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truth T (1) for true and the falsity F (0) for false. The results of measurement are either 0 or 1.
To implement Deutsch’s algorithm, we need both observability and controllability of a quantum
state. The new measurement theory can satisfy these two. Especially, we systematically describe
our assertion based on more mathematical analysis using raw data in a thoughtful experiment.
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I. INTRODUCTION

The projective measurement theory is indeed a success-
ful quantum measurement theory. The projective mea-
surement theory (cf. [1—6]) gives approximate and at
times remarkably accurate numerical predictions. Much
experimental data approximately fits to the projective
measurement theory for the past some 100 years. We
do not doubt the correctness of the project measurement
theory. It is one of consistent quantum measurement the-
ories.

As for the foundations of the projective measurement
theory, Leggett-type non-local variables theory [7] is ex-
perimentally investigated [8—10]. The experiments re-
port that the projective measurement theory does not
accept Leggett-type non-local variables interpretation.
As for the applications of the projective measurement
theory, implementation of a quantum algorithm to solve
Deutsch’s problem [11, 12] on a nuclear magnetic res-
onance quantum computer is reported firstly [13]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also reported [14]. There are
several attempts to use single-photon two-qubit states
for quantum computing. Oliveira et al. implement
Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [15].
Single-photon Bell states are prepared and measured [16].
Also the decoherence-free implementation of Deutsch’s
algorithm is reported by using such a single-photon and
by using two logical qubits [17]. More recently, a one-
way based experimental implementation of Deutsch’s al-
gorithm is reported [18].

Rolf Landauer says that Information is Physical [5].
We cannot create any computer without physical phe-
nomena. This fact motivates us to investigate the rela-
tion between physical phenomena and quantum comput-
ing. Especially, we investigate what measurement theo-
ries meet quantum computing.

In this paper, we propose a new measurement theory,
in qubits handling, based on the truth values, i.e., the

truth T (1) for true and the falsity F (0) for false. The
results of measurement are either 0 or 1. To implement
Deutsch’s algorithm, we need both observability and con-
trollability of a quantum state. The new measurement
theory can satisfy these two. Especially, we systemati-
cally describe our assertion based on more mathematical
analysis using raw data in a thoughtful experiment.

This paper is organized as follows:

In Sec. II, we investigate the relation between the
double-slit experiment and the new measurement the-
ory. We can measure a spin observable by using the new
measurement theory. The new measurement theory can
satisfy observability.

In Sec. III, we discuss the fact that the new measure-
ment theory can satisfy controllability.

Section IV concludes this paper.

II. THE NEW MEASUREMENT THEORY CAN

SATISFY OBSERVABILITY

In this section, by using the double-slit experiment,
we consider the relation between the new measurement
theory and observability. Especially, we systematically
describe our assertion based on more mathematical anal-
ysis using raw data in a thoughtful experiment.

We assume an implementation of the double-slit ex-
periment. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result of
measurements are either 1 or 0 (in �/2 unit). If a par-
ticle passes one side slit, then the value of the result of
measurement is +1. If a particle passes another slit, then
the value of the result of measurement is 0. This is an
easy detector model of a single Pauli observable.
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A. A wave function analysis

Let σx be a single Pauli observable. We assume that
a source of a spin-carrying particle emits them in a state
ρ. We consider a quantum expected value Tr[ρσx]. If
we consider only a wave function analysis, the possible
values of the square of the quantum expected value are

0 ≤ (Tr[ρσx])
2 ≤ 1. (1)

We define �EQM�2 as

�EQM�2 = (Tr[ρσx])
2. (2)

Then we have

�EQM�2min = 0 and �EQM�2max = 1. (3)

�EQM�2max and �EQM�2min are the maximal and mini-
mal possible values of the product, respectively. We get
�EQM�2min = 0 or �EQM�2max = 1 if the system is a pure
state lying in either the z-axis or the x-axis, respectively.

B. New measurement theory

A mean value E satisfies the new measurement theory
if it can be written as

E =

�m

l=1 rl(σx)

m
, (4)

where l denotes a notation and r is the result of the
new measurement of the Pauli observable σx. We assume
the values of r are either 1 or 0 (in �/2 unit). Assume
the quantum mean values with the system in a state ad-
mits the new measurement theory. One has the following
proposition concerning the new measurement theory

Tr[ρσx](m) =

�m

l=1 rl(σx)

m
. (5)

We can assume the following by Strong Law of Large
Numbers,

Tr[ρσx](+∞) = Tr[ρσx]. (6)

We define �EQM�2(m) as

�EQM�2(m) = (Tr[ρσx](m))2. (7)

We can assume the following by Strong Law of Large
Numbers,

�EQM�2(+∞) = �EQM�2 = (Tr[ρσx])
2. (8)

In what follows, we show that we can accept the relation
(5) concerning the new measurement theory. Assume the
proposition (5) is true. By changing the notation l into
l′, we have same quantum mean value as follows

Tr[ρσx](m) =

�m

l′=1 rl′(σx)

m
. (9)

We have the following when the system is in a pure
state lying in the x-axis.

