Dark Energy

Gene H Barbee

December 21, 2015 revised February, 2017

viXra:1511.0185v3

Abstract

Observations of the universe's expansion created discussion regarding dark energy. There is consensus that late stage expansion currently is more linear than the equation $R=r0*(t/t0)^{(2/3)}$. Since this equation represents conversion of kinetic energy to potential energy and is a curve, Hubble data showing that late stage expansion is almost linear appears to violate energy conservation and require a dark (unknown) energy source. Two literature proposals (cosmological constant and quintessence) attempt to account for this unknown energy source.

This paper presents calculations indicating that energy produced by stars causes the linear expansion curve. The analysis draws on data regarding the relative abundance of elements to determine the number of stars and their energy output. A calculation procedure for expansion was developed that allows one to add energy and predict its effect on late stage expansion. It was surprising that a small amount of energy has a large effect on expansion. At the same time, the required energy addition has only a small effect on current temperature (2.73K). Energy produced by stars is fusion energy and provides a physical alternative to dark energy. Current cosmology is based on mass with kinetic energy but includes a large fraction (0.719) of dark energy. The expansion curve, energy release points and associated temperature curve is presented. Analysis shows that although the density is 9.14e-27 kg/m^3, the mass fractions should be 0.5 normal and 0.5 dark.

Background

Expansion and cosmology parameters are currently based on differential radiometer projects known as COBE, WMAP [3][7][5], and Planck. They are compared to supernova data from Cmagic [5] that suggest an accelerating universe. After He4 fusion expansion is radiation driven R=r*t^0.5 but after decoupling the plasma clears and expansion follows R=r*t^(2/3). But R=r*t^(2/3) gives the wrong Hubble constant (slope of the expansion curve/divided by the radius at the present time equal to 2.26e-18/sec [7]). This means a second expansion component must be added, but what causes it? The graph below shows the problem. Data suggests the upper curve but this requires an unknown energy source. The concept "dark energy" is a placeholder and the author explored the possibility that energy produced by stars is the unknown energy source.

Exploration

The dark sky temperature is 2.725K. However, recall that the WMAP and other radiometer projects blocked out light from stars since these photons originate from surfaces that are about 5780 K. Star formation starts at about z=16 (Rf/R-1) after the beginning. The average star is about 5e29 Kg [4] but there are potentially over 6e20 stars if their mass is 2e30 kg similar to our sun. The sun emits 2.37e39 MeV/second and will burn for 7-8 billion years. Since early star formation a lot of atoms have moved through a well-documented solar burning cycle. Our sun is mainly hydrogen but a supernova in our vicinity produced the heavier elements that make up the earth and other planets. Heavier elements are measured throughout the universe and NIST publishes data regarding elemental abundance. The universe is also mainly hydrogen but the abundance of Helium4 is uniformly 23-25%. It is widely accepted to be a result of primordial nucleosynthesis that occurred (in my analysis) at 549 seconds after the beginning. Deuterium, He3 and Li7 were also produced by primordial nucleosynthesis and their abundance provides a marker for our understanding of this period [12][18]. Fusion energy was produced by each element involved in star evolution and their measured abundance multiplied by their binding energy give us the total energy produced by stars. The table below shows the energy released by a few elements involved in star evolution [17].

		0.487	MeV stars
fractional	Binding		
abundanc	Energy	9.29E-01	Mev total
5.00E-07	2.490	4.15E-07	He3
2.50E-01	7.075	4.42E-01	He4 prim
	7.075	4.37E-01	He4 star
6.00E-09	5.644	4.84E-09	Li7
2.00E-09	6.492	1.44E-09	Be
2.00E-09	6.952	1.26E-09	B11
5.00E-03	7.681	3.20E-03	C12
1.00E-03	7.477	5.34E-04	N14
1.00E-02	7.977	4.99E-03	O16

Primordial Helium4 fusion released 0.442 MeV/proton but much later the stars produced an additional 0.49 MeV/proton. Primordial fusion makes up most of the CBR but has been reduced to about 3e-10 MeV/proton by expansion (energy later=energy release/expansion ratio. Another 0.49 MeV/proton was released after stars formed and is less reduced because the expansion ratio was only 15 for the earliest stars. About 0.44 of the 0.49 total is first stage H2→He4 solar fusion as shown in the following calculation. The calculation is based on Wiki data solar output (2.37e39 MeV/sec) and 7e9 years of solar burn time. The other "burns" during the life cycle of stars (He→C→O→Fe) [Wiki][11] are short lived and contribute the remaining 0.03 MeV of the energy produced by stars.

Our goal is to determine the expansion energy available after stars form. We will base our estimate on stars that are similar to our sun. The first step is to determine the number of stars that have contributed to the 0.49 MeV/proton total as a function of time. There are 0.5*exp(180) protons (see section entitled "Recalculating parameters with a new critical density" below) each releasing 0.49 MeV. This large amount of energy is more than the total energy of the dark sky at 2.73K and cannot be ignored.

Since star formation rate increased resulted with time from z=16 and integration of the number of stars is shown below. Sensitivity to other formation rates was examined but results indicated the exact curve was not important to the final result.

Stars that form early have been burning a long time but there are not as many of these. Stars that form later haven't burned as long but the total energy for all the stars can be calculated. Energy accumulates over time because there is no place for it to go. An incremental calculation was used with energy from the previous step reduced by the expansion ratio. The values are plotted below. The final step represents 0.49 MeV/proton. Most of this energy is used to raise the internal energy of stars.

To understand how energy drives expansion, one must know the forces involved. We will use an approach that gives the force on each free proton. The energy will be an overall value reduced to a small representative value for each proton. I used this approach successfully to understand

gravity [6][13] and call it cellular cosmology (Appendix 1). In cellular cosmology we deal with one proton circling another proton bound by gravity. The outer proton has kinetic energy associated with V below, but the forces have been scaled down by exp(90) between protons. We use exp(180) protons. In thee dimensions, the scale is now R/exp(60). The advantage is that we know some of the values. They are found in the proton mass model (see Appendix topic "Proton mass model"). One important value is the initial expansion kinetic energy, 10.15 MeV.

Constructing the complete expansion curve

We will start from the beginning and calculate the radius increase from R0 to Rh where He4 forms. We find values in the proton mass model that give the starting radius. It is related to values from the proton mass model, specifically E=2.732 MeV in the equations below.

