November 5th, 2015.

\textit{Author: Ramesh Chandra Bagadi}

\textit{Founder, Owner, Co-Director And Advising Scientist In Principal}

\textit{Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.}

\textit{Email: rameshebagadi@netscape.net}

\textit{White Paper One \{TRL 24\}}

\textit{of}

\textit{Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank, Technology Assistance & Innovation Center, Madison, Wisconsin-53715, United States Of America}
Abstract

In this research monograph, the author presents a novel ‘Universal Recursive Algorithmic Scheme For Generating The Sequence Of Prime Numbers (Of 2nd Order Space [2])’.

Theory

One can note that we can represent any Asymmetric Universal Recursion Scheme [3] as

\[\{ x \} \leftrightarrow \{ x - a \} \leftrightarrow \{ x + b \} \]

One can simply Normalize it by simply doing the operation

\[\{ x \} \leftrightarrow \left\{ \frac{x^2 - a}{x} \right\} \leftrightarrow \left\{ \frac{x^2 + b}{x} \right\} \]

i.e.,

\[\{ x \} \leftrightarrow \left\{ \frac{x^2 - a}{x} \right\} \leftrightarrow \left\{ \frac{x^2 + b}{x} \right\} \]

Now, we consider the first three consecutive numbers starting from 0, i.e., \{0, 1, 2\} (that are supposed to indicate some (Universal Recursion Scheme) \(0 \leftrightarrow 1 \leftrightarrow 2 \). We now re-write all possible 6 arrangements of \(0 \leftrightarrow 1 \leftrightarrow 2 \) namely:

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of (x, a, b)</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ x } \leftrightarrow \left{ \frac{x^2 - a}{x} \right} \leftrightarrow \left{ \frac{x^2 + b}{x} \right})</td>
<td>({ 0 } \leftrightarrow \left{ \frac{(0)^2 - (-1)}{0} \right} \leftrightarrow \left{ \frac{(0)^2 + 2}{0} \right})</td>
<td>(x = 0, a = -1, b =)</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>(0 \leftrightarrow 1 \leftrightarrow 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 \leftrightarrow 2 \leftrightarrow 0)</td>
<td>({ 1 } \leftrightarrow \left{ \frac{(1)^2 - (-1)}{1} \right} \leftrightarrow \left{ \frac{(1)^2 - 1}{1} \right})</td>
<td>(x = 1, a = -1, b = -1)</td>
<td>1 (\leftrightarrow 2 \leftrightarrow 0)</td>
<td>No New Prime Number To Select</td>
</tr>
<tr>
<td>(2 \leftrightarrow 0 \leftrightarrow 1)</td>
<td>({ 2 } \leftrightarrow \left{ \frac{(2)^2 - (2)}{2} \right} \leftrightarrow \left{ \frac{(2)^2 - 1}{2} \right})</td>
<td>(x = 2, a = 2, b = -1)</td>
<td>4 (\leftrightarrow 2 \leftrightarrow 3)</td>
<td>Primary Number Nearest to 2</td>
</tr>
<tr>
<td>(1 \leftrightarrow 0 \leftrightarrow 2)</td>
<td>({ 1 } \leftrightarrow \left{ \frac{(1)^2 - (1)}{1} \right} \leftrightarrow \left{ \frac{(1)^2 + 1}{1} \right})</td>
<td>(x = 1, a = 1, b = 1)</td>
<td>1 (\leftrightarrow 0 \leftrightarrow 2)</td>
<td>No New Prime Number To Select</td>
</tr>
<tr>
<td>(0 \leftrightarrow 2 \leftrightarrow 1)</td>
<td>({ 0 } \leftrightarrow \left{ \frac{(0)^2 - (-2)}{0} \right} \leftrightarrow \left{ \frac{(0)^2 + 1}{0} \right})</td>
<td>(x = 0, a = -2, b = 1)</td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

2
Now, noting that the next nearest *Prime Number* found being 3, we now use the set \{0, 1, 2\} given in the beginning and use its two highest \{Prime\} numbers and couple the recently found 3 to form a new set \{1, 2, 3\} and consequently an *Asymmetric Universal Recursion Scheme* $1 \leftrightarrow 2 \leftrightarrow 3$. Using the same above scheme we again find a similar table for $1 \leftrightarrow 2 \leftrightarrow 3$.

