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Abstract. The conjectured Robin inequality for an integer n > 7! is σ(n) <

eγn log logn, where γ denotes Euler constant, and σ(n) =
∑
d|n d. We prove

that Robin inequality holds up to terms vanishing for large n. The main ingre-

dients of the proof are an estimate for Chebyshev first summatory function,
and an effective version of Mertens third theorem due to Rosser and Schoen-

feld. As a byproduct, by an oscillation theorem of Robin, the truth of RH

follows.

1. Introduction

1.1. History. The conjectured Robin inequality for an integer n > 7! = 5040 is
σ(n) < eγn log log n, where γ ≈ 0.577 · · · denotes Euler constant, and σ is the
sum-of-divisors functions σ(n) =

∑
d|n d. This inequality has been shown to hold

unconditionally for families of integers that are

• odd > 9 [3]
• square-free > 30 [3]
• a sum of two squares and > 720 [1]
• not divisible by the fifth power of a prime [3]
• not divisible by the seventh power of a prime [10]
• not divisible by the eleventh power of a prime [2]

Ramanujan showed that Riemann Hypothesis implied that conjecture [7]. Robin
proved the converse statement [8], thus making that conjecture a criterion for RH.
This criterion was made popular by [5] which derives an alternate criterion involving
Harmonic numbers.

1.2. Contribution. Denote the difference between the right hand side and the left
hand side of Robin inequality by D(n) = eγn log log n − σ(n). The main result of
this note is

Theorem 1. For large n we have lim infn→∞D(n) ≥ 0.
The main ingredients of the proof are a combinatorial inequality between arith-

metic functions (Lemma 1), an effective version of Mertens third theorem due to
Rosser and Schoenfeld (Lemma 2), and an asymptotic estimate of Chebyshev first
summatory function (Lemma 4). An immediate but important Corollary is

Corollary 1. RH is true.
Its proof will not result from Robin criterion, but from an oscillation theorem

of Robin [8] for σ(n) at so-called Colossally abundant numbers, modelled after and
depending upon an oscillation theorem of Nicolas [6] for the Euler totient function.
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Thus while our proof of the 156-year old RH might seem too short to be true it
relies in fact on the long references [6, 8, 9].

1.3. Organization. The material is arranged as follows. The next section contains
the proof of Theorem 1, and Section 3 that of Corollary 1. Section 4 concludes and
gives some open problems.

2. Proof of Theorem 1

We will show that lim infn→∞
D(n)
n ≥ 0, a stronger result since

lim inf
n→∞

D(n) ≥ lim inf
n→∞

D(n)

n
.

For any integer n write its decomposition into prime powers as

n =
m∏
i=1

qaii ,

where the qi’s are prime numbers, indexed by increasing order, and ai’s are positive
integers. Denote by pi the ith prime number, and for any integer n, let

n̄ =

m∏
i=1

paii .

Note that, by definition, for each i = 1, 2, · · · ,m we have qi ≥ pi, and that, there-
fore, n ≥ n̄. With this notation observe that

σ(n̄) =

m∏
i=1

pai+1
i − 1

pi − 1
= n̄

m∏
i=1

pi − p−aii

pi − 1
.

In particular

σ(n̄)

n̄
≤

m∏
i=1

pi
pi − 1

≤ 2m,

and, likewise, σ(n)
n ≤ 2m. Thus, if m is bounded and n→∞, we see that D(n)

n →∞.
We can thus assume when considering lim infn→∞

D(n)
n that m → ∞. We prepare

for the proof by a series of Lemmas. The first Lemma is a combinatorial bound
between arithmetic functions.

Lemma 1. For any integer n ≥ 1, we have D(n)
n ≥ D(n̄)

n̄ .

Proof. Let D(n)
n = f1(n) − f2(n), with f1(n) = eγ log log n, and f2(n) = σ(n)

n .
The monotonicity of the log and n ≥ n̄ yields f1(n) ≥ f1(n̄). Write f2(n) =∏m
i=1 g(ai, qi), where g(a, x) = x−x−a

x−1 . Writing

g(a, x) =
1 + x+ · · ·+ xa

xa
=

a∑
i=0

1

xi
,

we see that, for fixed a, the function x 7→ g(a, x) is nonincreasing in x as a sum
of a non decreasing functions. This implies that g(ai, qi) ≤ g(ai, pi) for each i =
1, 2, · · · ,m and, therefore, multiplying m inequalities between nonegative numbers,

that f2(n) ≤ f2(n̄). The result follows then by D(n)
n = f1(n)− f2(n).