Identify the radius and time for the gravitational orbit described above				
Fundamental radius=1.93e-13/(2.732*2.732)^.5=7.224e-14 meters				
Fundamental time=7.224e-14*2*PI()/(3e8)=h/E=4.13e-21/2.732				
Fundamental time	1.514E-21 seconds			

In a three dimensional universe exp(180/3) is the radius multiplier. The radius at the end of the duplication process is 7.22e-14 *exp(60)=8.24e12 meters [10].

Stage 1: Rapid Expansion increases the radius from 8.24e12 to 7e16 meters

The proton model above has been described many times [14]. We don't know the relationship between time and radius. However direct expansion with time; i.e. $R=R0*(time/time0)^1$ works perfectly for this stage. I use a time scale that starts at the natural log value 45. But we must also know the units. The time I call cosmological time is one time around the circle 7.22e-14 meters at velocity C. Cosmological time equals 2*pi*7.22e-14/3e8=1.51e-21 seconds. Time0=exp(45)*1.51e-21=0.059 seconds. The time scale is constructed by adding small constant increments to 45. This defines the expansion curve from the beginning R0=8.25e12 to Rh=2e17 meters. Here is the relationship between radius and time:

The following chart shows the kinetic energy 10.15 MeV being converted to potential energy as a function of time.

This increase in potential energy means that kinetic energy is reduced and is the low value 0.11 MeV at 6.8e16 meters expansion. This calculation is made possible by the use of the simple equations: $F=mV^2/R/exp(90)$ and Potential energy = integral F*dR.

He4 forms right after the temperature falls to 8e8 K and the energy released increases the temperature to 1e9 K [Appendix topic "Details of primordial nucleosynthesis"].

Stage 2: Radiation driven expansion occurs from 2.07e17 meters to 3.06e21 meters where the plasma clears.

The next part of the curve must match the curve at Rh (helium production).

We construct the next part of the curve from Rh, the point where primordial He formed. This is predicted by the SAHA value 1 for deuterium which occurs at 8e8 K. There is agreement plasma

exists and expansion is radiation dominated [19]. The physics of radiation driven expansion is a function of time to the 0.5 power [10]. That is, $Rd=2.07e17/(3.19e13/549)^{0.5}=3.06e22$ meters.

Stage 3: Expansion increases the radius from 3.02e22 meters to 1.24e24 meters where star energy becomes important. R1 continues to the present time with R1=r0*(t/to)^(2/3) is the Friedmann (FLRW) [4] equation and can be derived from H^2=H0^2(fraction*(1-z)^3).

Stage 4: Energy from stars increases the radius beginning at z=16 and continuing to the current radius at 4.02e25 meters.

WMAP year 9 gives a Hubble constant of 2.6e-18/sec. The integration to 4.02e25 meters stops at this point because it yields the measured value. The universe would expand only to 3.14e25 meters without radiation from the stars. Details are under the heading "The effect of star energy on expansion".

Energy history summary

Energy is available at the beginning and added in two additional places in the expansion curve. An initial kinetic energy of 10.15 MeV/proton comes from the proton mass model [1] [10](Appendix 1). The current energy can be calculated from the Boltzmann relationship; E=1.5*B*T, where B is 8.62e-11 MeV/K.

Secondly He4 fusion releases 1.6 MeV/proton when He4 forms (called primordial nucleosynthesis in the literature). The temperature decreases to near it present value. Lastly, energy is added by star formation after radius 2e24 meters (z=15). This brings the temperature to the measured value 2.73 K.

The arrows labelled reduced show the change in the energy value/proton due to expansion.

	Summary of er	nergy releases	during expansi			
	Stage 1 start	Stage 2 start	Stage 3 start	Stage 4 start	Expanded Ene	ergy
	Initial Energy	He4 fusion	r=r*t^(2/3)	Star energy	now	
					(MeV/proton)	
R meters	8.25E+12	2.00E+17	2.03E+21	6.70E+24	3.12E+25	no stars
		reduced				
MeV/proton	10.15	→ 0.11				
MeV/proton		0.555	reduced —		→ 1.82E-10	
MeV/proton				e addition	> 1.50E-12	
R delta (mete	ers)				8.70E+24	
					4.02E+25	stars

The original 10.15 MeV/proton has been reduced by expansion (kinetic energy being converted to potential energy) to 0.11 MeV/proton at 5.82e16 meters. The SAHA equation for deuterium predicts equilibrium at 8e8 K [8] and 2.07e17 meters. At this point deuterium combines into

He4. The energy released is 0.25*7.07/4=0.44 MeV, where 7.07 is the binding energy for He4 (the divisor 4 is the number of nucleons in He4 and the total is 0.44 + .11=.55 MeV.

Binding Energy	y		
MeV	Number	dq MeV	
7.07	4.65E+76	3.29E+77	7 He4 binding energy*0.5*exp(180)*.25/4
0.11	7.45E+77	8.19E+76	Energy remaining from 10.15 MeV initial energy
		4.11E+77	/ sum dq MeV
		0.552	2 MeV/proton

We see some of this energy in the current CBR. There are four components to the plasma; protons, dark matter, photons and free electrons (and massless neutrinos). An equation is found in the above reference for the energy of three components. The table below is for 1.06e9 K:

			0.		1				
8.47E+15	1.25E+16	1.83E+16	2.69E+16	3.96E+16	5.82E+16	2.07E+17	2.51E+17	3.05E+17	3.70E+17
1.7703E+10	1.4326E+10	1.0948E+10	7.5707E+09	4.1932E+09	8.1559E+08	1.0599E+09	3.2159E+08	2.6524E+08	2.1876E+08
T (K)	1.06E+09	938.27	1.67012E-27	v=(8kT/mpi)^.5	Protons	1.16E-01	9.59E-02	7.91E-02	6.52E-02
		938.27	1.67012E-27		Dark matter		9.59E-02	7.91E-02	6.52E-02
T (K)	1.06E+09	938.27	1.67012E-27	KE=T*1.5 B	Photons	1.37E-01	4.16E-02	3.43E-02	2.83E-02
T (K)	1.06E+09	0.511	9.0958E-31	v=(8kT/mpi)^.5	Electrons	1.16E-01	9.59E-02	7.91E-02	6.52E-02
				1	0.399	0.399	Tphotons at pre	esent (K) —	→ 2.57
								· · /	

The total energy for the plasma components compares with the He4 energy release above (0.551 MeV/proton). Expansion reduces the photon value to 3.52e-10 MEV (2.73 K). Stars produce 0.49 MeV/proton late in expansion but most of this energy is stored in the star's temperature. The energy released and a source for expansion is calculated by using the Stephan Boltzmann equation and a surface temperature of 5780K. Stars add 1.5e-12 MeV/proton, increasing the temperature only 0.011 K to the measured value 2.73 K (much more on this in the section entitled "Fraction of star energy available for expansion".