�EQM�2(m)

=

�m

l=1 rl(σx)

m
×
�m

l′=1 rl′(σx)

m

≤
�m

l=1

m
·
�m

l′=1

m
|rl(σx)rl′(σx)|

=

�m

l=1

m
×
�m

l′=1

m
= 1. (10)

Clearly, the above inequality can have the upper limit
since the following case is possible:

�{l|l ∈ N ∧ rl(σx) = 1}� = �{l′|l′ ∈ N ∧ rl′(σx) = 1}�,
(11)

and

�{l|l ∈ N ∧ rl(σx) = 0}� = �{l′|l′ ∈ N ∧ rl′(σx) = 0}�.
(12)

And we have the following when the system is in a pure
state lying in the z-axis.

�EQM�2(m)

=

�m

l=1 rl(σx)

m
×
�m

l′=1 rl′(σx)

m

≥
�m

l=1

m
·
�m

l′=1

m
(0)

= (0)

��m

l=1

m
×
�m

l′=1

m

�
= 0. (13)

Clearly, the above inequality can have the lower limit
since the following case is possible:

�{l|l ∈ N ∧ rl(σx) = 1}� = �{l′|l′ ∈ N ∧ rl′(σx) = 0}�,
(14)

and

�{l|l ∈ N ∧ rl(σx) = 0}� = �{l′|l′ ∈ N ∧ rl′(σx) = 1}�.
(15)

Thus we derive a proposition concerning the quantum
mean value under the assumption that the new measure-
ment theory is true (in a spin-1/2 system), that is

0 ≤ �EQM�2(m) ≤ 1. (16)

From Strong Law of Large Numbers, we have

0 ≤ �EQM�2 ≤ 1. (17)

Hence we derive the following proposition concerning the
new measurement theory

�EQM�2min = 0 and �EQM�2max = 1. (18)

We can accept the two relations (3) (concerning a wave
function analysis) and (18) (concerning the new measure-
ment theory), simultaneously. The new measurement
theory meets the wave function analysis and can measure
Pauli observable σx correctly. Similar to the argumenta-
tions, the new measurement theory can measure Pauli
observable σz correctly. In short, the new measurement
theory meets observability of σz and σx.



3

III. THE NEW MEASUREMENT THEORY

CAN SATISFY CONTROLLABILITY

In this section, we investigate if the new measurement
theory can satisfy controllability of a pure state lying in
either the z-axis or the x-axis. These quantum states are
used in Deutsch’s algorithm.

We introduce the following quantum proposition con-
cerning controllability:

�0|0 = 1, �1|1 = 1, �0|1 = 0, and �1|0 = 0. (19)

The proposition (19) implies

|�0|0|2 = 1, |�1|1|2 = 1, |�0|1|2 = 0, and |�1|0|2 = 0.

(20)

Clearly, the new measurement theory based on the truth
values can satisfy all the expected values in the above
proposition (20). And we may assume that the new mea-
surement theory can satisfy the proposition (19).

The proposition (19) implies that

�σz2 + �σx2 = 1 (21)

when the system is in a pure state lying in either the
z-axis or the x-axis. The reason is as follows: Assume a
pure state lying in either the z-axis or the x-axis as

|ψx = eiφ
|0 ± |1√

2
, (22)

and

|ψz = |0, |1, (23)

where φ is a phase. These quantum states are used in
Deutsch’s algorithm. Let us write

σz = |0�0| − |1�1| (24)

and

σx = |0�1|+ |1�0| (25)

Then we have

|�ψx|σz |ψx| = 0, |�ψx|σx|ψx| = 1. (26)

and

|�ψz|σz|ψz| = 1, |�ψz |σx|ψz| = 0. (27)

Therefore, we see

�σx2 + �σz2 = 1. (28)

We thus see the proposition (19) implies the existence of
either the z-axis or the x-axis in the Hilbert space for-
malism of the quantum theory. From the argumentations
presented in Sec. III, the new measurement theory meets
the relations (26) and (27). We see the new measurement
theory can satisfy controllability of a pure state lying in
either the z-axis or the x-axis, that is used in Deutsch’s
algorithm.

IV. CONCLUSIONS

In conclusion, we have proposed a new measurement
theory, in qubits handling, based on the truth values, i.e.,
the truth T (1) for true and the falsity F (0) for false.
The results of measurement have been either 0 or 1. To
implement Deutsch’s algorithm, we need both observ-
ability and controllability of a quantum state. The new
measurement theory can have satisfied these two. Es-
pecially, we systematically have described our assertion
based on more mathematical analysis using raw data in
a thoughtful experiment.

Our argumentations imply that we can perform the
following Deutsch’s algorithm.

• The control of quantum states relies on the wave
functional analysis.

• The observation of quantum states relies on the new
measurement theory based on the truth values.

Consistency between controllability and observability is
necessary for an implementation of Deutsch’s algorithm.
And desired consistency is established.

Are there other measurement theories which can sat-
isfy both controllability and observability? This is an
open problem.
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