Large Number Hypothesis and Weizaecker’s Ur-Theory

Peter H. Michalicka
Email: Peter.Michalicka@gmx.at

November 19, 2015

Abstract: According to Weizaecker’s Ur-Theory there are N so called ‘urs’ that form each object in the universe. Each ‘ur’ is one bit of information, so the entropy S of the universe in natural units is: $S = 4\pi M^2 = 4\pi N$.

1 The number N of urs in the universe

The number N of urs in the universe are given by radius R or mass M of the universe, with the Planck-length l_P or Planck-mass m_P, we can write as follows (see [1]):

$$N = \frac{R^2}{l_P^2} = \frac{M^2}{m_P^2} \approx 10^{120}$$

With $l_P = \sqrt{\frac{hG}{c^3}}$ or $m_P = \sqrt{\frac{hc}{G}}$ we can write:

$$\frac{G}{R^2} = \frac{c^3}{Nh} = constant$$
2 The Gravitational constant G

As calculated before the Gravitational constant is given by:

\[\frac{G}{R^2} = \frac{c^3}{N\hbar} = \text{constant} \]

If we assume \(R = ct \) we can rewrite:

\[\frac{G}{t^2} = \frac{c^5}{N\hbar} = \text{constant} \]

The product of \(MR \) is given by the adiabatic equation:

\[MR = N\frac{\hbar}{c} = Nl_p m_p \]

3 References

3. Peter H. Michalicka, About the Gravitation, viXra.org, Relativity and Cosmology, viXra:1410.0091