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Abstract

Hamiltonians in particle interactions are subject to a number of con-
straints originating from locality, the cluster decomposition principle and
Lorentz covariance of the scattering matrix. Moreover, it is always as-
sumed that the Hamiltonian must be defined on a Hilbert space and be
bounded from below, the latter would be a requirement following from
stability of the system. In this paper we examine if these criteria are re-
ally mandatory, as it is well known that all of them taken together lead to
the usual infinities of quantum field theory. In particular, we study a class
of Hamiltonians unbounded from below and examine its stability. This
leads us into the construction of novel statistics in three space dimensions;
it is shown that for rigid strings the possibilities for statistics exceed those
for standard anyons in two space dimensions.

1 Introduction.

It is often stated that Hamiltonians must be bounded from below, since other-
wise physical states could decay and radiate an abritrary amount of energy1.
An obvious reaction against such argument is that the opposite process can also
happen and with the same amplitude; therefore, the issue needs to be exam-
ined with more care at a nonperturbative level. In particular, we will adress
stability of the natural vacuum state in such formalism and work also towards
multi-particle states. Explicit computations are laborious even for rather sim-
ple perturbations and interesting counting problems show up which we will
approach from a few different angles. In this paper, we have nothing to say
about Lorentz invariance, we work with Hamiltonians consisting of a (at most)
denumerable set of oscillators which are not derived from a local Hamiltonian
density. In a second part of this paper, we try to look for new building blocks to
construct Hamiltonians in order to enhance stability; this is an investigation of
particle statistics beyond the traditional Bose and Fermi rules. It is shown that
for rigid strings in three space dimensions, the possibilities for statistics exceed
those for anyons in two space dimensions. Also, the first homotopy group of
configuration space for rigid strings offers a new way to look at the spin statistics
connection. In the conclusions, we discuss our preliminary results and propose
further investigations.

It would be interesting to perform the even more general analysis at the level of

∗email: johan.noldus@gmail.com
1Indeed, some authors take boundedness from below as the very definition of stability.
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the Lagrangian in light of the path integral formulation of quantum mechanics
which is more general as the Hamiltonian theory. In other words, which condi-
tions does it have to satisfy in order to give a physically meaningful theory? An
even more general question of this kind arises in the quantum measure formu-
lation by Sorkin which goes beyond the Lagrangian. In that sense do we only
adress this issue from the most conservative point of view, which is that of plain
unitary quantum theory.

2 A general class of operators.

In this section, we study perturbations on a free Hamiltonian which is not
bounded form below. The vacuum state is defined as the state with no particles
and not the state with the lowest energy. All our computations are made with
bosons, the implementation of fermions being obvious. Denote by H a standard
Fock space and let a†n, b

†
n denote two sets of creation operators where n ∈ Z0.

Let
H0 =

∑
n∈Z0

~
(
ωna

†
nan + ρnb

†
nbn
)

where ω−n = −ωn < 0 and ρ−n = −ρn < 0 for n > 0, be the free Hamiltonian
consisting of pairs (n,−n) of opposite energies. For future reference, denote by

Tn = a†nan−a
†
−na−n and Rn = b†nbn−b

†
−nb−n then H0 =

∑
n>0 (ωnTn + ρnRn).

Obviously, Tn, Rm are mutually commuting and self adjoint. We are interested
in the following class of perturbations

V =
∑
n>m

(
αnma

†
na
†
m + αnmanam

)
+
∑
n 6=m,k

(
γnmkb

†
ka
†
nam + γnmkbka

†
man

)
.

Let |0〉 be the vacuum state annihilated by all an, bm which represent annihila-
tion operators of particles. We call a normalized state |ψ〉 ε-stable if and only
if

|〈ψ|U(t, t0)|ψ〉| > 1− ε

for all t > t0. Here U(t, t0) = e−
i
~H(t−t0) is the evolution operator for H =

H0+V . Of course ε should depend upon the perturbations αnm, γnmk and taken
to zero if the latter converge in a suitable sense to zero as well. If |ψ〉 is ε-stable
then for all perturbations |φ〉 orthogonal to |ψ〉 we have that |〈ψ|U(t, t0)|φ〉|2 ≤
1− |〈ψ|U(t, t0)|ψ〉|2 < 1− (1− ε)2 < 2ε which means that |ψ〉 is stable against
perturbations in another sense. There is a second, weaker, definition of stability
which is the following: we call a normalized state ε- stable on a time scale T if
and only if

|〈ψ|U(t, t0)|ψ〉| > 1− ε

for all t0 + T ≥ t ≥ t0. Here, it is understood that T goes to infinity and ε
to zero in the limit of zero interaction and that T is in general large enough
for sufficiently small ε. Indeed, it is this last requirement which makes this
definition nontrivial since stability follows automatically for sufficiently small
T . What we will show in this paper, is that under suitable conditions the
vacuum state (and possibly excited states) are all stable in one sense or another
against perturbations defined by V . As usual, it is convenient to work in the
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interaction picture defining an operator

W (t, t0) = e−
i
~H0tU(t, t0)e

i
~H0t0

since it doesn’t affect stability studies and as usual,

W (t, t0) = T
(
e
i
~
∫ t
t0
V (s)ds

)
where T denotes time ordering and V (s) = e−

i
~H0sV e

i
~H0s. For a general state

of definite particle number a†n1
. . . a†nkb

†
m1

. . . b†ml |0〉 one has that

〈0|bml . . . bm1
ank . . . an1

U(t, t0)a†n1
. . . a†nkb

†
m1

. . . b†ml |0〉 =

ei(
∑k
α=1 ωnα+

∑l
α=1 ρmα)(t−t0)〈0|bml . . . bm1ank . . . an1W (t, t0)a†n1

. . . a†nkb
†
m1

. . . b†ml |0〉
which relates both pictures to one and another. It is obvious that 〈0|V (s)|0〉 = 0
so the first nontrivial contribution in perturbation theory comes from∫ t

t0

ds1

∫ s1

t0

ds2〈0|V (s1)V (s2)|0〉 =
∑
n>m

|αnm|2
( ∞∑
k=3

(i(ωn + ωm))k−2(t− t0)k

k!
+

1

2
(t− t0)2

)
as the reader can immediately verify. In particular, the above formula simplifies
in case n = −m which is obvious since those parts in V commute with H0.
Since there is no harm in starting out from a more limited proposal, define Ln =
a†na

†
−n and Kn = a†nan + a†−na−n, then [Ln, Lm] = [Kn,Km] = 0,

[
L†n, Lm

]
=

δnm (1 +Kn) and [Kn, Lm] = 2Lnδnm. Moreover, [Tn, Lm] = 0 = [Tn,Km] so
that V ′ =

∑
n>0

(
αnLn + αnL

†
n

)
commutes with H0. First, let us make some

computations with V ′ and switch later on to the case of only one mode L and
T (obviously, this Hamiltonian is still unbounded from below). Let us show the
result of some preliminary computations: define γk =

∑
n>0 |αn|k for k ≥ 0,

then we will assume that the γ2k are all finite. In particular, we have that

〈0|V ′2|0〉 = γ2

〈0|V ′4|0〉 = 3γ2
2 + 2γ4

〈0|V ′6|0〉 = 15γ3
2 + 30γ2γ4 + 16γ6

and in general 〈0|V ′(2k+1)|0〉 = 0 for all k ≥ 0. However, these computations
are laborious and show no clear systematic, so that we study the more simple
case of a single mode (we drop all indices n henceforth) which already shows
interesting numerics.

2.1 Fermionic harmonic oscillator.

There are two reasons for studying the toy model of a pair of fermionic os-
cillators: (a) the computations are much easier since the Hilbert space is fi-
nite dimensional (b) real matter is fermionic, so we aim to gain some physi-
cal insight here. Let T, L,K be defined as before, then the commutation re-
lations for fermionic oscillators become

[
L†, L

]
= 1 − K, [K,L] = 2L and

[T, L] = [T,K] = 0 so that effectively only the sign of K differs in the first ex-

pression. Moreover, we have that L2 = 0, L†|0〉 = K|0〉 = Lb†±|0〉 = L†b†±|0〉 = 0

leading immediately to the stability of the exited states b†±|0〉. In fact,

〈0|b±U(t, t0)b†±|0〉 = e∓iω(t−t0)
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so that we only need to adress vacuum stability. So, we are interested (V ′)n|0〉
which equals |α|n|0〉 for n even and α|α|n−1L|0〉 for n odd so that 〈0|U(t, t0)|0〉 =

cos
(
|α|
~ (t− t0)

)
. Therefore, we must conclude that the vacuum is not ε-stable

in the strict sense for any ε > 0 but oscillates between |0〉 and L|0〉 as

U(t, t0)|0〉 = cos

(
|α|
~

(t− t0)

)
|0〉 − i α

|α|
sin

(
|α|
~

(t− t0)

)
L|0〉.