�

The second Lemma is an effective bound related to Mertens third Theorem.
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Lemma 2. For any n large enough we have σ(n̄)
n̄ < eγ log pm(1 + 1

log2 pm
).

Proof. Note that, with the notation of the proof of Lemma 1, we have g(a, x) ≤ x
x−1 ,

for x ≥ 2 and a ≥ 1, and, therefore

f2(n) =

m∏
i=1

g(ai, qi) ≤
m∏
i=1

pi
pi − 1

.

The result follows then by [9, Th. 8, (39)].
�

Recall Chebyshev summatory function ϑ(x) =
∑
p≤x log(p).

Lemma 3. For all n ≥ 1, we have log n̄ ≥ ϑ(pm).

Proof. By definition

log n̄ =

m∑
i=1

ai log pi ≥
m∑
i=1

log pi = ϑ(pm).

�

A classical result, related to the Prime Number Theorem, is

Lemma 4. For large x we have ϑ(x) = x+O( x
log x ).

Proof. An effective version is in [9, Th. 4]. See for instance [4, Th 4.7] for a sharper

error term in O(x exp(−
√

log x
15 )). �

We are now ready for the proof of Theorem 1.

Proof. By Lemma 1 D(n)
n ≥ D(n̄)

n̄ . By Lemma 2 we have

(1) −σ(n̄)

n̄
> −eγ log pm(1 +

1

log2 pm
).

By Lemma 3 and 4 we have
(2)

eγ log log n̄ ≥ eγ log ϑ(pm) = eγ log

(
pm +O(

pm
log pm

)

)
= eγ

(
log(pm) +O(

1

log pm
)

)
,

where the last equality results from log(1+u) ∼ u for u→ 0. Adding up inequations
1 and 2, after cancellation of the terms in log pm, we obtain the chain of inequalities

D(n)

n
≥ D(n̄)

n̄
= eγ log log n̄− σ(n̄)

n̄
≥ O(

1

log pm
)− eγ

log pm
,

the rightmost hand side of which goes to zero for large n. The result follows upon
extracting a convergent subsequence from the left most handside and passing to
the limit. �
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3. Proof of Corollary 1

Recall the standard notation for oscillation theorems [4, p. 194]. If f, g are two
real valued functions of a real variable x, with g > 0, then we write

• f(x) = Ω+(g(x)), if lim supx→∞ f(x)/g(x) > 0
• f(x) = Ω−(g(x)), if lim infx→∞ f(x)/g(x) < 0
• f(x) = Ω±(g(x)), if both f(x) = Ω+(g(x)), and f(x) = Ω−(g(x)) hold

We refer the reader to [8] for the definition of Colossally Abundant (CA) num-
bers. By [8, Proposition,§4] if RH is false then, for CA numbers we have

D(n) = Ω±(
n log log n

(log n)b
),

for some b ∈ (0, 1). This would imply, using the infinitude of CA numbers [8], that
lim infn→∞D(n) = −∞, contradicting Theorem 1.

4. Conclusion and open problems

In this note, we have proved an asymptotic version of Robin inequality, that is
strong enough to confirm Riemann Hypothesis. This latter fact, in turn, by Robin
criterion proves that Robin inequality holds for every integer > 7!. Our proof of RH
is not elementary in the sense that complex analysis is essential to the oscillation
theorems of [6]. It is, however, much longer than this note if one takes into account
the needed results in [6, 8, 9]. The main open problem at this point would be to
generalize our approach to Dedekind zeta functions and L−series and other zeta
functions. Deriving RH following our approach and by elementary means might be
even harder.
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in touch. They thank Pieter Moree and Jean-Louis Nicolas for helpful discussions.

References

[1] W. D., Banks, D., Hart, P. Moree, C. W. Nevans, The Nicolas and Robin inequalities with

sums of two squares. Monatsh. Math. 157, no. 4,(2009) 303–322.

[2] K, Broughan, T., Trudgian, Robin’s inequality for 11-free integers. Integers 15 (2015), Paper
No. A12, 5 pp.

[3] Y-J. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin’s criterion for the Riemann hy-
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