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of x, a, b</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x} \leftrightarrow \left(\frac{x^2 - a}{x}\right) \leftrightarrow \left(\frac{x^2 + b}{x}\right)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 \leftrightarrow 2 \leftrightarrow 3$</td>
<td>${1} \leftrightarrow \left(\frac{(1)^2 - (-1)}{1}\right) \leftrightarrow \left(\frac{(1)^2 + 2}{1}\right)$</td>
<td>$x = 0, a = -1, b = 2$</td>
<td>$1 \leftrightarrow 2 \leftrightarrow 3$</td>
<td>No New Prime Number To Select</td>
</tr>
<tr>
<td>$2 \leftrightarrow 3 \leftrightarrow 1$</td>
<td>${1} \leftrightarrow \left(\frac{(2)^2 - (-1)}{2}\right) \leftrightarrow \left(\frac{(2)^2 - 1}{2}\right)$</td>
<td>$x = 1, a = -1, b = -1$</td>
<td>$2 \leftrightarrow 5 \leftrightarrow 3$</td>
<td>$\text{Prime Number Nearest to } 3$</td>
</tr>
<tr>
<td>$3 \leftrightarrow 1 \leftrightarrow 2$</td>
<td>${3} \leftrightarrow \left(\frac{(3)^2 - (2)}{3}\right) \leftrightarrow \left(\frac{(3)^2 - 1}{3}\right)$</td>
<td>$x = 2, a = 2, b = -1$</td>
<td>$9 \leftrightarrow 7 \leftrightarrow 8$</td>
<td>$\text{Prime Number greater than } 5$</td>
</tr>
<tr>
<td>$2 \leftrightarrow 1 \leftrightarrow 3$</td>
<td>${2} \leftrightarrow \left(\frac{(2)^2 - (1)}{2}\right) \leftrightarrow \left(\frac{(2)^2 + 1}{2}\right)$</td>
<td>$x = 1, a = 1, b = 1$</td>
<td>$4 \leftrightarrow 3 \leftrightarrow 5$</td>
<td>$\text{Prime Number Nearest to } 3$</td>
</tr>
<tr>
<td>$1 \leftrightarrow 3 \leftrightarrow 2$</td>
<td>${1} \leftrightarrow \left(\frac{(1)^2 - (-2)}{1}\right) \leftrightarrow \left(\frac{(1)^2 + 1}{1}\right)$</td>
<td>$x = 0, a = -2, b = 1$</td>
<td>$1 \leftrightarrow 3 \leftrightarrow 2$</td>
<td>No New Prime Number To Select</td>
</tr>
<tr>
<td>$3 \leftrightarrow 2 \leftrightarrow 1$</td>
<td>${3} \leftrightarrow \left(\frac{(3)^2 - 1}{3}\right) \leftrightarrow \left(\frac{(3)^2 - 2}{3}\right)$</td>
<td>$x = 2, a = 1, b = -2$</td>
<td>$4 \leftrightarrow 3 \leftrightarrow 1$</td>
<td>No New Prime Number To Select</td>
</tr>
</tbody>
</table>

Now, noting that the next nearest *Prime number* found being 5, we now use the set \{1, 2, 3\} given in the beginning and use its two highest \{Prime\} numbers and couple the recently found 5 to form a new set \{2, 3, 5\} and consequently a *Asymmetric Universal Recursion Scheme* $2 \leftrightarrow 3 \leftrightarrow 5$. Using the same above scheme we again find a similar table for $2 \leftrightarrow 3 \leftrightarrow 5$.

3
<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of x, a, b</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x} \leftrightarrow \left{ \frac{x^2 - a}{x} \right} \leftrightarrow \left{ \frac{x^2 + b}{x} \right}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2 \leftrightarrow 3 \leftrightarrow 5$</td>
<td>${2} \leftrightarrow \left{ \frac{(2)^2 - (-1)}{2} \right} \leftrightarrow \left{ \frac{(2)^2 + 2}{2} \right}$</td>
<td>$x = 0, a = -1, b = 3$</td>
<td>$4 \leftrightarrow 5 \leftrightarrow 7$</td>
<td>7 (Prime Number Nearest to 5)</td>
</tr>
<tr>
<td>$3 \leftrightarrow 5 \leftrightarrow 2$</td>
<td>${3} \leftrightarrow \left{ \frac{(3)^2 - (-2)}{3} \right} \leftrightarrow \left{ \frac{(3)^2 - 1}{3} \right}$</td>
<td>$x = 1, a = -2, b = -1$</td>
<td>$9 \leftrightarrow 11 \leftrightarrow 8$</td>
<td>11 (Prime Number greater than 7)</td>
</tr>
<tr>
<td>$5 \leftrightarrow 2 \leftrightarrow 3$</td>
<td>${5} \leftrightarrow \left{ \frac{(5)^2 - (3)}{5} \right} \leftrightarrow \left{ \frac{(5)^2 - 2}{5} \right}$</td>
<td>$x = 2, a = 3, b = -2$</td>
<td>$25 \leftrightarrow 22 \leftrightarrow 2$</td>
<td>23 (Prime Number greater than 7)</td>
</tr>
<tr>
<td>$3 \leftrightarrow 2 \leftrightarrow 5$</td>
<td>${3} \leftrightarrow \left{ \frac{(3)^2 - (1)}{3} \right} \leftrightarrow \left{ \frac{(3)^2 + 2}{3} \right}$</td>
<td>$x = 1, a = 1, b = 2$</td>
<td>$9 \leftrightarrow 8 \leftrightarrow 11$</td>
<td>11 (Prime Number greater than 7)</td>
</tr>
<tr>
<td>$2 \leftrightarrow 5 \leftrightarrow 3$</td>
<td>${2} \leftrightarrow \left{ \frac{(2)^2 - (-3)}{2} \right} \leftrightarrow \left{ \frac{(2)^2 + 1}{2} \right}$</td>
<td>$x = 0, a = -3, b = 1$</td>
<td>$4 \leftrightarrow 7 \leftrightarrow 5$</td>
<td>7 (Prime Number Nearest to 5)</td>
</tr>
<tr>
<td>$5 \leftrightarrow 3 \leftrightarrow 2$</td>
<td>${5} \leftrightarrow \left{ \frac{(5)^2 - 2}{5} \right} \leftrightarrow \left{ \frac{(5)^2 - 3}{5} \right}$</td>
<td>$x = 2, a = 2, b = -3$</td>
<td>$25 \leftrightarrow 23 \leftrightarrow 2$</td>
<td>23 (Prime Number greater than 7)</td>
</tr>
</tbody>
</table>