Obviously, for any ε > 0 there exists a T = ~ cos−1(1−ε)
|α| such that |0〉 is ε stable

on a timescale T which goes to infinity if |α| → 0; however ~ cos−1(1 − ε) is a
ridiculously small number so that |α| must be much smaller than the free energy
of the oscillator in order to give appreciable time scales; hence it is justified to
think that this notion of stability does not give a reliable result. We will come
now to a third notion of stability which is much more robust. One calculates
that

U(t, t0)L|0〉 = cos

(
|α|
~

(t− t0)

)
L|0〉 − i α

|α|
sin

(
|α|
~

(t− t0)

)
|0〉

so that the eigenstates are given by

|0,+〉 =
1√
2

(
|0〉+

α

|α|
L|0〉

)
and

|0,−〉 =
1√
2

(
α

|α|
|0〉 − L|0〉

)
with eigenvalues for H of ±|α|. So, the vacuum breaks up into two vacua with
opposite energies; indeed, the correct interpretation of L|0〉 is that of an alterna-
tive vacuum state since the free energy of both equals exactly zero. Indeed from
the perspective of H0 = ~ωT , the states |0,±〉 both have zero enery; moreover,
b†|0,±〉 ∼ b†|0〉 so that both vacua cannot be distinguished from the point of
view of particle creation. Of course, |0〉 remains the only state which is annihi-
lated by both b± and therefore represents the true vacuum. Summarizing, we
propose that |0〉 and L|0〉 are indistinguishable experimentally, a pair of two
particles with opposite energies should not evoque detection of any kind. In
that sense, the vacuum is stable since the motion of |0〉 occurs in its equivalence
class. A similar interpretation will be useful for the excited states in case mul-
tiple oscillators are included. Therefore, we generalize our notion of stability as
follows: let Pψ denote the Hermitian projection operator on the space of physi-
cally equivalent states of |ψ〉, then |ψ〉 is ε-stable within its equivalence class if
and only if

〈ψ|U†(t, t0)PψU(t, t0)|ψ〉 > (1− ε)2.

The reader notices that the new definition coincides with the old one in case
Pψ = |ψ〉〈ψ|. With this knowledge, we now turn to the study of the bosonic
case, the investigation of the multi-mode fermi theory being postponed to the
next section.
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2.2 A single pair of bosonic modes.

In this section we will try to fully understand the physics behind the Hamiltonian
operator H = ~ωT + αL+ αL†, satisfying the bosonic algebra. We will attack
this problem from two sides: (a) by means of the spectral decomposition of
V ′ = αL + αL† and (b) by a more direct way in fully exploiting all algebraic
properties. The spectrum of the former operator is continuous and so we have
only improper eigenvectors (in contrast to the fermionic case), but first let us
establish some useful formulae:[

L†, Ln
]

= n2Ln−1 + nLn−1K

so that the norm of a state Ln|0〉 equals n! since K|0〉 = L†|0〉 = 0. In particular,
the states |n〉 = 1

n!L
n|0〉 satisfy

〈n|m〉 = δnm.

We first try to prove stability of the vacuum state by a direct method. Note from
the outset that stability within the equivalence classes of states is an obvious
property of the kind of perturbations we are studying here, so nothing can be
learned in that sense (a state can only evolve within the eigenspace of H0 =
~ωT since the perturbations commute with the free Hamiltonian). Therefore,
the issue of stability we study here is the restricted one. Also, the techniques
developed below will be of importance for the more general study in the next
section.

2.2.1 A direct computation.

We are interested in calulating

αV ′nL|0〉 =

[n2 ]+1∑
k=1

fk(n)αn+3−2k|α|2(k−1)Ln+3−2k|0〉

where [x] denotes the smallest integer greater or equal than x. hence, we must
determine the fk(n) and in particular the fn(2n − 2) since those correspond
precisely to

〈0|V ′2n|0〉 = |α|2nfn(2(n− 1)).

One immediately notices that

fk(n) = fk(n− 1) + (n+ 4− 2k)2fk−1(n− 1)

resulting in

fk(n) =

n−1∑
i=2k−4

fk−1(i)(i+ 5− 2k)2

for k ≥ 2 and f1(n) = 1 for n ∈ N. Using these formula, one can derive that
fk(n) is a polynomial in n of degree 3(k−1) with 2k−3 zeroes at 0, 1, . . . 2k−4
leaving k + 1 parameters to be determined. Alas, this is not a simple matter,
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we list here the result of some computations:

f2(n) =
1

6
n(n+ 1)(2n+ 1)

f3(n) =
1

360
(n+ 1)n(n− 1)(n− 2)(20n2 − 32n− 9)

f4(n) =
1

136080
(n+ 1)n(n− 1)(n− 2)(n− 3)(n− 4)(840n3 − 5292n2 + 7638n+ 639)

and as the reader notices these coefficients become almost intractable. The
reader checks that f2(2) = 5 = 3+2 and f3(4) = 61 = 15+30+16 as computed
before. However, as mentioned, we are mainly interested in the fn(2(n−1)) and
we proceed now by putting up a general computational scheme. From above,
or by direct computation, f4(6) = 1385 and f5(8) = 50521 both numbers which
blow up rapidly. One notices from these numerics that

(2(n− 1))! < fn(2(n− 1)) < 3(2n− 2)!

and it remains to prove if this is really true or not2. There is another method
to generate these functions and that is by making the Laplace transformation

f(z, w) =

∞∑
k=1

∞∑
n=2k−3

wk

k!
zn+3−2kfk(n).

Our recursion relations then lead to the following partial differential equation

(1− z) d
dw

f = z
d2

dz2
f +

d

dz
f + 1

which needs to be solved with initial condition f(z, 0) = 0. The reader may pre-
fer to solve this equation iteratively and calculate dn

dwn f|w=0, the above equation
gives directly

d

dw
f|w=0 =

1

1− z
.

One immediately notices that dn

dwn f|w=0 = Pn(z)
(1−z)3n−2 , where Pn(z) is a polyno-

mial of degree n−1. Elementary calculations show that P1(z) = 1, P2(z) = z+1
and P3(z) = 9z2 +26z+5 and as the reader notices, there seems to be a conser-
vation of trouble here since it is hard to explicitely determine the coefficients of
these polynomials. In principle it is sufficient to know dn

dwn f(0, 0) = fn(2n−3) =
fn−1(2(n− 1)− 2), but even that appears to be too much to ask. Another way
to go would be to notice that f(z, w) = −z + g(z, w) where g is a solution of

the homogeneous differential equation (1 − z) d
dwg = z d2

dz2 g + d
dz g with initial

condition g(z, 0) = z. The reader may first wish to solve the eigenvalue problem

z
d2

dz2
hλ(z) +

d

dz
hλ(z) = λ(z − 1)hλ(z)

and then look for the appropriate solution in the space spanned by

fλ(z, w) = e−λwhλ(z).

2It would make the power series of 〈0|U(t, t0)|0〉 converge since we must divide γn(2n− 2)
by (2n)!.
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Clearly λ = 1 is an eigenvalue with h1(z) = e−z, also λ = 0 is with h0(z) = 1.
However, trying to determine more general eigenvectors in the form hλ(z) =∑
n≥0 hn(λ) z

n

n! leads to problems as before; therefore, we know how to approach
the counting problem from a couple of different sides but none of them gives a
more simple answer. Let us try to proceed by another method.

2.2.2 A spectral decomposition.

In this subsection, we assume α to be real, therefore V ′ can be written as
α(∂x∂y + xy) on L2(R2, dx ∧ dy) where we have identified the annihilation
operators with 1√

2
(∂x + x) and 1√

2
(∂y + y) respectively. We study now the

spectral decomposition of V ′; as mentioned previously V ′ commutes with T =
1
2

(
−∂2

x + x2 + ∂2
y − y2

)
. Obviously, ψ0(x, y) = e

i
2 (x2+y2) and its complex con-

jugate are improper eigenvectors of V ′ with eigenvalue zero. Actually, the
“eigenspace” of zero is infinite dimensional as one can apply Tn to ψ0; for
example

Tψ0 =
(
x2 − y2

)
ψ0.

We knew this already to be the case for T itself, since the states |n〉 all satisfy
T |n〉 = 0. For the stability issue of the vacuum state, it is sufficient to look for
the spectral decomposition of V ′ in the subspace spanned by all |n〉 since we
know V ′ must leave that invariant. We shall actually do more than that in this
section. The restricted problem is this, given a general state |ψ〉 =

∑∞
n=0 γn|n〉

with γ0 = 1 (without restriction of generality), determine the condition for this
to be an eigenstate

α
(
L+ L†

)
|ψ〉 = λ|ψ〉.

Since L|n〉 = (n+ 1)|n+ 1〉 and L†|n〉 = n|n− 1〉, we arrive at the equations

nγn−1 + (n+ 1)γn+1 =
λ

α
γn ;n > 0

γ1 =
λ

α

which corresponds to the eigenvalue problem of the matrix

M =


0 1 0 0 0 0
1 0 2 0 0 0
0 2 0 3 0 0
0 0 3 0 4 0
0 0 0 4 0 5
0 0 0 0 5 0

 .

We will first show that the spectrum equals R and conjecture that the discrete
spectrum is empty. First of all, it is obvious that λ belongs to the continuous
spectrum if and only if there exists a sequence of unit vectors |ψn〉 such that
||(M − λ)|ψn〉|| converges to zero for n to infinity and moreover, λ belongs not
to the discrete spectrum. Let us show first that 0 belongs to the continuous

spectrum: it is easy to calculate that γ2n+1 = 0 and γ2n = (−1)n (2n)!
22n(n!)2 .

