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Abstract

The generation of Chaos in Electronics has largely been implemented using the Chua circuits, where the initial conditions
are described by system parameters such as resistors and capacitors. The present work provides a radical shift in approach
by proposing signal based chaos generators. The essential design here is the coupling of two sinusoidal signal sources to
a CMOS inverter circuit, which is seen to exhibit nonlinear behavior thanks to its transfer characteristics and non-quasi
static behavior. The Standard Circle Map, ideally suited to describing nonlinear coupling of oscillations with competing
frequencies is studied and a ‘frequency map’ is derived from it. The latter is studied using bifurcation and cobweb
plots. A second perspective, the amplitude map is created by forming a difference equation using the CMOS inverter
transfer function. This map is explored using the bifurcation plots and phase portraits. Finally, the proposed design
is implemented experimentally and the generated chaotic output is validated using phase portraits and Fourier spectra.
The effect of driving frequency on the output is characterized using Kolmogorov Entropy and Lyapunov Exponents,
giving rise to the term ‘Frequency Dependent Chaos’. The fresh perspectives of a signal oriented chaos discussed in the
present work exhibits the advantages of simple circuitry and easy tunability, and this forms the novelty of the present
work.

Keywords: Chaos Generation, Frequency Dependent Chaos, Standard Circle Map, Bifurcation Analysis, CMOS
Inverter

1. Introduction

Chaos Theory, the hallmark of Nonlinear Science has grown in leaps and bounds over the past decade, thanks to
the development in computer simulations and visualizations of abstract mathematical equations and iterative maps,
using which, beautiful and ornamental patterns of long term evolutions depicting various aspects of nature have been
accessible for the first time ever [1, 2, 3, 4, 5, 6, 7, 8]. The key defining aspects of chaos are determinism, dynamic
behavior and an extreme sensitivity to initial conditions, quantified by measures such as the Lyapunov Exponent [3, 4].
Consequently, diverse applications of chaos theory have emerged, some of which involve biology, astronomy, engineering
and meteorology [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Applications of chaos are not limited to the basic sciences alone: In the information technology domain, chaos
theory has been used for secure communication and computing purposes [18, 19, 20, 21, 22, 23]. Moreover, in the field
of electronics, the discovery and design of the Chua’s Diode and other associated circuits have enabled tremendous
progress in chaos generation and synchronization applications [24]. However, most of these circuits being op-amp based
realizations of nonlinear differential equations, implement the initial conditions at a system level, such as the Resistor
and Capacitor values in the Chua Oscillator, for instance [24, 25, 26, 27, 28]. Apart from causing power dissipation, it
also poses problems pertaining to ease of tunability when implemented at an IC level operating at high frequencies [29].
A more convenient alternative would involve determining and manipulating the initial conditions from a signal level, in
driven chaotic systems realized using simple circuitry.

That is the key motivation behind the present work, which pertains to a signal oriented chaos generation in a single
CMOS Inverter, which is the simplest circuit unit in most state-of-the-art CMOS Technologies [29]. Firstly, the two
factors contributing to the nonlinearity seen in a MOS Transistor, namely DC Characteristics and Non-Quasi Static
Effect are explored [30, 31, 32, 33, 34, 35]. The fundamental backbone in the proposed chaos generator is the coupling
of two sinusoidal sources to a CMOS Inverter. Thus, in this light, the standard circle map, an iterative map known to
model nonlinear interactions of oscillations at two competing frequencies, is explored, and a ‘frequency map’ is adapted
from it using simple manipulations, with the control parameter being the frequency ratio between the two driving signals
[36, 37, 38, 39, 40]. This Frequency Map forms the first perspective and is studied using bifurcation plots and cobweb
plots. Following this, the second perspective is introduced. Here, the transfer function of a typical CMOS inverter in
180nm CMOS Technology is fitted to a sigmoid, and using this, a difference equation depicting the CMOS Inverter output
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for a coupled sinusoidal input is formed. This difference equation is adapted to an iterative map, termed the ‘Amplitude
Map’. The amplitude map is studied using bifurcation and phase portraits. Finally, a hardware implementation of the
CMOS Inverter is performed, and the generated chaotic output is studied using the phase portraits and FFT Spectra. It
is found that the inferences obtained from the theoretical formulation of the frequency and amplitude maps agree with
the observed results. Finally the effect of frequency ratio on the nature of generated chaos is studied using standard
chaotic characterization techniques such as Lyapunov Exponents and Kolmogorov Entropy [41, 42].

The formulations of the frequency dependent chaos discussed in the present work offer a radically different and
fresh perspective on the generation chaos - a transition from system oriented chaos generation to signal oriented chaos
generation. This enables the design of chaos generators to be achieved with extremely simple circuitry, which translates
to less power dissipation. Thus, the signal oriented chaos formulation coupled with the simplicity of design form the
novelty of the present work.

2. Nonlinearity in CMOS Transistors

It is well known that the most essential criteria in the generation of most types of chaos is nonlinearity. In the
present work, this criteria is satisfied by the nonlinear behavior of the Metal-Oxide Semiconductor Field Effect Transistor
(MOSFET), which is a result of two contributing factors which are discussed below.