The energy history can be converted to a temperature history though the Boltzmann constant. It is shown below and clearly the energy remaining is the CBR.

The beginning temperature (3.92e10 K at 10.15 MeV) starts to fall and dives when the kinetic energy is nearly depleted. When the temperature hits 8e8 K the SAHA equation for deuterium initiates He4 fusion. This causes a spike in temperature to 1.06e9 K but then continues to fall according to Rh/R. The break in the curve at 3e13 seconds is decoupling where expansion follows a 2/3 power rather than the earlier $\frac{1}{2}$ power.

Forces that determine expansion

We all use time ratios for expansion but what are the actual forces that cause particles to expand away from each other? I used cellular cosmology to calculate forces. The derivation below shows a different way to write equations that obey Newtonian gravity. The coupling constant for gravity is a published value 1.16e-51 Mev M (Wiki). The equation $G=F r^{/M^2}$ can also be written in terms of kinetic energy. That equation would be:

derive coupling	constant c^2	2
G/1.603e-13=2	ke R/Mm	
G*1.67e-27^2/1	.603e-13=2	ke R/Nn
Nn=1 for coupli	ng constant	
1.16045E-51	mev m	
1.16716E-51	Mev m	Published
nt m^2/kg^2*kg	^2 mev/(nt m)
Mev m		
1.16e-51*exp(9		
7.08107E-13	Ke r	(MeV m)

The coupling constant is scaled down to one proton orbiting a central mass of one proton at KE by applying $\exp(90)/2$. The 2 makes it kinetic energy and $\exp(90)$ scales the calculation to one proton orbiting another proton. Kinetic energy (MeV) for a known radius r is 7.08e-13/r with r in meters (lower case r is for cellular cosmology).

R (meters)	5.43E+17	6.59E+17	7.99E+17	9.68E+17	1.17E+18
Temp (K)	8.12E+07	6.70E+07	5.52E+07	4.55E+07	3.76E+07
r=R/exp(60) m	4.76E-09	5.77E-09	6.99E-09	8.48E-09	1.03E-08
coup*ph/pr	7.09E-13	7.09E-13	7.09E-13	7.09E-13	7.09E-13
ke=coup/r	1.06E-02	8.78E-03	7.24E-03	5.97E-03	4.93E-03
g=(939/(939+ke))	9.9999E-01	9.9999E-01	9.9999E-01	9.9999E-01	9.9999E-01
V=(1-(g)^2)^0.5*C (n	1.4282E+06	1.2971E+06	1.1780E+06	1.0698E+06	9.7154E+05
F=mV^2/r (Nt)	5.8671E-46	3.9911E-46	2.7149E-46	1.8468E-46	1.2563E-46
E=Fdr (MeV)	0.03	4 52E-03	3 73E-03	3.08E-03	2.54E-03
(0.00	1.020 00			

Each column of calculations is a radius increment. R is the expansion curve and T is the temperature curve reported in the section above entitled "Constructing the expansion radius". The radius r is R/exp(60), again to scale the calculation down to the proton-proton level. Next we determine the orbital kinetic energy related to gravity (keg) by the definition of coupling constant above, i.e. Coup=keg*r. We know r and can determine keg. For radiation driven expansion we know that ke cannot fall below the energy contributed by photons because inertial forces *and* impact by photons drive expansion. The photon energy is kep=T*1.5*B where Boltzmann's constant B=8.6e-11 MeV/K. With this we put (keg+kep) in the equation for gamma and then determine orbital velocity. From here we can calculate the force F=mV^2/r. Above it is 5.86e-46 Nt for the first increment. We can now actually calculate the next radius in incremental calculations from fundamental forces and do not have to rely on the equation r=r0*(time/time0)^.5. The equation is r=rprior+E/F*1.6e-13/exp(90). From here we can take the scaling out and calculate R=r*exp(60).

Energy added by stellar photons

Each star on average contributes 2.37e39 MeV/sec and there are an increasing number of stars after z=16. This method uses the Stephan Boltzmann number (S= $3.54e5 \text{ MeV/m}^2/\text{K}^4$) and associated equation MeV/sec=S*area*T^4 to calculate the energy from stars.

First check that the star temperature 5778K (Wiki) produces the correct energy. The calculation below where MeV/sec= $3.54e5 \text{ MeV/m}^2/\text{K}^4$ verifies the output of the sun (Wiki).

5778	Temp surface K
3.54E+05	mev/m^2/K^4
6.96E+08	radius of sun (meters)
6.08E+18	Surface area of sun
2.40E+39	mev/sec/star

Over time there are an increasing number of stars similar to our sun each with a surface temperature of 5778 K. The number of stars and their surface area give us the energy/sec coming from this source. The sky also radiates energy. Its temperature is only 2.73 K but its area is the area associated with the radius of the universe. These two sources can be added together (MeV/sec total=MeV/sec stars+MeV/sec sky) and the increased sky temperature can be calculated by solving the Stephan Boltzmann equation for T. $T=((MeV/sec total)/3.54e5/skyarea))^{2.5}$. Each temperature is associated with energy and the difference is the kinetic and potential energy change between the original sky temperature and the star augmented sky temperature.

Fraction of star energy delivered

We calculated that there would be about 0.5 MeV/proton considering the fusion energy of all the stars. We now show the fraction of that energy actually available to expand free protons. At this point most matter is in galaxies, etc. that are in orbit. Classically, it is not available to expand any longer because it is gravitationally bound. I assumed that free protons make up about 10% of all matter at the present time but this can be refined. The model for the following calculation is a target proton that expands when it is impacted by photon energy. The entire sky is the source of the photon energy and it contains 6e20 stars each with an area (1.52e18 m^2). The number of photons in the source area equal protons divided by the baryon/photon ratio. There are 1.47e77 target protons (10% of all matter) each with a cross-section to photons of 2e-31 meters^2 (PDG). When all of this estimated, the fraction of the star energy that is actually delivered to their targets is on the order of 1e-10.