Hence, γ2n satisfies the following bounds

α√
n
< |γ2n| <

β√
n
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for some β > α > 0 and therefore one concludes that the norm of the “eigen-
vector” equals infinity. More rigorously, take k > 0 and define

|ψk〉 =

∑∞
i=0

γ2i

(2i)
1
k
|2i〉√∑∞

j=0 |
γ2j |2

(2j)
2
k

then ||M |ψk〉|| converges to zero for k to infinity as the reader may verify for
himself. For general λ ∈ R, it is easily checked that γk(λ) is a polynomial of
degree k which is even when k is even and odd when k is odd. Hence, γk(λ)
contains

[
k
2

]
+ 1 coefficients. These however, resemble very much the very

numbers fn(2n − 3) we are trying to compute and all we can do again is work
in a different method with isomorphic problems. Nevertheless, let us proceed;
taking the m’th derivative at λ = 0 of the defining relation yields

nγmn−1 + (n+ 1)γmn+1 = γm−1
n

where γmn = 1
m!

dm

dλm γn(0). Hence, we get a recursive system of vectors γm where

Mγm = γm−1

for m > 0 and γ0 is given by the solution above. Trying to solve Mγ1 = γ0

gives, as mentioned previously, a system which is hard if not impossible to solve
explicitely; the first few solutions for γ1 are γ1

2k = 0, γ1
1 = 1, γ1

3 = − 5
3! , γ

1
5 = 89

5!
and finally γ1

7 = − 3429
7! . For what it is worth the sign is alternating and the

absolute value of the nominator of γ1
k =

δ1k
k! appears to be a number between

(
[
k
2

]
+ 1)(k − 1)! and (

[
k
2

]
+ 2)(k − 1)!. This may help either in getting a

grip upon those numbers or perhaps even determine them explicitely. We see
that in general, any λ belongs to the spectrum since we can find exactly one
(generalized?) eigenvector. This strongly suggests that the continuum spectrum
is R, the only thing which could happen here is that for a discrete number of λ
the associated eigenvector actually has finite norm, so that the discrete spectrum
lies in the closure of the continuous spectrum. Albeit this is possible in principle
and it is easy to construct such operators3 I conjecture it not to be the case for
M . Certainly, a proof is lacking and for sure an explicit spectral decomposition
appears out of range. This means we are not able to find a nonperturbative
expression for our numbers fn(2n − 3) and hence the only thing we can do is
study vacuum stability perturbatively. This is not a very satisfying situation
especially given that the perturbations are extremely simple. What would be
neat however, is that the computation would be finite in the sense that the
total Hilbert space is finite; this would mean that our particles don’t satisfy
Bose statistics but some nilpotent statistics of order n. This issue is introduced
in sections four and five.

3 Multi mode perturbation theory.

The previous section made it clear that the easiest bosonic systems can lead
to (insurmountable) computational complications, an issue which we will come

3For example, consider a finite dimensional Hilbert space H and take the direct sum H⊕
L2(R, dx). Define the operator A = 1⊕ x, then A has as continuous spectrum R \ {1} and 1
is a discrete eigenvalue.
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back to in a short while. Fermions, on the other hand allow sometimes4 for
explicit computations and it is in this section that we will try to generalize
our results in two ways. First, we consider a system with a finite number of
fermi modes (with positive and negative energy) and we consider Fermi-Fermi
couplings of the kind defined in section two. We will adress stability of the
vacuum and particle states (within their equivalence classes). Later on, we
include a coupling to a finite number of Bose modes (the total Hamiltonian is
then unbounded from below) and try to perform a similar study.

3.1 A finite number of coupled Fermi modes.

The Hamiltonian we will study in this section is given by

H =

N∑
k=1

~ωkTk +
∑

N≥k>l≥−N

(
αklb

†
kb
†
l + αklblbk

)
and first, we will try to gain some insight in the case N = 2 on 16 dimensional
Hilbert space.

3.1.1 The case N = 2.

It is easily seen that this time the one particle states are not invariant under
evolution since the potential V or V (s) acts nontrivially on them, what remains
to study is stability of the vacuum (within its equivalence class) as well as of
the nontrivial particle states. There are two ways to go, either we calculate
explicitely the spectral decomposition of H and then the time evolution easily
follows, or we do perturbation theory as usual (which amounts to the same since
the Hamiltonian is bounded). We will start with the latter and return to the
former at a later stage5; it is convenient to work in the interaction picture and

V (s) =
∑

2≥k>l≥−2

(
αkle

−i(ωk+ωl)sb†kb
†
l + αkle

i(ωk+ωl)sblbk

)
with ω−l = −ωl for l = 1, 2. Clearly, V (s) leaves the eight dimensional space
spanned by the even particle states invariant as well as the eight dimensional
space of the odd particle states. We shall first adress vacuum stability6 so we
calculate the operation of time ordered products

V (s1)V (s2) . . . V (sn)|0〉

with s1 ≥ s2 ≥ . . . ≥ sn. Let us treat first the case n even since for n odd this
expression is a two particle state, while for n even it is a superposition of the
vacuum state and the four particle state L2L1|0〉 = b†2b

†
1b
†
−1b
†
−2|0〉 and it is the

latter expression which has a nice geometric significance. Define the functions
Γ(s, t)(++) and Γ(s, t)(+−) as follows:

Γ(s, t)(++) =
∑

2≥k>l≥−2;2≥r>s≥−2

e−i(ωr+ωs)s−i(ωk+ωl)tεrsklαrsαkl

4It is not because a system is finite dimensional that you can explicitely calculate it!
5The reason is that in general no explicit spectral decomposition can be made beyond 3

dimensions!
6Within its four dimensional equivalence class spanned by |0〉, Li|0〉 and L1L2|0〉 where

i = 1, 2 and the Li are defined as before.
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and
Γ(s, t)(−+) =

∑
2≥k>l≥−2

ei(ωk+ωl)(s−t)|αkl|2

then the geometric interpretation of Γ(s, t)++ is that of a path consisting out
of two moves forwards where t coincides with the first move and s with the
second one. The interpretation of Γ(s, t)−+ is that of a path defined by two
moves, the first being upward corresponding to t, the second being downwards
given by s. One can now take the inverses of these moves which corresponds
to complex conjugation; that is a path going downwards twice is given by
Γ(s, t)(−−) = Γ(s, t)(++) while a path going down first and upwards second

is given by Γ(s, t)(+−) = Γ(s, t)(−+) = Γ(t, s)(−+). To make this more precise,
the endpoints of the paths are 0, 1, 2 and the only paths we are interested in
have an even number of steps and start at 0 so the only possible endpoints are
0, 2. Obviously, for the number of steps greater or equal than two, there are
precisely as many paths which end up in 0 as those which end up in 2, the only
exception being n = 0 where of course one path ends up at 0 and none at 2.
The number of allowed paths of length 2n equals 2n−1 as the reader may easily
show by induction. Denoting by Γ(2n,0) the set of paths of 2n moves ending at 0
and Γ(2n,2) likewise the set of paths of 2n moves ending at 2 where a path is an
allowed sequence of + and −, we arrive that the formula for the time ordered
product V (s1)V (s2) . . . V (s2n)|0〉 is given by:

V (s1)V (s2) . . . V (s2n)|0〉 =
∑

γ∈Γ(2n,0)

n∏
i=1

Γ(s2n+1−2i, s2n+2−2i)(γ(2i),γ(2i−1)) |0〉+

∑
γ∈Γ(2n,2)

n∏
i=1

Γ(s2n+1−2i, s2n+2−2i)(γ(2i),γ(2i−1)) L2L1|0〉.

We will also use the shorthand Γ(s1, s2, . . . , s2n)0 and Γ(s1, s2, . . . , s2n)2 for the
coefficients of |0〉 and L2L1|0〉 in the above expression; in particular Γ0 = 1
while Γ2 = 0. The case of an odd number 2n + 1 of steps cannot be neglected
since 2 out of 6 two particle states are within the equivalence class of |0〉, that
is L1|0〉 and L2|0〉. The reader can easily deduce that the relevant formula is
given by

V (s1)V (s2) . . . V (s2n)V (s2n+1)|0〉 = Γ(s2, s3, . . . , s2n+1)0

∑
2≥k>l≥−2

e−i(ωk+ωl)s1αklb
†
kb
†
l |0〉+

Γ(s2, s3, . . . , s2n+1)2

∑
2≥k>l≥−2;2≥r>s≥−2

αkle
i(ωk+ωl)s1εklrsb

†
rb
†
s|0〉.

We are now left to explicitely calculate the projection of the integration of these
expressions on the four dimensional equivalence class of |0〉. Let us first start

by calculating
∫ t
t0
du
∫ u
t0
dv Γ(u, v)0∫ t

t0

du

∫ u

t0

dv Γ(u, v)0 =
∑

2≥k>l≥−2

|αkl|2
( ∞∑
r=0

(i(ωk + ωl))
r(t− t0)r+2

(r + 2)!

)

which is the best form to consider since ωk + ωl can be zero so that dividing
through it is forbidden.

∫ t
t0
du
∫ u
t0
dv Γ(u, v)2 can be solved by noticing that

10



Γ(u, v)2 = Γ(v, u)2 so that the ordered integral equals 1
2

∫ t
t0
du
∫ t
t0
dv Γ(u, v)2

and this is calculated to be

1

2

∑
2≥k>l≥−2;2≥r>s≥−2

εrsklαrsαkl

( ∞∑
p=0

(−i(ωr + ωs))
p(tp+1 − tp+1

0 )

(p+ 1)!

)( ∞∑
p=0

(−i(ωk + ωl))
p(tp+1 − tp+1

0 )

(p+ 1)!

)

which looks even more messy. Therefore, it appears hopeless that we will get
any nonperturbative result at this level of generality and we need to make ad-
ditional simplifications. To get an idea what a suitable reduction is, it is con-
venient to write the restriction of the full Hamiltonian on the subspace of even
particle states and express it as a matrix with respect to the orthonormal ba-
sis |0〉, b†2b

†
−2|0〉, b

†
1b
†
−1|0〉, b

†
2b
†
1|0〉, b

†
2b
†
−1|0〉, b

†
1b
†
−2|0〉, b

†
−1b
†
−2|0〉 and b†2b

†
1b
†
−1b
†
−2|0〉

respectively:

H =



0 α2,−2 α1,−1 α2,1 α2,−1 α1,−2 α−1,−2 0
α2,−2 0 0 0 0 0 0 α1,−1

α1,−1 0 0 0 0 0 0 α2,−2

α2,1 0 0 ~(ω1 + ω2) 0 0 0 α−1,−2

α2,−1 0 0 0 ~(ω2 − ω1) 0 0 −α1,−2

α1,−2 0 0 0 0 ~(ω1 − ω2) 0 −α2,−1

α−1,−2 0 0 0 0 0 −~(ω1 + ω2) α2,1

0 α1,−1 α2,−2 α−1,−2 −α1,−2 −α2,−1 α2,1 0


.