Now, noting that the next nearest Prime number found being 7, we now use the set $\{2, 3, 5\}$ given in the beginning and use its two highest $\{Prime\}$ numbers and couple the recently found 7 to form a new set $\{3, 5, 7\}$ and consequently a Asymmetric Universal Recursion Scheme $3 \leftrightarrow 5 \leftrightarrow 7$. Using the same above scheme we again find a similar table for $3 \leftrightarrow 5 \leftrightarrow 7$ and can consequently find the next Prime Number to be 11.

We can keep repeating the aforementioned scheme many, many times so on, so forth and can generate the entire ‘Sequence Of Prime Numbers’ up to a desired limit.

Morals

‘EkoVaasiSarvaBootaanAntaraatma’

The above Samskrutam Sloka which means ‘It Is The One That Pervades All’ is the ‘Causative Reason’ of the fact that ‘The pristineness and extent of the same of a person’s actions decide how many Souls the person dwells in’.
‘If you gaze too long at the abyss, the abyss gazes back at you’. –Frederick Nietzsche
(German Philosopher)

References
[23] viXra:1510.0514
http://www.vixra.org/abs/1510.0514
Fulfill Your Life (Version 3)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[22] viXra:1510.0428
http://www.vixra.org/abs/1510.0428
Theory Of ‘Complementable Bounds’ And ‘Universe(s) In Parallel’ Of Any Sequence Of Primes Of Rth Order Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[21] viXra:1510.0427
http://www.vixra.org/abs/1510.0427
The Synonymity Between The Five Elements Of (At) Planet Earth And The Five Digits Of Human Palm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[20] viXra:1510.0395
http://www.vixra.org/abs/1510.0395
Genuinity Validation Of Any 'Original Work Consciousness Of Concern' And Decorrupting 'Corrupted Original Work Consciousness'
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[19] viXra:1510.0391
http://www.vixra.org/abs/1510.0391
Musical Life (Version II)
Musical Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Universal Wave Function Of The Universe (Verbose Form)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life (Version 2)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Quantized Variable Dimensional Equivalents Of Any Technology Of Concern : An Example Of The (William F. Baker)’s Buttressed Core Design Concept
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[12] viXra:1510.0130
http://www.vixra.org/abs/1510.0130
Time Evolution Juxtaposition Of The Observables Based Dirac Type Commutator And The Consequential Wave Equation Of Photon
Authors: Ramesh Chandra Bagadi
Category: Mathematical Physics

http://www.vixra.org/abs/1510.0126
A Condition For The Suspension Of Gravitational Field
Authors: Ramesh Chandra Bagadi
Category: Classical Physics

[10] viXra:1510.0117
http://www.vixra.org/abs/1510.0117
Some Basic Definitions Of Fractional Calculus
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[9] viXra:1510.0096
http://www.vixra.org/abs/1510.0096
Universal Recursive Crossing Science Of Genetic Kind
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[8] viXra:1510.0091
http://www.vixra.org/abs/1510.0091
Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[7] viXra:1510.0059
http://www.vixra.org/abs/1510.0059
Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[6] viXra:1510.0054
http://www.vixra.org/abs/1510.0054
All You Need to Know About Euclidean and Euclidean Type Inner Product Scheme
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[5] viXra:1510.0031
http://www.vixra.org/abs/1510.0031
Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

http://www.vixra.org/abs/1510.0030
Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[3] viXra:1510.0006
http://www.vixra.org/abs/1510.0006
Universal Natural Recursion Schemes Of Rth Order Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

http://www.vixra.org/abs/1510.0291
The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving family, respectable teachers, en-dear-able friends, inspiring Social Figures, highly esteemed Professors, reverence deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the conception, preparation and authoring of this research manuscript document.

Tribute

The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural phenomenon and forms new premises and scientifically surmises plausible laws. The author strongly reiterates his sense of gratitude and infinite indebtedness to all such ‘Philosophical Statesmen’ that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.
\[(a+ib)^2 = (a^2 - b^2) + (2ab)i\]