were in 

agreement with experimental data of some clusters having a cosmological redshift inferior to 

0,03. We saw that the new theory permitted to predict the value of the dark radius of all 

galaxies (In particular galaxies with a flat rotation curve), and to obtain the mean density of 

the Universe, and also the value of the density of the intergalactic dark substance. Finally we 

studied the evolution of the temperature of the dark substance, just after the Big-Bang up to 

the present age of the Universe.  And we have then seen the existence of a dark energy that is 

identified with the internal energy of the dark substance.  
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 Concerning the Physical Interpretation of the CRF, finding some observations 

permitting to compare our 1st model and the SCM will be a greater challenge because we have 

seen that they both predicted the same observable Universe. It should be nonetheless possible 

to find astronomical observations permitting to compare the phenomenon used in our Physical 

Interpretation of the RRC to justify the isotropy of the CMB in our 1
st
 model (equality of the 

initial (Cosmological time tICMB) temperature of the CMB and the temperature of intergalactic 

dark substance (also Cosmological time tICMB), Section 3.5) and the corresponding 

phenomenon in the SCM (inflation) permitting to justify the observed isotropy of the CMB. 

 It should be easier to find astronomical observations permitting to compare the 

predictions of our 2nd model with the predictions of the SCM because they are  

mathematically different. For instance we have seen that in our 2nd model, the Hubble’s 

constant is precisely equal to 1/t0, t0 age of the Universe. In the same way distances used in 

Cosmology have not the same mathematical expression in our 2nd model as in the SCM (See 

Section 2.7).  

 But a very attractive element in favor of the model of the Universe proposed by our 

Physical Interpretation of the CRF is that this geometric model of Universe can be conceived 

by the human mind, which was not the case for models of Universe proposed by the SCM that 

were either infinite or finite but without borders.  It is our model of dark substance that 

permitted to us to define easily such a Universe, flat and finite.  
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