A first reduction consists in putting αk,l equal to zero for k 6= −l so that our
perturbation commutes again with the free Hamiltonian: this is an obvious
generalization of the theory in section 2.1. In this case, denoting α = α2,−2 and
β = α1,−1 and by a permutation of the above basis, H can be written as

H =

(
0 L
L† 0

)
⊕


~(ω1 + ω2) 0 0 0

0 ~(ω2 − ω1) 0 0
0 0 ~(ω1 − ω2) 0
0 0 0 −~(ω1 + ω2)


where

L =

(
α β
β α

)
.

This shows that all two particle states b†kb
†
l |0〉 with k 6= −l are stable as well

that the vacuum is stable within its equivalence class. A further spectral de-
composition is obtained by calculating the eigenvalues and eigenvectors of L†L:
these turn out to be (|α| ± |β|)2 and

v± =
1√
2

(
1

± αβ
|α||β|

)
.

Hence, one has that the full normalized eigenvectors are given by:

X± =
1

2


± α
|α|
± β
|β|
1
αβ
|α||β|

 Y± =
1

2


± α
|α|
∓ β
|β|
1

− αβ
|α||β|
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where X± corresponds to ±(|α| + |β|) and Y± to ±(|α| − |β|). In our particle
basis this reads:

X± =
1

2

(
± α

|α|
L2|0〉 ±

β

|β|
L1|0〉+ |0〉+

αβ

|α||β|
L2L1|0〉

)
and

Y± =
1

2

(
± α

|α|
L2|0〉 ∓

β

|β|
L1|0〉+ |0〉 − αβ

|α||β|
L2L1|0〉

)
which are the correct expressions as the reader may verify. We will now enter
the next stage of dimensional reduction and turn on α2,1; the reader then notices
that we can as well take α−1,−2 to be nonzero and we will denote them by γ

and δ respectively. Obviously b†2b
†
−1|0〉 and b†1b

†
−2|0〉 remain stable (invariant)

and we are left to examine a 6×6 Hermitian matrix, which by a change of basis,
can be written as:

H ′ =

 0 L M
L† 0 0
M† 0 κσ3


where κ = ~(ω1 + ω2),

L =

(
α β
β α

)
, M =

(
γ δ
δ γ

)
and

σ3 =

(
1 0
0 −1

)
the third Pauli matrix. Denoting by (a, b, c) a general eigenvector, the eigenvalue
equation can be rewritten as

L†Lb+ L†Mc = λ2b

M†Lb+ (M†M + κλσ3)c = λ2c

L†a = λb

and we will use the notation µ = κλ. Hence, we will solve the more general
eigenvalue equation of the 4× 4 Hermitian matrix

H ′′ =

(
L†L L†M
M†L M†M + µσ3

)
and later substitute µ = κλ again. Notice that λ = 0 implies µ = 0 and the
eigenvectors of H ′ then correspond to solutions of the equation Lb + Mc = 0,
L†a = 0 and M†a + κσ3c = 0; for an invertible L, the solution space is empty
while for a singular nonzero L it is zero, one or two dimensional depending upon
whether Mσ3M

†Ker(L†) ⊆ Im(L) or not. If it is not, then the kernel of H ′ is
still empty, while if it is, equality will imply it is two dimensional, otherwise it is
one dimensional. In the following, we must take µ nonzero and look for strictly
positive eigenvalues; this is in general an impossible task. It is here that we will
make a further simplification, which is that L†M = 0; the most general solution
being

L = r

(
e−iψ e−iφ

eiφ eiψ

)
M = t

(
−ei(ζ−φ) e−i(ζ+ψ)

ei(ζ+ψ) −ei(φ−ζ)
)

12



where r, t ≥ 0 and ψ, φ, ζ ∈ [0, 2π). A straightforward computation yields that
the spectrum of H ′ is given by ±2r,±

√
4t2 + κ2, 0, 0 with respective eigenvectors

V±2r =
1

2


±e−iψ
±eiφ

1
ei(φ−ψ)

0
0

 , W±
√

4t2+κ2 =
1

2
√

4t2 + κ2



∓2tei(ζ−φ)

±2tei(ζ+ψ)

0
0√

4t2 + κ2 ± κ
−(
√

4t2 + κ2 ∓ κ)e2iζei(ψ−φ)


and finally

Y0 =
1√
2


0
0
eiψ

−eiφ
0
0

 , Z0 =
1√

8t2 + 2κ2



κ
−κei(ψ+φ)

0
0

2tei(φ−ζ)

2tei(ψ+ζ)

 .

The components of these vectors correspond to the coefficients of |0〉, L2L1|0〉, L2|0〉, L1|0〉, b†2b
†
1|0〉

and b†−1b
†
−2|0〉 respectively. Hence, the vacuum state can be written as

|0〉 =
eiψ

2
V+2r −

eiψ

2
V−2r −

t√
4t2 + κ2

ei(φ−ζ)W+
√

4t2+κ2 +
t√

4t2 + κ2
ei(φ−ζ)W−

√
4t2+κ2 +

κ√
8t2 + 2κ2

Z0

and time evolution U(t0 + T, t0)|0〉 equals therefore

U(t0+T, t0)|0〉 =
eiψ

2
e−i

2rT
~ V+2r −

eiψ

2
ei

2rT
~ V−2r −

t√
4t2 + κ2

ei(φ−ζ)e−i
√

4t2+κ2T
~ W+

√
4t2+κ2

+
t√

4t2 + κ2
ei(φ−ζ)ei

√
4t2+κ2T

~ W−
√

4t2+κ2 +
κ√

8t2 + 2κ2
Z0.

For sake of simplicity we project this on the orthogonal complement of the
equivalence class of |0〉; this gives:

P⊥U(t0+T, t0)|0〉 =
2t

8t2 + 2κ2

 ei(φ−ζ)
(
i
√

4t2 + κ2 sin
(√

4t2+κ2T
~

)
+ κ

(
1− cos

(√
4t2+κ2T

~

)))
ei(ζ+ψ)

(
−i
√

4t2 + κ2 sin
(√

4t2+κ2T
~

)
+ κ

(
1− cos

(√
4t2+κ2T

~

))) 
and the norm squared of this equals

8t2

(8t2 + 2κ2)2

(
4t2 sin2

(√
4t2 + κ2T

~

)
+ 2κ2

(
1− cos

(√
4t2 + κ2T

~

)))

which is smaller than
t4 + κ2t2

2t4 + κ2t2 + 1
8κ

4
< 1

and this number is much smaller than one for t a few orders of magnitude
smaller than κ. Hence, the vacuum is stable within its equivalence class against
the perturbations studied in this section.
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3.1.2 A remark on the case of general N .

From the previous subsection, it must be clear that explicit computations are
impossible; one can of course always reduce the dimension but what happens if
multiple couplings are turned on simultaneously is in general not predictable.
Here, computer simulations will be of great value by approximating the time

evolution operator U(t, t0) by
(

1− iH(t−t0)
n~

)n
for n large enough. We leave this

open for future work and remain with the knowledge that stability is a fact for
certain low dimensional perturbations.

3.2 A pair of Fermionic modes coupled to a pair of Bosonic
ones.

The Hamiltonian we will study in this section is given by

H = ~ωT + ~ρR+ γ+a
†
+b
†
+b− + γ−a

†
−b
†
+b− + γ+a+b

†
−b+ + γ−a−b

†
−b+

where T = b†+b+−b
†
−b− and R = a†+a+−a†−a−. The a’s are Bosonic and the b’s

Fermionic; obviously this Hamiltonian is unbounded from below and above. The
Hilbert space is Hf ⊗ Hb where Hf is spanned by the states |0, 0〉, |1, 1〉, |0, 1〉
and |1, 0〉 where the first index corresponds to the positive energy Fermion and
second to the negative energy Fermion. The states inHb may likewise be written
in the form |n,m〉 with n,m ∈ N; H can then be written in this tensor product
form as:

H =


F 0 0 0
0 F 0 0
0 0 −~ω1⊗ 1 + F γ+D ⊗ 1 + γ−1⊗D
0 0 γ+D

† ⊗ 1 + γ−1⊗D† ~ω1⊗ 1 + F


where D denotes the annihilation operator

D =


0 1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .

0 0 0 0
√

4
...

...
...

...
...


and F is the bosonic energy operator given by

F = ~ρ
(
D†D ⊗ 1− 1⊗D†D

)
.

Hence, the vacuum and two fermion states are all stable and it remains to
investigate the one fermion states. Notice first that for γ+ 6= 0 6= γ−, 0 belongs
to the residual spectrum7 of the operator A = γ+D

†⊗1+γ−1⊗D†; therefore, an
eigenvector v of the operator B = ~ω1⊗1+F corresponds only to an eigenvector
(w, v) of the operator

H ′ =

(
−~ω1⊗ 1 + F γ+D ⊗ 1 + γ−1⊗D

γ+D
† ⊗ 1 + γ−1⊗D† ~ω1⊗ 1 + F

)
7The reader shows first that 0 does not belong to the discrete spectrum and then simply

notices that the vacuum state does not belong to the closure of the image of A so that the
latter is not dense in Hb.
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with the same eigenvalue if and only if w = 0 and

Ker (B − λ1⊗ 1) ∩Ker(A†) 6= {0}.