1.48E+21	nstars=number of stars/sky area			
1.52E+18	source area/star (pi^r^2, where r is star radius) meters^2			
4.13E+51	sky area= surface area of the universe modelled as sphere (4pi	i^Runiverse	e^2) (meters	s)^2
9.32E+90	source of photons=nstars/sky area*star area*sky area			
2.72E+98	number of photons in source area=source of photons/(nprotons	/nphotons)	(np/nb=3.	4e-8)
1.49E+77	target =number of free protons (about 0.1 of all protons)			
2.00E-31	cs=cross section of target proton=2e-31 m ²			
3.65E-10	fraction delived to expanding protons (numb photons/target*cs)			

Late stage expansion

We are in a position to predict late stage expansion with the energy addition (e). We are interested in its effect on radius and temperature. For example we want to answer the question "how large does e have to be to explain the second component of expansion?" We will focus on the column on the right (the present time).

We can carry the above incremental calculations to the present time. After 3e22 meters, expansion is no longer radiation driven. The forces involved are gravitational forces only. The columns of calculations above are carried through to the current time below. But we can add a small energy e to the calculation and find out its effect on radius. We will focus on the column on the right (the present time).

	8.69E+24	1.12E+25	1.45E+25	1.88E+25	2.43E+25	3.14E+25	R (meters)	
	7.61E-02	9.84E-02	1.27E-01	1.65E-01	2.13E-01	2.75E-01	r=R/exp(60) n	1.27E+00
	7.09E-13	7.09E-13	7.09E-13	7.09E-13	7.09E-13	7.09E-13	coup*ph/pr	
	9.31E-12	7.20E-12	5.57E-12	4.31E-12	3.33E-12	2.58E-12	ke=coup/r	
1	.9858E-14	1.5360E-14	1.1880E-14	9.1891E-15	7.1075E-15	5.4975E-15	g=(939/(939+ke))
	4.2247E+01	3.7155E+01	3.2677E+01	2.8738E+01	2.5274E+01	2.2228E+01	V=(1-(g)^2)^0.5	*C (m/sec)
	3.2082E-62	1.9193E-62	1.1483E-62	6.8696E-63	4.1098E-63	2.4587E-63	F=mV^2/r (Nt)	
	4.22E-12	3.26E-12	2.52E-12	1.95E-12	1.51E-12	1.17E-12	E=fdr (MeV)	
	7.61E-02	9.84E-02	1.27E-01	1.65E-01	2.13E-01	2.75E-01	predicted r (m	ו)
	2.137E-14	5.376E-14	1.273E-13	2.916E-13	6.543E-13	1.449E-12	e addition	2.84E-12
	1.26E+01	9.74E+00	7.52E+00	5.77E+00	4.30E+00	2.73E+00	Temp w/o star	0.354
	1.66E-04	4.17E-04	9.87E-04	2.26E-03	5.07E-03	1.12E-02	delta T stars	1.045
	1.260E+01	9.739E+00	7.521E+00	5.774E+00	4.303E+00	2.743E+00	Temp with Sta	irs
	7.62E-02	9.88E-02	1.29E-01	1.70E-01	2.34E-01	3.52E-01	r=rp+(E+de)/F*1.6	6e-13/EXP(90)
	8.70E+24	1.13E+25	1.47E+25	1.94E+25	2.67E+25	4.02E+25	R=r*EXP(60)	with star de
	9.97E+21	4.19E+22	1.66E+23	6.36E+23	2.38E+24	8.83E+24	delta R stars	
		8.48E-18	5.87E-18	4.18E-18	3.18E-18	2.68E-18	V=dR/dt/R	

The predicted cell radius r=0.275*exp(60) to match the full radius 3.14e25 meters. The calculated gravitational kinetic energy is only 2.6e-12 MeV from inertia. The value E=Fdr=1.51e-12 MeV checks as the energy required to calculate the next radius.

r=rp+E/F*1.6e-13/EXP(90)				
0.275=(0.213+1.17e-12/2.46e-63*1.6e-13/exp(90))				
0.275354438				
3.14E+25	R=0.275*exp(

Now look at the e addition line. Adding 1.45e-12 MeV increases the radius of the universe to 4.02e25 from 3.14e25 meters (delta=8.83e24 meters). This is equivalent to the expansion component associated with lambda and dark energy.

The effect of 1.5e-12 MeV on the temperature is a delta of 0.011 degrees K.

Above we took the lambda component out but added 1.5e-12 MeV to replace it. It is proposed that late stage expansion is related to energy released by stars [18]. Late in expansion stars are lighting up and the overall fusion energy produced is on the order of 0.5 MeV/proton. Only a

tiny fraction of this energy (on the order of 3e-12) actually expands free protons (protons not tied up in orbits). Appendix topic "Fraction of star energy delivered to protons" addresses this fraction.

We will call our photon related expansion R3. It is compared with Cmagic and WMAP second expansion components below. The source of R3 is the row labelled "delta R" in the table above. The WMAP and Cmagic results are simulations using the procedures described in references 3,5 and 7. This delta is similar to the expansion component associated with lambda and dark energy.

As indicated above R1 during this period of expansion is the equation $R=R0*time^{(2/3)}$ but a more detailed expansion curve is presented in the section below entitled "Constructing the complete expansion curve". R3 is added to R1 expansion to reveal the total expansion. It compares favorably to WMAP [3][7] and Cmagic [5] and shows that the latter stage of expansion is flattened by energy from stars.

The effect of 1.53e-12 MeV on the temperature is a delta of 0.011 degrees K. But the calculations in the section entitled "Constructing the temperature history" indicated that the temperature dropped to 2.73 K. When you add 0.011 to 2.73 degrees you calculate the measured temperature 2.73 K.

It appears to the author that WMAP measurements masked this energy source. Stars subtend a very small angle and their wavelength is very different than the CBR. Different instrumentation may be required but the energy is very low.

The last four increments in the calculation above are enough to flatten the expansion curve and produce the measured Hubble constant of 2.26e-18/sec.

Comparison with Hubble constant measurements

Several missions have refined the Hubble constant. It is 2.26e-18/sec or 69.7 km/mpc/sec, sometimes written h=69.7/100=.697. Concordance equations use two expansion components but we didn't include the second component (about 7e24 meters) in the expansion curves developed above. Hubble constant measurements are the slope of the expansion curve/divided by Rnow including both components of expansion. We added back a component related to photon energy and now recalculate the Hubble constant.

1.13E+25	1.47E+25	1.94E+25	2.67E+25	4.02E+25	R=r*EXP(60)	with star de
4.19E+22	1.66E+23	6.36E+23	2.38E+24	8.83E+24	delta R stars	
8.48E-18	5.87E-18	4.18E-18	3.18E-18	2.68E-18	V=dR/dt/R	

The calculation table above indicated that the force required to move particles apart against gravity is very low (on the order of 3e-63 Newtons). The energy/particle required to expand the universe from z=15 to the present is on the order of 1.5e-12 MeV. This value is 13 orders of magnitude lower than the kinetic energy associated with 0.72 critical density calculated below on the order of 0.72*43 MeV.

Critical density

The standard method of simulating expansion involves the Friedmann-Lemaitre-Robertson-Walker (FLRW) model:

 $H^2=H0^2*(OmegaMatter*(1+z)^3+OmegaR*(1+z)^2+OmegaLambda)$ Where: OmegaTotal=1 WMAP result Rhoc=H0^2/(8/3 pi G) (critical density) OmegaR(1+z)^2=0 (wrong shape) OmegaMatter separated into =Omega cold dark matter and baryons OmegaLambda is the cosmological constant H0=2.26e-18/sec WMAP 9 year result z=(r/rf-1) where radius is the developing radius and rf is the final radius.

G		6.67480E-11			
Но		2.26E-18			
rhoC	8/3 pi G/Ho^2	9.124E-27	2.26E-18^2/(8/3*PI()*6.674e-11)		

The equation is useful to relate the Hubble constant 2.26e-18/sec to rho but it only works because the present density is 9.14e-27 kg/m^3. This is rhoC but the considerations below indicate that it cannot be used to characterize other possible components of expansion.

Kinetic energy and critical density

We can see problems with critical density when we relate it to kinetic energy. The velocity can be found by multiplying V/R*R. From here, we can find kinetic energy at the current time $\frac{1}{2}$ *m*V^2.

	H=(8/3*PI()*6.67e-11*9.14E-27)^0.5						
v/r=H	2.26E-18	1/sec					
v=v/r*R	9.08E+07	m/sec with R=	4.02e25 m				
ke=1/2*mv^2	43.1	mev					
pe=4/3 G m r^2	2 rho						
pe=(4/3*PI()*6.67e-11*9.14E-27)*1.67E-27*4.02E+25^2/1.6e-13							
	43.07						

We are starting to see a problem. Why is the potential energy equal to kinetic energy? Kinetic energy should be converted to potential energy. Now we calculate the above expressions for the beginning.

ke=1/2*mv^2		5.18639E+13	MeV				
ke=0.5*1.67E-2	27*(9.97e1						
pe=4/3 G m r^2	2 rho	2.0988E+14	MeV				
pe=(4/3*PI()*6.67e-11*1.06e12)*1.67E-27*(8.24e12)^2/1.6e-13							

The above values represent major problems. Firstly the kinetic energy and potential energy are much too high. Secondly, the kinetic energy should be high and potential energy should be low. Kinetic energy is the huge velocity 9.97e13 meters/second (derived from $R=R0(t/t0)^{(2/3)}$ for a short time increment. Obviously it is larger than C and some justify velocities like this by saying "expansion is carrying C with it as it expands". The problem goes deeper; expansion is actually occurring in many small cells (described below) and the overall result is expansion (like bread rising). The potential energy equation also gives an unrealistic value. It assumes that one proton is expanding against a central mass consisting of the mass of the entire universe. The separation of the one proton from the whole is so small that the force=G Mm/R^2 is unrealistically large which makes F*r unrealistically large. This is the wrong approach. We must scale the expansion down to many cells where one proton is being separated from another proton with gravitational force between them. The problems are solved with a concept called cellular cosmology. The beginning kinetic energy is 10.15 MeV/proton, not 5.2e13 MeV/proton calculated above. The concept of critical density is misleading. We can call it final density but when one converts it to kinetic energy it is clear that it doesn't represent expansion components.

WMAP Review:

WMAP results [12] are important to cosmology. They support the existence of dark energy and are widely quoted for the discovery that most of the expected matter in the universe is missing. The current photon number density is well established by the Temperature 2.73 K.

The updated year 9 parameters are shown in table below entitled WMAP published.

WMAP [7]						
NOW						
published						
4.02E+25	Inferred Radius					
2.26E-18	HO					
8809	Temperature at equality (K)					
	Photon mass density					
	Proton mass density					
2973	Temperature at decoupling (K)					
0.0106	Spot angle (radians)					
0.254	baryon number density					
5.77E+08	Photon number density					
4.400E-10	baryons/photon					
0.235	Dark matter fraction					
6.57E-27	dark matter density in kg/m^3					
4.2377E-28	baryon matter density in kg/m^3					
0.719	Dark energy fraction					
9.1351E-27	critical density					
0.0464	Baryon fraction					

Some have called the value 0.0464 the "missing matter (baryon)" problem. Values similar to this have been reported in various documents over a period of many years. Limitation of this value in the literature is due to 1) deuterium residual measurements 2) position and time duration of the period equality and decoupling 3) photon/photon ratio required to produce He4 reactions 4) analysis of peaks and valley in micro-degree peaks in CBR anisotropy and the misleading FLRW model. Reference 20 addresses these limitations and concludes that 0.5 normal and 0.5 dark matter fraction of critical density is acceptable.

Recalculating parameters with 0.719 dark energy removed

Energy from star photons causes late stage expansion but the standard equation becomes very misleading because rhoC assumes that all expansion is density driven. The critical density concept presented in the literature (density is related to kinetic energy using the Friedmann derivation) assumes that initial kinetic energy drives all of expansion but we found that energy was added at 3 places. This means that expansion is only partially density driven and we must separate the causes of expansion and treat them differently. Above we showed that energy addition on the order of 1.5e-12 MeV was equivalent to 0.719 critical density (dark energy). Cosmological parameters with dark energy removed (and replaced with star photons) are shown below. The table also corrects the baron fraction of critical mass from 0.046 to 0.5. Critical density takes on the meaning "current density".