One can easily show that this is only the case for λ = ~ω corresponding to the
vacuum state |0, 0〉; hence, ~ω belongs to the discrete spectrum of H ′ which is
encouraging in showing that the one particle Fermion state |1, 0〉 is stable. We
will now examine the case that λ is not in the spectrum of B so that B−λ1⊗ 1
is invertible; therefore, the (generalized) eigenvector equation for H ′ reduces to
the (generalized) kernel of the operator

C = −(~ω+λ)1⊗1+F−(γ+D ⊗ 1 + γ−1⊗D) ((~ω − λ)1⊗ 1 + F )
−1 (

γ+D
† ⊗ 1 + γ−1⊗D†

)
defined on Hb. The latter operator, C, can be computed explicitely since

(~ω − λ)1⊗ 1 + F

is just a diagonal matrix, so that taking its inverse is pretty easy. A vector∑
n,m αn,m|n,m〉 belongs to the kernel of C if and only if

an,mαn,m + bn,mαn−1,m+1 + cn,mαn+1,m−1 = 0

where

an,m = (−~ω + λ+ ~ρ(n−m)) + |γ+|2(n+ 1) [~ω − λ+ ~ρ(n−m+ 1)]
−1

+

|γ−|2(m+ 1) [~ω − λ+ ~ρ(n−m− 1)]
−1

and
bn,m = γ+γ−

√
n
√
m+ 1 [~ω − λ+ ~ρ(n−m− 1)]

−1

and finally

cn,m = γ−γ+

√
m
√
n+ 1 [~ω − λ+ ~ρ(n−m+ 1)]

−1
.

One has that bn,m = 0 if and only if n = 0 and likewise cn,m = 0 if and only
if m = 0; moreover for each n,m there exist only three λ such that an,m = 0.
Solving for the kernel is no easy matter: for (0, 0) the equation reduces to
a0,0α0,0 = 0 which generically implies that α0,0 = 0. The (0,m) equations for
m > 0 can be written as a0,mα0,m + c0,mα1,m−1 which implies the α0,m can be
freely chosen and all α1,m are fixed (also for m = 0); the (n,m) equations with
n,m > 0 fix all αn,m with n > 0 and m ≥ 0. They are all linear functions of the
α0,n; more specifically αn,m only depends upon α0,n+m. Remains the equations
(n, 0) with n > 0; these are given by an,0αn,0 + bn,0αn−1,1 = 0 and they can be
rewritten in the form xnα0,n = 0. This means that some of the xn(λ) 6= 0 which
only happens for an ℵ0 of λ’s since each xn can be viewed as a polynomial of
finite degree in λ; hence, the spectrum of H ′ is a countable subset of the real
line (which doesn’t mean that the spectrum is discrete however) which strongly
suggests stability of the one Fermi states (this is by no means a proof however).
An explicit spectral decomposition is again beyond our reach and we postpone a
further analysis of these operators to future research. We notice for the second
time that computations with Bosonic systems are impossible and we treat this
issue now further in the following two sections.
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4 Infinities in physics.

This section lies somewhat out of the main development of this article but
intends to comment upon the things which went wrong previously, in particular
regarding our computations made in the bosonic sector. We make a temporary
split (which may change in the future) between kinematical and dynamical
infinities and between those we would expect and those we would not expect to
occur. Indeed, one infinity I have no objection to would be the infinite extend
of the universe or associated to it, its infinite energy. Likewise, I would envision
quantum states with an infinite number of particles enlarging the dimension of
Fock space to be ℵ1 instead of ℵ0. Let us proceed with the kinematical infinities
first.

4.1 Kinematical infinities.

The most famous infinity here, even if just thought as an untestable mathe-
matical assumption, leads to many physical infinities which we will list also. Of
course I am speaking about the spacetime continuum which gives a local infinity
in the sense that the cardinality of each open set equals ℵ1. Even if just thought
as a mathematical convenience, it directly implies that in a finite region of space,
an infinite number of physical states can be constructed which means an infinite
number of particles. This type of infinity leads in general relativity to the for-
mation of black holes and dynamical infinities, known as singularities. Indeed,
it looks like nature only allows for a critical finite density of states which is also
suggested by black hole entropy where the number of states scales as the expo-
nential of the Hawking Bekenstein entropy. This does not imply that one needs
to give up the real numbers all together, but that the real number continuum
may not serve as a basis for spacetime. If one assumes this continuous substra-
tum to exist as well as a vierbein on it, then one arrives at a second infinity which
is the noncompactness of the (local) Lorentz group. This symmetry probably
cannot hold exactly in nature (albeit it might exist in a statistical sense) for the
same reason since it would lead to one particle states (which can be localized
in space) for which the (expectation value of) the energy blows up to infinity.
This is at least so in the representations considered in standard quantum field
textbooks and it is very well possible that nonstandard representations do not
suffer from this problem as explained in section 5.2. Now, we arrive at some in-
finity which is almost never mentioned but is as unphysical as all the others and
which is deeply rooted into the very postulates of quantum mechanics. This is
the infinity of bosons where it is possible to have an infinite number of particles
in the same state. One can think of particle statistics as being not related to
the standard postulates of quantum mechanics (the commutation relations) but
then the dynamical origin behind the spin statistics theorem would fade away.
What is done in most textbooks is to simply quantize field theory and notice
that bosons show up naturally and that fermions must exist because of a so
called “consistent quantization procedure” of the Dirac action which amounts
to demanding that the Hamiltonian must be bounded from below. As we have
learned in this paper, this may very well turn out to be a bogus motivation and I
certainly prefer the more axiomatic approach; then, however, we should change
quantum mechanics at a very profound level. Indeed, even in finite causal set
theory, where there exists only a finite number of events (points), one obtains

16



an infinite Fock space in the bosonic sector which amounts to an arbitrary high
stress energy, which is clearly unphysical. The fermi theory on a causal set does,
of course, not suffer from such drawbacks. Usually, in three space dimensions it
is “derived” that Bose and Fermi statistics are the only possibilities on grounds
of the cluster decomposition principle [1]; the latter, however is too strong since
it demands the S matrix elements to factorize for experiments which are done
far away from one and another. What should factorize is the modulus squared
of the S matrix elements since those are actually measured in nature, not the
S matrix elements themselves. This implies, in particular, that other particles
in a state intervene, as spectators, when two particles are swapped leading to
nontrivial phases depending upon particle species and particle numbers. The
last kinematical infinity we meet is, as mentioned previously, the (possibly) in-
finite extend of the universe. Naively, this would imply an infinite number of
particles as well as infinite energies since energy is an extensive quantity which
would be a disaster for quantum mechanics since it would not be well defined
anymore. Here, however, the principle of general covariance may come to our
rescue since it states that the energy and momentum densities should vanish.
Classically, this is expressed by the constraints Hα(x) = 0. Quantum mechani-
cally, however, it must be possible to write Hα(x) = Lα(x)+L†α(x) and demand
states |ψ〉 to be physical if and only if Lα(x)|ψ〉 = 0. An implication of this is
that for any two physical states

〈φ|Hα(x)|ψ〉 = 0

which is only meaningful if and only if the Hα(x) are unbounded from below.
There are some constraints on the Lα(x): in order for the time evolution of a
physical state to be a physical state8, it is natural to impose the condition that

[H(N,Na)(t), Lα(~x, t)] =

∫
d3~y cγα(N,Na, h, π, ~x, ~y, t)Lγ(~y, t)

where H(N,Na)(t) =
∫
d~xHα(~x, t)Nα(~x, t) denotes the total Hamiltonian9 and

h, π the canonical coordinates10. This, of course, implies that

[Hβ(~y, t), Lα(~x, t)] =

∫
d~y cγβα(~x, ~y, t)Lγ(~y, t)

meaning that Hβ(~y, t) maps physical states to physical states which implies that

Hβ(~y, t)|ψ〉 = 0

for every physical state |ψ〉 unless the physical Hilbert space is degenerate,
something which we can only achieve if the full Hilbert space is degenerate or
contains negative norm states. In principle, the physical Hilbert space could

8One can of course sacrify unitarity and allow for the time evolution to map physical states
to nonphysical states, in that case the problem of time would evaporate. This is not as crazy
as it sounds since the constraints are not a gauge condition as is the case for the Lorentz
constraint in electromagnetism. It would make time evolution dependent upon the lapse and
shift vector however which is undesirable as they are pure gauge.

9Which may explicitely depend upon time by means of the lapse and shift vector
10Strictly speaking, the Hamiltonian should only leave the null eigenspace of Lα(x) invari-

ant.
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have an orthogonal basis of ghosts11 but then observables12 have no probability
interpretation anymore. As is well known, there is no time in this formalism in
the naive sense, a way to reinstate it would be to take an observable H as the
physical energy and state that the change in time of an observable O is defined
as

i~
d

dt
O = [H,O] .

The problem is that in general such H is not even found classically, so that
also this escape route seems unplausible13. For quantum electrodynamics in
the Lorentz gauge C(x) = ∂µA

µ(x) = 0, one writes C(x) = L(x) + L†(x) where

[H,L(~x, t)] = − 1
(2π)3

∫
d~y c(~x, ~y)L(~y, t) where c(~x, ~y) =

∫
d~l e−i

~l.(~x−~y) |~l| which

is a distribution. If this condition would not hold, then unitarity would be jeop-
ardized. In any case, the above strongly suggests that Hamiltonians unbounded
from below should occur in a theory of quantum gravity.