WMAP [4]		R1+R3	R1+R3	R1+R3
NOW		equality	dec oupling	NOW
published				
4.02E+25	Inferred Radius (m)	5.40E+21		4.02E+25
			R1	3.14E+25
2.26E-18	HO			
8809	Temperature at equality (K)		31584	
	Photon mass density			
	Proton mass density			
2973	Temperature (K) decoupling		2643	
0.0106	Spot angle (radians)		0.0107	
0.254	baryon number density			2.737
5.77E+08	Photon number density			5.77E+08
4.400E-10	baryons/photon			4.75E-09
0.235	Dark matter fraction			0.500
6.57E-27	dark matter density in kg/m ^A	3		4.57E-27
4.24E-28	baryon matter density in kg/	m^3		4.57E-27
0.719	Dark energy fraction			0
9.14E-27	critical density			9.14E-27
0.0464	Baryon fraction			0.500
2.72E+77	Overall volume (m ⁴ 3)		6.60E+65	2.72E+77
2.814E-01	overall mass density		rhoC	Volume
			9.135E-27	2.72E+77
			rhoC*Volume	exp(180)
			1.484E+78	1.489E+78
			mass (Kg)	2.4873E+51

Number of proton like masses in the universe

We can now calculate the number of proton like masses in the universe. The critical density 9.14e-27 kg/m³ is baryons plus dark matter. The current radius R1+R3 is 4.02e25 meters and this gives 2.72e77 meters³. Multiplying critical density by volume gives the number of proton like masses in the universe. This means that the total proton like masses in the universe is exp(180). We do not know if dark matter has a proton like mass but this is an interesting number to the author because exp(180) was the starting point for a unifying theory [1][2][appendix 1].

rhoC	Volume	rhoC*Volume	exp(180)	rhoC*V/exp(180)	
9.135E-27	2.72E+77	1.49E+78	1.49E+78	1.000	

Some details of the WMAP parameters are compared below with the revised parameters presented in the rightmost column.

Conclusions

There are several areas that need reconsideration if we can agree that energy produced by stars is the cause of late stage expansion. Calculations indicate that the later part of the expansion curve is flattened by this energy and agrees with simulated expansion curves reported in the literature. The concepts of "dark energy" and missing matter were a concern. The source for star energy caused expansion is fusion and on this basis I believe that "dark energy" has been identified. But this energy is not the kinetic energy of protons and as such the reported densities must be revised. The revised baryon content of the universe is 0.5 fraction of final density, not 0.046 as reported by WMAP.

Possible objections to revised cosmological parameters were addressed in Reference 20. New calculations were carried out regarding the residual abundance of He4, He3, Deuterium and Li7. The calculated values match the measurements if two changes in the calculations are made. One change is the increased radius to enclose He4 reactions (20) the second change is the revised baryon content 0.5.

The author found an energy value in a model of the proton that is important to cosmology. The initial kinetic energy is 10.15 MeV. Combined with new concepts for quantum gravity a complete expansion curve was constructed. The expansion curve has several stages and agrees with data available. Specifically, Hubble constant 2.26e-18/sec is satisfied by a final radius (including all components) of 4.02e25 meters. The expansion radius calculated for the main component (R1) of expansion is 3.21e25 meters. Late stage star energy caused expansion 3.21e25+7.96e24=4.02e24 meters at the current time in expansion.

The proton mass model proposed by the author starts with exp(180) particles of proton like mass. The model is strongly supported by the analysis presented.

References

- 1. Barbee, Gene. H., *A Top-Down Approach to Fundamental Interactions*, FQXi essay June 2012, viXra:1307.0082, Nov 2014
- 2. Barbee, Gene. H., Unification, viXra:1410.0028, Oct 2014.
- 3. Bennett, C.L. et al. *First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Data*, Astrophysical Journal, 2001
- 4. Peebles, P.J.E., *Principles of Physical Cosmology*, Princeton University Press, 1993.
- 5. A. Conley, et al, (*THE SUPERNOVA COSMOLOGY PROJECT*), Measurement of Omega mass and Omega lambda from a blind analysis of Type1a supernovae with CMAGIC.
- 6. Barbee, Gene H., *On the Source of the Gravitational Constant*, Prespacetime Journal, Volume 5 No 3, April, 2014. Originally viXra:1307.0085.
- 7. Hinshaw, G. et.al, Nine Year WMAP Observations, draft June 5,2013 http://arxiv.org/pdf/1212.5226v3.pdf Table 2.
- 8. Bergstrom, L. and Goobar, A., *Cosmology and Particle Astrophysics*, 2nd Edition, Springer-Praxis Books in Astrophysics and Astronomy, 2004.
- 9. Barbee, Gene H., *The Effect of He4 Fusion on Primordial Deuterium*, viXra:1404.0465, May 2014, viXra:1404.0465v7, January 2017.
- 10. Barbee, Gene H., *Application of Proton Mass model to Cosmology*, viXra:1307.0090, Jan 2015.
- 11. Barbee, Gene H., Semi-Fundamental Abundance of the Elements, viXra:1308.0009
- 12. http://cds.cern.ch/record/262880/files/940501.pdf Review of work by N. D. Schramm.

- 13. Barbee, Gene H., Discovery of Quantum Gravity, viXra:1508.0120, Aug 15 2015.
- 14. Barbee, Gene H., *Nature and Information*, http://www.vixra.org/pdf/1611.0302v1.pdf, December 2016. http://prespacetime.com/index.php/pst/issue/view/91
- Barbee, Gene H., On Expansion Energy, Dark Energy and Missing Mass, Prespacetime Journal Vol. 5 No. 5, May 2014. Previously vixra:1307.0089, Mar 2014, viXra:1307.0089v3, January 2017.
- 16. Barbee, Gene H., *A Simple Model of Atomic Binding Energy*, vixra:1307.0102, revised Feb 2014. Reference spreadsheet atom.xls.
- 17. Barbee, Gene H., *Semi-Fundamental Abundance of the Elements*, vixra:1308.0009, revised June 2014.
- 18. http://cds.cern.ch/record/262880/files/9405010.pdf
- 19. Patrick Peter, Jean Philippe Uzan, Primordial Cosmology, OUP Oxford, Feb 14,2013.
- 20. Barbee, Gene H., Dark Matter and the Cosmic Web, viXra:1701.0503v1, January 2017.

Appendix 1: Proton mass model

The formal definition of information is attributed to Claude Shannon [7]. Information $(N) = -\ln P$ (Inversely, $P=1/\exp(N)$ where $\exp(N)$ means the natural number 2.718 to the power N). Probabilities are the chance of one event divided by all possibilities. He used natural logarithmic relationships because probabilities (P) multiply but information is additive. The negative sign tells us that information is high when probabilities are low.