4.2 Dynamical infinities.

The most famous infinity here is the so called locality assumption in building
physical Hamiltonians (as well classically and quantum mechanically) which
means that particles can interact in points. Taken together with “causality”,
this implies that Hamiltonian densities at spacelike separated points commute.
In my opinion, it is this postulate which leads to the infinities in quantum
field theory as well as general relativity; moreover, it appears to be a generic
feature of field theories. Now, it might be possible that on a discrete space-
time the locality condition can be maintained since one point could equally
be thought of as a fundamental region, but in the continuum it appears to be
totally unphysical (as is most likely the continuum). Another infinity, which
is deeply rooted in relativity, is the infinity of relativistic mass as the velocity
of a particle approaches the velocity of light. This is intimately connected to
the noncompactness of the Lorentz group which in a particular sense had some
pretty bad implications. Most likely, this infinity also, should dissapear from
physics allowing for tunneling through the light cone “potential”.

5 New building blocks to devise Hamiltonians:
generalized statistics.

First, let me start with the exposition of statistics in [1], especially regarding
the existence of anyons in 2 space-dimensions. Weinberg presents an argument
which basically boils down to the statement that one needs to look for represen-
tations of the first homotopy group of configuration space of indistinguishable
particles in determining statistical properties14. This argument, based upon the
path integral, recognizes that each topologically distinct configuration of paths

11That is, to be fully degenerate.
12Here, observables are operators on the physical Hilbert space.
13One could of course have a one parameter class of observables and interpret that parameter

as time, such as is the case for point particles added to gravity.
14This configuration space for N indistinguishable particles is defined as the space of N

d-vectors, excluding d vectors that coincide (or are within a limiting distance) with another,
and identifying configurations that differ only by a permutation.
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comes with its own weight factor; in 2 space dimensions, this group is the Braid
group, while in 3 or more space dimensions this group is the permutation group.
One way to build generalized bosons would be to start from parafermions

anq =

n∑
k=1

bkq

where n, k, l denote the “generation” and p, q are a shorthand for all other quan-
tum numbers. The bkq satisfy the following properties

[
bkq , b

l
p

]
= 0 =

[
bkq , (b

l
p)
†]

for k 6= l and {bkq , bkp} = 0, {bkq , (bkp)†} = δ(q − p). An immediate consequence

is that (anq )n+1 = 0 which is good, but unfortunately the (akq )† have no nice
symmetry properties among one and another. Standard derivations of statistics
all start from a few assumptions which are taken for granted: (a) we know we
are dealing with a system of N particles, this is a measurable property (b) it
makes sense to speak about the state of N -particles exclusively in terms of single
particle states (c) a constraint on the representations. The second assumption
translates itself mathematically into the statement that a N -particle Hilbert15

space HN = ⊗Ni=1H1 and one is left now with studying unitary representations
of SN . This leads to a statistics based upon Young tableau called parastatistics;
it has been shown that field theories with parastatistics can be mapped onto
field theories with standard Bose and Fermi representations carrying an extra
quantum number16. As Wilczek pointed out, a way to go beyond parastatis-
tics would be to look for projective unitary representations of SN which we will
study in more detail later on. Another thing to try out would be to consider
representations by means of anti-unitary operators (at least for transpositions)
and the author is not aware if this has been done. Let me first comment upon
(c), what I mean by this is the following: it is assumed that for N particles
denoted by ψi, the physical N -particle state |ψ1, . . . , ψN , α〉 can be directly ex-
pressed in HN in terms of the |ψi〉 (and possibly some other non-local quantum
numbers α) and the state varies continuously if the single particle states |ψi〉
vary continuously in H1. This assumption has to my knowledge never been ex-
plicitely acknowledged in the literature. Indeed, the only thing one can derive
for N particles in three or more space dimensions (modulo certain assumptions)
is that |ψ1, . . . , ψl, . . . , ψk, . . . , ψN 〉 = ±|ψ1, . . . , ψk, . . . , ψl, . . . , ψN 〉 but in case
of the plus sign, this doesn’t need to imply that |ψ1, . . . , ψl, . . . , ψk, . . . , ψN 〉, or
more in particular |ψ1, . . . , ψ, . . . , ψ, . . . , ψN 〉 is different from zero! This cannot
be inferred from any reasoning of any kind and it is just assumed to be the
case. In particular, as this author noticed in [2], this leaves open the possibility
of discontinuous statistics where states with m ≥ n identical particles vanish
for n > 2 which is a generalization of Fermi statistics. Another possibility is
that |ψk, . . . , ψl, . . . , ψl, . . . , ψN 〉 cannot be expressed directly in terms of the
|ψi〉 but are defined by means of the projections of the latter on some preferred
orthonormal basis |φj〉 where the |φi1 , . . . , φiN 〉 can be zero if some of the |φij 〉
are too close to one and another in a spatial sense. This would meet my two
objections against particle statistics in the previous section and, moreover, such
representations could be continuous. We shall give examples of both ways to

15For N anyons, HN could be chosen as
(
⊗Ni=1H1

)
⊗ H(b,N) where H(b,N) denotes the

Hilbert space of all N -braids. Other choices are possible and we shall be more explicit later
on.

16Physical states are then defined as eigenstates under the respective permutations.
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violate condition (c) in a short while. More radically, we may assume that (a)
holds17 but that (b) goes wrong, just like for nontrivial anyons, for the very
fundamental reason that particles themselves have a nontrivial topology (unlike
a point or a small ball). For example, two strings states go way beyond H1⊗H1

and it is this we will study first in the following subsection.

5.1 Abelian anyons and statistics for strings.

Before we come to the strings, let us first gain some insight into abelian anyons
by directly constructing the relevant physical states for N anyons on

(
⊗Ni=1H1

)
⊗

H(b,N). Let us first give an explicit treatment forN = 2; a faithful representation
of the braid group is constructed by taking a manifold equipped with a volume
form such that the braid group has a nonlinear action on it by means of measure
preserving diffeomorphisms. The simplest such space for two particles is M =
R2 ×

(
R+

0 × R
)

with measure dµ = r d2~x ∧ dr ∧ dθ where ~x represents ~r1 + ~r2,
r = |~r1 − ~r2| and θ equals the oriented angle between ~r1 − ~r2 and the x-axis
plus 2πn for some n ∈ Z. Obviously, ~ri denotes the position vector of particle i
in R2; the action of σ on L2(M, dµ) is given by T (σ)Ψ(~x, r, θ) = Ψ(~x, r, θ + π).
Physical vectors are now defined to satisfy

T (σ)Ψ(~x, r, θ) = eiαΨ(~x, r, θ).

Without limitation of generality Ψ can be written as

Ψ(~x, r, θ) = ei
α
π θΦ(~r1, ~r2)

where Φ is defined on N = R4 \ {(~r, ~r)|~r ∈ R2} = R2 ×
(
R2 \ {0}

)
. Hence, one

notices that ∫
M
|Ψ(~x, r, θ)|2 dµ =∞

∫
N
d2~r1 d

2~r2 |Φ(~r1, ~r2)|2

and therefore Ψ cannot be a vector in L2(M, dµ). Fortunately,∫
N
d2~r1 d

2~r2Ψ1(~r1+~r2, |~r1−~r2|, θ)Ψ2(~r1+~r2, |~r1−~r2|, θ) =

∫
N
d2~r1 d

2~r2Φ1(~r1, ~r2)Φ2(~r1, ~r2)

so that the physical vectors have a natural interpretation on L2
(
N , d2~r1 d

2~r2

)
⊗

C{eiαπ θ}. So, although we did not start from it, our physical states live in a ten-
sor product construction where H(b,2) is represented one dimensionally. For α =

0, π the physical wave Ψ reduces automatically to a wave in L2
(
N , d2~r1 d

2~r2

)
which is symmetric if α = 0 and anti-symmetric if α = π. Note that in higher
space dimensions, an identical construction supplemented with the condition
that T (σ)2 = 1 leads to ordinary Bose and Fermi statistics18. For B3 the

17Also this is nontrivial and I would be curious to see the consequences of its negation being
examined.

18For example in 3 space dimensions, anyonic statistics could be found on M = R3 ×(
R+
0 × [0, π]× R

)
where again a splitting in ~r1+~r2 and ~r1−~r2 has been made. The coordinates

are (~r1 + ~r2, |~r1 − ~r2|, θ, ψ) where ψ runs from −∞ to +∞ instead of from 0 to 2π. The
action T (σ) then reads T (σ)Ψ(~r, r, θ, ψ) = Ψ(~r, r, π − θ, ψ + π) which is clearly measure
preserving since dµ = r2 sin(θ)drdθdψd3~r. Again, we define Ψ to be physical if and only if
T (σ)Ψ(~r, r, θ, ψ) = eiαΨ(~r, r, θ, ψ). In principle, one can represent B2 in this way in three
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situation gets somewhat more complicated to write down since one needs to
implement two generators σ and δ satisfying the relation

σδσ = δσδ

but the construction above can essentially be generalized. Our analysis sofar
assumed that (a) and (c) hold and we leave it up to the reader to study what
happens if (c) were violated.

We now try to generalize these thoughts to the case that particles are strings
in 3 space dimensions (in 4 or more space dimensions the theory is trivial again
because any knot is). We will treat strings on a number of distinct levels start-
ing with the most restricted one: for now, we will assume for simplicity that
strings are rigid oriented circles which can change of radius over time. That is,
they are geometric circles α which lie in a two plane Pα and determine an inner
disc Dα both which inherit an orientation from the string so that we can speak
about a positive outward direction ~nα. There is one important subtlety here
which consists in whether we assume the images of the string to vary continu-
ously or for the strings to vary continuously as conformal embeddings (with a
constant conformal factor) of S1 in R3. We will call these of type I and type II
respectively; let us first treat type I first. Configuration space CIN of N strings
of type I is then the space of N unbraided oriented circles in three dimensions
excluding configurations with intersections of the circles and identifying config-
urations which differ only by a permutation. As the reader can easily notice,
the space CIN is connected so that its first homotopy group equals the homotopy
group at any base point (αi)

N
i=1; for technical convenience, we will choose the

latter such that all Pαi coincide but that all inner disks are disjoint. It turns
out that the first homotopy group of CIN ((αi)

N
i=1) has a much richer structure

than the Braid group BN ; we now turn to the case N = 1, 2 first. Define a
congruence α between a < b of geometrical circles as a continuous19 function
t→ α(t) for any a ≤ t ≤ b where α(t) is a geometric circle in R3; any continuous
path γ : [a, b]→ CN defines precisely N non-intersecting congruences (meaning
that α(t) ∩ β(t) = ∅ for any t ∈ [a, b]) between a < b and conversely any set of
N non-intersecting congruences defines a continuous path in CN . Given a con-
gruence between a < b, it is obvious we can speak about the inner discs Dα(t),
planes Pα(t) and outward direction n̂α(t) at time t. Define the interior of a
congruence α between s < t as the union of all inner discs Dα(r) for s ≤ r ≤ t.
Let us first examine the case N = 1 where there is a distinction between π1(CI1 )
and π1(CII1 ); in the former case CI1 = R3 × R+

0 × S2 where R3 stands for the
coordinate in 3 space of the centrum of the string, R+

0 for its radius and S2 for
the oriented unit vector perpendicular to the string’s plane. This space is simply
connected and therefore its fundamental group is trivial; therefore, the natural

space dimensions, but now we need to take into account that T (σ)2 = 1 implying that α = 0, π
and Ψ(~r, r, θ, ψ + 2π) = Ψ(~r, r, θ, ψ) meaning that Ψ is well defined on R3 ×

(
R3 \ {0}

)
.

Moreover, it is symmetric or antisymmetric for α = 0 or π respectively. Perhaps gravity
might play a roll here in the sense that a distinguished third dimension reduces particle
exchange again to two dimensions; by this I want to suggest that a physical exchange of two
particles in a curved spacetime does not only depend upon the topological equivalence class of
the respective paths but also on the absolute value of the amount of work you have to perform
on one particle to switch position (obviously the total amount of work equals zero).

19Continuity is here meant in the Vietoris topology on R3.
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unitary action of SO(3) on S2 can only be decomposed into irreducible represen-
tations of integer spin. The configuration space CII1 , on the other hand, equals
R3 × R+

0 × SO(3) where the first two factors have the same interpretation and
SO(3) equals the space of ordered pairs (~v, ~w) of orthornormal vectors20 where
v defines the oriented unit vector to the strings plane and w is the oriented unit
vector between the strings centre and a preffered point on the string. The latter

space has fundamental group Z2 since SO(3) = S3

Z2
; this means that strings of

type II have an intrinsic spin which is half integer. Indeed, in this case, the
wave function is defined on the universal cover of configuration space which is
R3 ×R+

0 × S3 where S3 is equipped with the Haar measure µ of SU(2), with a

global coordinate system given by (~r, λ, xei(
θ
2 +ψ),

√
1− x2ei

θ
2 ) where 0 ≤ x ≤ 1

and ψ ∈ [0, 2π] and finally θ ∈ [0, 4π]. The reason why we have chosen θ to

run from 0 to 4π is that a rotation by 4π is homotopic to the identity in S3

Z2
.

L2(S3, dµ) carries a natural action of SU(2) which is just given by left multipli-
cation on SU(2); as is well known, this decomposes into a direct sum of all finite
dimensional irreducible representations. Identifying the action of a rotation of
2π around the three axis, given by θ → θ + 2π, with the nontrivial element of
the homotopy group Z2 gives that eigenstates of J3 with z-component of spin
given by n

2 are of the form

ψ(x, θ, ψ) = ei
θn
2 φ(x, θ, ψ)

where φ(x, θ + 2π, ψ) = φ(x, θ, ψ). Hence, for both type I and II, we have
found a geometrical origin of spin by means of internal degrees of freedom of
a classical particle, something which has been imported into physics only by
symmetry arguments. Our reasoning on the other hand, appears to be open
to generalization of a purely topological nature although we have used some
metrical information so far.

We now come first to CI2 ; in general, take a ≤ t ≤ b, then any congruence
α of type I with α(a) = α(b) fixed corresponds to a congruence of conformal
isometries (with a constant conformal factor) of R3; indeed for any t there exists
a unique conformal isometry κ(t) mapping α(a) to α(t):

κ(t) = T (~a(t))R(n̂(t), ψ(t))C(λ(t))

where λ(t) > 0 and C(λ(t)) is defined as the mapping ~r → λ(t)(~r − ~c) + ~c
where ~c is the center of the circle α(a). n̂(t) is a unit vector in Pα(a) such
that n̂α(a) × n̂α(t) has the same orientation as n̂(t) and ψ(t) ∈ [0, π]. This
definition is only ambiguous in case ψ = 0, π but we choose them such that
R : t→ R(n̂(t), ψ(t)) defines a continuous mapping from [a, b] into the rotation
group. Finally T (~a(t)) defines a translation with ~a(t). At t = a, b we have that
ψ(t) = 0 as well as λ(t) and ~a(t) so that R defines a closed loop in S2. Let α and
β be non-intersecting congruences between times a < b; then we can perform
an homotopy in CI2 holding the intial and endconfigurations fixed such that α
is a straight tube from α(a) to α(b) without any twists (it is easy to prove this
using the above arguments). In case α(a) = α(b), α remains stationary for all
times a ≤ t ≤ b. In CII2 a similar argument holds with the exception that α
could make a twist of 2π around n̂α(a) = n̂α(t), which simplifies our analysis a

20Indeed, any ordered pair of two orthonormal vectors define uniquely a rotation.
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lot. In general, we say that α crosses β in the positive direction between times
a < s < t < b if and only if α is on the positive side of Pβ(s) at time s and
on the negative side of Pβ(t) at time t and, moreover, the intersection of α(r)
with Pβ(r) lies entirely in Dβ(r) for all s < r < t. Likewise, one can speak
about a crossing in the negative direction; we say that a crossing in the positive
or negative direction is irreducible if and only if it cannot be decomposed in
such crossings. Denote by σ+

αβ an irreducible crossing of β by α in the positive

direction and likewise by σ−αβ an irreducible crossing in the negative direction,

then clearly (σ+
αβ)−1 = σ−αβ meaning that a successive application of both is

an operation which can be trivially reduced to the identity. As a shorthand,
we will drop the + on σ+

αβ and just speak about σαβ ; consider α to make a
loop from α(a) to α(b) = α(a) and β to remain stationary at β(a); moreover,
hold the initial and final configurations at t = a and t = b respectively fixed
and consider that α just crosses β once in the positive direction. Then, any
continuous deformation in C2 of this closed path is represented by σαβ ; we will
now first prove this to be true in CII2 .

Note first that in CII2 , σαβ and σβα carry no relationship and the following
equalities hold: Rασαβ = σαβRα, RαR

′
β = R′βRα and R′βσαβ = σαβR

′
β for any

rotations Rα, R
′
β so that in the end rotations of strings are represented by Z2

in case of type II strings and by the unit for type I strings. Note that these
relations are symmetric in α and β and in σαβ and σ−1

αβ . However, π1(C1) is not
in the center of π1(C2) for type II strings. This can be seen as follows: denote by
F2 the free group in two generators σαβ and σβα and S2 the permutation group
in two elements, then both groups can be merged by means of the relationship
σαβ ◦ (αβ) = (αβ) ◦ σβα where ◦ denotes the group decomposition. In case of
type II strings, one has furthermore the generators Rα and Rβ representing a
rotation by 2π of the string α and β respectively satisfying Rα◦(αβ) = (αβ)◦Rβ .
Taking this into account, we have two groups V I and V II and we prove that
π1(CI2 ) = V I and π1(CII2 ) = V II . Although we will need a more general ar-
gument than this, it is instructive to notice that any operator σnαβ defines a
different equivalence class: we may assume that β is fixed and that α crosses
β n-times; then, in particular we have that the closed paths s → α(s) [θ] wind
n-times around β. This number is a topological invariant for any homotopy of
these paths21 and therefore also of any homotopy on CII2 holding β fixed. This
argument also holds in CI2 since any homotopy there defines many homotopies
in CII2 . Hence, we are left to show that σαβ and σβα have no relationship; we
will split the proof in four parts. First, we leave it up to the reader to show that
any path in CII2 decomposes into irreducible crossings and rotations around 2π;
second, any path in CII2 is homotopic to a path where β is just undergoing a
permutation (αβ) or is kept fixed (composed with an eventual rotation of 2π
around the unit vector n̂β) and that as well α(t) as β(t) determine a constant
unit vector n̂β(t) = n̂α(t) = n̂α(a). Moreover, the sequence of irreducible cross-
ings is identical for the deformed path as for the original one: we will call this
a standard representation. Third, we leave it up to the reader to show that