Can energy (E) be related to information? Using the right probability, the answer is yes. Probability P=e0/E where e0 is an energy constant that forms an energy ratio. Quantum mechanics deals with the square root of P (a complex number called psi). This is tied to wave/particle duality but the relationships of interest are described by probability P=e0/E=1/exp(N) and E=e0*exp(N).

N for fundamental energy values

The relationship $E=e0^*exp(N)$ will be used extensively. N is a logarithmic number. The key to N values for energy was correlation of data gathered by high energy labs [3][7]. Comparing N values for particles and knowing that the 0.511 Million Electron Volts (MeV) electron has a field equal to 2.72e-5 MeV, allowed the author to deduce that the electron N was 10.136 and its electromagnetic field energy N was $0.296=3*0.0986=3*\ln(3/e)$ where e is the natural number 2.718. The energy constant e0=2.02e-5 MeV is calculated below from Particle Data Group [3] data for the electron mass. The universal equation for energy is E=2.02e-5*exp(N) MeV.

Electron N	10.13	6 (10.3333-0.0	986*2)				
Electron mass (mev)		mass of elect	ron (MeV)	0.51100024	MeV		
Find the v	e0=E/exp(N)						
						e0= 0.511/exp(10	136)
						2.025E-05	mev
Note that	3*.0986=.296			E=eo*exp(.	296)=2.72e-5 mev	2.722E-05	mev
The elect	2.72E-05	mev					

Data showing an N value for fundamental energy observations is listed in Part 2 Topic 1. The data is from either from NIST, (National Institute of Standards and Technology), the Particle Data Group [5] maintained by UC Berkeley or other reported values [3][7]. There are three quarks confined in a neutron (and proton) but they are not observed individually. The higher energy bosons are variations of N=22.5 and the Higgs particle measured in July 2010 agrees well with the author's N value of 22.575. Time for fundamental particles is simply reciprocal time (1/time=frequency).

Neutron components

The author found N values for neutron components based on the way three quark masses and their kinetic energies add to the neutron mass. The related information components total N=90 for the neutron. They are listed in Table 1 below.

	Neutron p	article and l	kinetic energ	gy N	Neutron fi	eld energy	N
Quad 1	15.43	quark 1		17.43	strong fiel	d 1	
	12.43	kinetic ene	rgy	10.43	gravitatior	nal field cor	nponent
Quad 2	13.43	quark 2		15.43	strong fiel	d 2	
	12.43	kinetic ene	rgy	10.43	gravitatior	nal field cor	nponent
Quad 3	13.43	quark 3		15.43	strong fiel	d 3	
	12.43	kinetic ene	rgy	10.43	gravitatior	nal field cor	nponent
Quad 4	10.41			-10.33			
	-10.33			10.41	gravitatior	nal field cor	nponent
Quad 4'	10.33	pre-electro	n	10.33			
	0.00			0.00			
V	90.00	Total		90.00	Total		
	Table 1			Table 2			

Table 2 is similar to Table 1 except it contains N values for field energies of the neutron. Since the neutron does not carry charge, the electromagnetic field is absent but appears as a separation once the neutron decays to a proton (quads 4 and 4'). The strong residual field energy is part of a total energy balance. Sets of four N values labelled quads are involved in an information operation.

Table 1 represents mass plus kinetic energy and Table 2 represents field energy. Set 2 will be used as an example for a quad that contains four values. The N values 13.43+12.43 are separated into 15.43+10.43. This operation conserves N but energy is also conserved. After these

operations mass is imbedded in field energy quantum orbits. Each N has a specific place and a specific energy described below. N1 always gives a mass, N2 always represents a kinetic energy value, N3 always specifies strong field energy and N4 always specifies a second field energy (associated with gravity).

E1 will be identified as a mass (a quark for the strong interaction)

- E2 is identified as a kinetic energy (ke) addition to energy E1.
- E3 is identified as strong field energy.

E4 is identified as a gravitational field energy component.

		mev			mev		
	E=e0*exp(N)			E=e0*exp(N)			
N1	13.432	13.797	E1 mass	N3	15.432	101.947	E3 field
N2	12.432	5.076	E2 ke	N4	10.432	0.687	E4 field

These above energy values are placed in a table below with mass plus kinetic energy (102.634 MeV) separated from field energy (102.634). The total energy across the interaction is conserved at zero with mass (E1) + ke (E2) +ke difference (E4+E3-E2-E1) balancing field energies (E3+E4 shown as negative). This information separation followed by energy conservation has powerful implications. The operation involving E1 and E2 can be read E1 is given exp(2) of kinetic energy. Since the numbers (N) are exponents (E=e0*exp(N)), the number 2 can be associated with a divisor 1/exp(2)=0.135 that increases the kinetic energy of E1. The value 0.135 is identical to the concept of gamma in relativity. Gamma is the divisor that increases the kinetic energy of a moving mass involved in the Lorentz transformation. The definition is: ke=m/gamma-m. These may be special case Lagrangians and the energy interaction is similar to a physics qauge transition.

Information (N) values from the neutron component table were used to a model the neutron's known mass, 939.56 MeV. Three quads of N values are associated with three quarks and the fourth set transitions to the electron. The values toward the left side of the box, labeled mass and kinetic energy are balanced by fields on the right hand side of the box. Fundamental N values (13.431, 12.431, 15.431 and 10.431) are shown to the left of the box. These values are the source of the energies ($E=e0^*exp(N)$) inside the box. The kinetic energy operator N=12.431 gives mass kinetic energy. It's associated energy=2.025e-5*exp(12.431)=5.01 MeV. This creates a quark orbit with kinetic energy and associated field energies. The kinetic energy column has several components. Kinetic energy for each quad =E3+E4-E1-E2-E2. The extra E2's are added back to form the column weak kinetic energy (10.15 MeV) and gravitational expansion energy (20.3 MeV). These energies play crucial roles in cosmology. The bottom quad is for the electron after it has decayed from the neutron.

Tables 1 and 2 above each sum to the value N=90 but are separated opposites. This separates zero energy into two types of energy. Mass plus kinetic energy is positive and field energy is negative. The total energy for each neutron (939.56 MeV) plus the external kinetic energy that

drives expansion is 960.54 MeV but the fields are negative 960.54 MeV. This conserves the other initial condition; zero energy.