21The reader may easily see this by projecting the three dimensional configuration on R×R+

by forgetting the radial coordinate in Pβ around the centre of β. Then β becomes a point
and the projection of α winds n times around this point. By a well known theorem in two
dimensions, this winding number is a topological invariant.
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any homotopy defined between two standard representations can be deformed
into an homotopy between the same standard representations such that at any
instant of the deformation parameter, the homotopy defines a standard repre-
sentation; we will call such homotopy a a standard homotopy. In proving those
steps it will be useful to notice the following: let z be a parameter running from
0 to 1 and ψ(z, r, θ), where a ≤ r ≤ b be a homotopy in CII2 holding β fixed
(so that we can effectively surpress its radial coordinate), such that for each z,
ψ(z, a, ·) = α(a) = ψ(z, b, ·) and moreover, ψ(0, r, ·) = α(r). One notices that
for any r, z, the intersection points of ψ(z, r, ·) with Pβ move continuously with
z and r meaning that if such points exist for rn, zn converging to r, z then any
accumulation point of this sequence is an intersection point for r, z. Remark
also that if for some r̃ and z, the intersection of ψ(z, r̃, ·) with Pβ has both a
point outside Dβ and inside Dβ , then by varying r continuously, we obtain the
existence of an r′ such that the intersection of ψ(z, r′, θ) with Pβ equals a point
on β which is forbidden. The fourth and final step will be proven explicitely and
we will use dimensional reduction as in the previous, more limited, case. We
will prove that any irreducible word ρ containing only σαβ and σβα determines
an equivalence class; the extension including permutations and rotations then
easily follows and is left to the reader. As proven in the third step, we may
limit ourselves to standard homotopies holding β fixed; choose then as before a
two dimensional coordinate system with the origin in the center of β, r denotes
the distance of the projection of a point on Pβ with respect to the origin and z
is the coordinate corresponding to the axis defined by n̂β . As before, we pick
any θ and consider the projection of the homotopy (z, t)→ ψ(z, t, θ), which we
denote by φ and where z ∈ [0, 1] and a ≤ t ≤ b, on the (r, z) halfplane R+ × R.
We then have the following facts:

• the string β is mapped to the point (1, 0) and α(a) [θ] to (x, 0) with x > 1;

• the path t → ψ(z, t, ·) crosses the plane Pβ at deformation parameter z
and parameter t0 if and only if t→ φ(z, t) crosses the r-axis at t = t0;

• we have have three different kinds of crossings of Pβ ; a crossing by α of
β which we will denote by a black dot, a crossing of α by β which we
will denote by a blue dot and finally a crossing of Pβ such that the disc
defined by ψ(z, t0, ·) is disjoint from Dβ , which we will write by white dots;

• hence we have that the intersections of any path t → φ(z, t) with the
r-axis correspond to a black, blue or white dot; black dots all live in the
interval [0, 1) while blue or white dots live in (1,∞);

• we say that a traversal occurs if and only if the path t → φ(z, t) tra-
verses the r-axis once as z changes; without restriction, we may assume
that any traversal produces two novel crossings which have the same color;

• we say that two crossings collide at z0 if and only if their coordinates
(z, t(z)) converge to each other at z = z0; collisions may only occur be-
tween crossings of the same color;
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• new crossings can only appear if a traversal occurs and they can only
dissapear if and only if they collide; between their moment of birth and
dissapearance, they move continuously on the r-axis without ever crossing
the point (1, 0).

Consider now our original word ρ and the two dimensional projection of its
standard representation; this corresponds to an ordered sequence of blue, white
and black dots where no two dots of the same color appear next to each other.
Then it is obvious, by means of the above rules for crossing points, that any new
ordered sequence defined by the action of a standard homotopy must contain the
original one as an ordered subsequence; this proves that the word is irreducible.
Hence, V II is a subgroup of π1(CII2 ) and obviously, it is the entire group itself
since, as proven before, any path in CII2 can be expressed in terms of rotations,
permutations and crossings. One can now generalize these thoughts to CIIN which
is obviously much bigger than the braid group; we leave this as an exercise for
the reader.

Hence, we get nontrivial statistics once we identify a geometrical operation
in space (that is the swapping of two particles in a particular way) with a
nontrivial element of the first homotopy group. For example, we may identify
the operation sαβ of swapping two strings α and β with (αβ) ◦ σαβ where
(αβ) ∈ S2 is the standard transposition. Then, s2

αβ = σβα ◦σαβ and there is no
relationship between the snαβ . One can furthermore require that the swapping
operation itself depends upon the distance of the centers of the strings with
respect to one and another so that on large distances the swapping operation
is given by (αβ); a spin statistics connection is then provided by identifying
the representation of (αβ) with that of Rα and Rβ something which is logical
from a group theoretical point of view since for abelian statistics σαβ = σβα and
Rα = Rβ so that the group theoretical role of (αβ) is identical to the one of Rα.
Hence, it is only natural that they get identified; this provides a topological
argument for the spin-statistics connection something which is standard only
derived in field theory using other assumptions. Abelian representations of sαβ
gives any fractional statistics one likes and the reader notices there is in general
no relationship between spin and statistics at this level. Hence, I hold it entirely
plausible that the spin-statistics connection evaporates at small distance scales
due to the nonlocal effects visible in σαβ .

One can make matters more complicated than this by considering less rigid
strings and braided configurations as well; also one could allow for topology
change so that the exchange of two strings is an ill defined operation (for example
two strings could merge and give one string or one string could split giving three
strings). We leave these more exotic possibilities for future considerations.

5.2 More general tensor product representations.

We now come to a way to violate assumption (c) given previously; as mentioned
before, it is possible to effectively subdivide the world into “discrete units” such
that one “unit” can only appear a finite number of times in physical states as do
units with a large overlap. In such a formalism, the number operator does not
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commute with the multi-particle Hamiltonian which excludes free field theories
and therefore our particle notion is not defined by a single particle irreducible
representation of the Poincaré group but rather the multi particle space should
carry a (irreducible?) representation. This is very physical as it will forbid us
to probe spacetime at arbitrary short distances and any theory based upon such
statistics cannot be a field theory. More concretely, let H1 ⊂ L2(R3, d3x) be an
infinite dimensional subspace of the Hilbert space of square integrable functions
which is locally finite meaning that there exists a countable orthonormal basis
|ψn〉 of compact support Kn such that any compact set K in R3 intersects a
finite number, different from zero, of Kn. Such a basis will be called a locally
finite basis and the reader may see that it determines in general a resolution
with which space is probed. So, our model is not that of a particle continuously
moving in space, but rather one of a particle hopping from one particle site to
another. In the nonrelativistic limit, one may still assume that it is possible
to move a definite number of particles around so that one may still make the
usual statistical considerations regarding the permutation group. As previously
mentioned, there is no guarantuee why a multiparticle state satisfying “Bose”
statistics (meaning the physical state should be symmetric under exchange of
identical particles) should not vanish. We will make an explicit construction
here based upon the locally finite basis; in particular we will demand the prop-
erty that |φ1, φ2, . . . , φN 〉 is a multilinear mapping in terms of the φj , something
which is also standard the case. But now, we will set some states of the kind
|ψi1 , ψi2 , . . . , ψiN 〉 to zero; to make our life easy, we will simply assume that
all N -particle states with more than M of the same states in the locally finite
basis vanish. Denote by a†n the creation operator of |ψn〉 defined as usual, then[
a†n, a

†
m

]
= 0 =

(
a†n
)M+1

. As usual, an eats a |ψn〉 away and
[
an, a

†
m

]
= 0 for

all n 6= m. What does not apply anymore is the rule that
[
an, a

†
n

]
= 1 but

this expression is rather changed to
[
an, a

†
n

]
= 1− (M + 1)Pn where Pn is the

Hermitian projection operator on the subspace of states with M basis vectors
of type n. This correction should occur because for one mode systems the trace
of the right hand side must vanish22.

This can be generalized to the continuum, as noted in [2] it is possible to define

operators a†k, where k is a continuum label denoting for example the energy
momentum, such that the usual bosonic algebra holds, supplemented with the

condition that
(
a†k

)M+1

= 0 which is obviously a discontinuity. However, this

has no real physical significance since these relations are of measure zero (ob-
viously M ≥ 1) and they don’t influence the results of calculations. Probably,
discontinuities in general have no real physical meaning at least not on this level
of simplicity.

5.2.1 A comment on Poincaré invariance.

Strictly speaking, we should not be too much worried about Poincaré covariance
since it is not a symmetry of nature if gravity is turned on, but for sake of
completeness we shall comment on it anyway. In particular, I hold it entirely
possible that an irreducible representation of the Poincaré group on the space

22This commutation relation alone makes it clear we are not dealing with a field theory
here.
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of physical states with an arbitrary number of particles can be constructed.
Irreducible unitary representations come with a quantum number of mass and
spin which are then to be interpreted as the total mass (say the Bondi mass) and
spin in the universe. Since spin has not been included in our previous analysis,
we can put it to zero and work with the mass only; the only thing one should do
is to explicitely define the momentum eigenstates in terms of the locally finite
basis, the action of the Lorentz group is then uniquely determined by the group
relations, see [1]. We leave such explicit constructions for future work however.

6 Conclusions.

In this paper, we made an attempt to study systems with negative energies
and more in general Hamiltonians which are unbounded from below and above.
Although much research remains to be done before any definite conclusion can
be reached, I think it is fair to say that we have gathered some evidence that
such Hamiltonians do not necessarily produce nonsensical results. Moreover,
as argued in section four, they seem to be necessary in any future theory of
quantum gravity. However, it appears to me that in order for such program to
succeed, we need new building blocks for Hamiltonians; that is a novel non-local
particle statistics such that Bose and Fermi are good approximations at atomic
scales but fail entirely at much smaller scales between say 10−20 and 10−35

meters. We have formulated three main objections against the usual derivation
of particle statistics and have provided examples for two of the three specific
ways of violating the standard conclusions. One was based upon the assumption
that elementary particles themselves have a non-trivial topology, the other was
motivated by the idea of a spacetime grid (compatible with Poincaré invariance).
Concerning the “topological” approach, I have used strings since they are the
most easy to consider; it may be clear that our conclusions go way beyond
strings so that many more constructions are possible here. It might even be
that the topological fabric of spacetime itself provides for fermions and bosons
as has been argued several times in the literature. This would mean a final and
radical break with the idea that spacetime is just an ordinary topological space
such as is the case for Minkowski spacetime. An intruiging possibility is uttered
at the end of section 5.1: what happens if the swapping operation of particles
is ill defined? Surely, we cannot speak about statistics anymore at that level,
but what replaces it? These are all avenues for future research.
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