CALCULAT	ION OF PR	OTON MAS	S	Mass and	Kinetic Ene	rgy			Field Ener	gies
mass	Energy	strong fiel	Energy	Mass	Difference	Strong residual	Neutrinos	Expansion	Strong & E	Gravitation
ke	MeV	grav field	MeV	MeV	MeV	MeV	MeV	MeV	field energ	Energy
15.432	101.947	17.432	753.291	101.95	641.88				-753.29	
12.432	5.076	10.432	0.687							-0.69
13.432	13.797	15.432	101.947	13.80	78.69				-101.95	
12.432	5.076	10.432	0.687							-0.69
13.432	13.797	15.432	101.947	13.80	78.69				-101.95	
12.432	5.076	10.432	0.687					10.151	expansion	-0.69
		-0.296	-2.72E-05			10.15		10.151	expansion	ke
	equal and opposite ch			osite charge			0	v neutrino	m	
-10.333	0	-10.333	0	0	-0.67		0.67	v neutrino	0.00E+00	
10.408	0.67	10.408	0.67				0.67	t neutrino	-0.62	-0.67
the electro	on separate	s here		129.54	798.58	938.272014	PROTON N	ASS		
10.136	0.511	10.333	0.622	0.511	0.111	0.622	Electron +	ke	0.000	
0.197	2.47E-05	0.296	2.72E-05	ELECTRON	l		7.40E-05	e neutrino	ke	
90	sum	90	sum				1.342	20.303	-957.807	-2.732
								Total m+k	Total field	S
								Total posi	tTotal nega	tive
								960.539	-960.539	0

Energy (MeV) = 960.54-960.54=0.

Values from the proton model unify the four forces (interactions) of nature [2]. One important value above is 20.3 of expansion potential energy that forms an orbit with about 10.15 MeV of kinetic energy and 10.15 MeV of potential energy. A neutron falls into the 2.723 MeV gravitational field and establishes an orbit at 7.22e-14 meters. This physics is the same as General Relativity except it occurs at the quantum scale. Another value of interest above is the difference between the neutron and proton mass, 1.293 that is made up of a neutrino of energy 0.671 and an electron with kinetic energy of 0.662 MeV.

Appendix 3: Review of cellular cosmology

Consider large mass M (for our purposes the mass of the universe although the term universe seems a little presumptive) broken into exp(180) small cells, each with the mass of a proton labelled lower case m below. The mass (m) of a proton is 1.67e-27 kg. Fill a large spherical volume with exp(180) small spheres we will call cells. The value exp(180) comes from the section below entitled "Number of proton like masses in the universe". Consider the surface area of many small cells as a model of the surface of one large sphere with the same surface area. For laws of nature to be uniform throughout the universe there can be no preferred position. A

surface offers this property but the equivalent surfaces of many small spheres also offer this property as long as we do not distinguish an edge. As such a surface model equivalent to the surface of many small cells is useful if the fundamentals of each cell are known.

In general relativity [6] the metric tensor (scholarly matrix equations from general relativity) is based on (ds^2=three distances^2 and (C*time)^2). Note that ds^2 is a surface area and it is this surface that we will break into the surface area of exp(180) small spheres. Let small r represent the radius of each small cell and big R represent the radius of one large sphere containing exp(180) cells with the same surface area. Position a proton like mass on the surface of each cell. The total energy will be that of one protons/cell plus a small amount of kinetic energy. We will evaluate the gravitational constant G of a large sphere and compare it with G of small cells but we will use similar substitutions to evaluate other forces.

> Area= $4*pi*R^2$ Area= $4*pi*r^2*exp(180)$ A/A=1=R^2/(r^2*exp(180) R^2=r^2*exp(180) r=R/exp(90) surface area substitution M=m*exp(180) mass substitution

For gravitation and large space, we consider velocity V, radius R and mass M as the variables (capital letters for large space) that determine the geodesic. With G constant, M=m*exp(180) and the surface area substitution R=r*exp(90), the gravitational constant would be calculated for large space and cellular space as follows (lower case r,v and m below are for cellular space):

At any time during expansion						
Large space		<u>Cellular Space</u>				
		With substitutions:				
		R=r*exp(90) and M=m*exp(180)				
R*V^2/M=	G=G	r*exp(90)*V^2/(m*exp(180))				
R*V^2/M=	G=G	(r*v^2/m)/exp(90)				

The extremely small value $1/\exp(90)$ is the coupling constant for gravity. When measurements are made at the large scale as must done to measure G, the above derivation indicates that we should multiply cell scale values (r*v^2/m) by $1/\exp(90)$ if we expect the same G. Geometric and mass relationships give the cell "cosmological properties".

The procedure applied to the force equation $F=MV^2/R$ yields the same result by applying substitutions that represent the relationship between one cell and the universe.

Appendix 4: Calculation of Gravitational Constant from the Proton Mass Model

Using values for the proton mass model that the author believes unify nature's forces (6), the gravitational constant is calculated below and agrees with the published constant, G=6.674e-11 N meters²/kg².

The following table follows a format that organizes input values, intermediate results and the final result in a column of calculations. The goal is to use the fundamental radius 7.224e-14 meters to calculate the gravitational inertial force. The inputs listed at the top of the table originate in the neutron model above. Firstly, the mass of a proton in MeV and its mass in kg are specified in the table. The gravitational field energy 2.723 MeV gives R=7.224e-14 but there is kinetic energy (10.14 MeV) in the orbit that the neutron falls into. With mass and kinetic energy, gamma and V/C can be calculated. Next the inertial force is determined for the mass orbiting at radius R.

		GRAVITY
		mass only
GRAVITY		
		neutron
Neutron Mass (mev)		939.565
Neutron Mass M (kg)		1.675E-27
Field Energy E (mev)		2.732
Kinetic Energy ke (mev)		10.140
Gamma (g)=M/(M+ke)		0.9893
Velocity Ratio v/C=(1-g^2)^0.5		0.1457
R (meters) =(HC/(2pi)/(E*E)^0.5		7.224E-14
Inertial Force (F)=(M/g*V^2/R)*1/E	XP(90) NT	3.627E-38
HC/(2pi)=1.97e-13 mev-m		
Calculation of gravitational consta	ant G	
G=F*R^2/(Mn/g*Mn)=NT m^2/kg	y^2	6.6743E-11
Published by Partical Data Group (PDG)	6.6743E-11

The measured gravitation constant G [16] is calculated above from fundamentals. The constant $1/\exp(90)$ scales the quantum level to the large scale we observe around us. It has the effect of dramatically reducing the force between neutrons and makes gravity very long range compared to the other forces. The inertial force 3.66e-38 N is the same force as the literature above and confirms the radius 7.22e-14 as the radius for quantum gravity.