1. Nonlinearity in the Output Characteristics: This factor primarily owes to the three regions of MOSFET
operation (cutoff, linear and saturation) and the transitions between them [32, 33]. This nonlinear behavior is best
understood by studying the current-voltage characteristics encompassing both linear and saturation regions, and
given by Equation 1 [30]. In this equation, µn denotes the electron mobility, Ci the intrinsic capacitance, VFB is
the flat band voltage, js is the current density, q is the charge, Na is the acceptor concentration, ψf denotes the
work function, L denotes the channel length and Z denotes the channel width, both of which are the key transistor
geometry parameters. This nonlinear behavior can be witnessed in the I-V characteristics of typical NMOS and
PMOS transistors sized to 2λ× 4λ in 180nm CMOS Technology, as shown in Fig. (1) and Fig. (2).

2. Non-Quasi Static (NQS) Behavior: Significant at high operating frequencies, the non-quasi static charge model
of the MOS channel states that the channel of a MOSFET can be modeled as a nonlinear transmission line [31, 34].
An illustration of the NQS model applied to the NMOSFET along with the drain, gate and source capacitances is
shown in Fig.(3). The equivalent representation of the nonlinear transmission line is seen as an Elmore resistance,
which is length dependent and indicates the effect of wiring and transistor geometry in generation of chaos [31, 34].
This equivalent circuit with the Elmore resistance denoted by ‘Re’ is also shown in Fig.(3). The dependence on
the Elmore Resistance on the gate-source voltage Vgs is given as follows [31, 34]:

Re =
Leff

10µeffWeffCox(Vgs − Vth)
(2)

where µeff is the effective carrier mobility, Leff and Weff denote the effective channel length and width of the
NMOS transistor, Cox denotes the oxide layer capacitance and Vth is the threshold voltage of the transistor. The
significance of the application of this Elmore Resistance to the Non-Quasi Static model is that the NQS Relaxation
time τ depends on a diffusion component τdiffusion dominant in the subthreshold region of operation, and a drift
component τdrift valid in the strong inversion region, with the relation given as follows [31]:
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with the two components of τ given by the following expressions [31]
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2
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τdrift = ReCoxWeffLeff (5)

with q representing the charge and T representing temperature. The 1/τ based relation is ipso facto a frequency
oriented relation, and establishes the frequency-oriented charge transport mechanism of the transistor channel.
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This intuitively justifies how a single transistor can in its natural behavior generate frequency-dependent chaos.
Basic Nodal analysis performed for the Elmore equivalent circuit shown in Fig. (3) using Kirchoff Current Law
yields a system of coupled equations as follows:

VDRs+ VSRd = V1Rs+ V2Rd (6)

VGZ2 + VGZ1 = V1Z2 + V2Z1 (7)

Z1 = Re+XCdg;Z2 = Re+XCsg (8)

where XCdg and XCsg represent the impedances of the source and drain to gate capacitances. The relation for the
Elmore Resistance along with the operating point determined by Equation 1, form a system of coupled nonlinear
equations, describing the frequency dependent chaotic behavior of a single NMOSFET.

Figure 1: IV Characteristics of a 2λ× 4λ N-MOSFET in 180nm Technology

Figure 2: IV Characteristics of a 2λ× 4λ P-MOSFET in 180nm Technology

Based on these two factors, one can express the nonlinearity of a CMOS Inverter as a Transfer Function between
the input Vx connected to the common gate terminal and the output Vy connected to the PMOS source - NMOS drain
interconnection [29]. This transfer function for a 180nm CMOS Technology CMOS Inverter with transistors scaled to
2λ× 4λ is shown in Fig. (4), fitted to a sigmoid function of the following form:

Vy = 0.0118 +
0.9646

1 + 1023.0414(Vx−0.3965)
(9)

From the plot, it can be seen that the key nonlinear transition points of the transfer curve lie at around 0.7V and 1V of
the input voltage V x.

Based on the above mentioned nonlinear behavior of CMOS transistors, the frequency dependent chaos generator
circuit is proposed, essentially by coupling two sinusoidal sources to the common gate terminal of a CMOS inverter, as
shown in Fig. (5).
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Figure 3: The Non Quasi Static Model of an NMOS Transistor and its equivalent circuit
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Figure 4: The transfer function of a CMOS Inverter, fitted to a sigmoid

Figure 5: Circuit Schematic of the proposed Chaos Generator
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3. ‘Frequency Map’: The First Perspective

From the schematic shown in Fig. (5), it is clear that the present chaos generator design is based on nonlinearly
(due to CMOS) coupling two oscillators (sine sources) with competing frequencies. It is well established in literature
that the Circle Map is ideally suited to describing such systems [36, 37, 38, 39, 40]. Thus, this section pertains to the
exploration of various aspects of the standard circle map, and the formation and study of the ‘frequency map’ based on
the standard circle map.

3.1. An overview of the Standard Circle Map

Mathematically, the standard circle map is a mapping of the unit circle, demoted as S1 onto itself, with S1 parame-
terized using the angular variable, or phase θ, in the range [0, 1] and expressed as a relative fraction of 360 degrees [36].
Physically, the starting motivation of the standard circle map is a system consisting of two additively coupled oscillators.
If the two oscillators are denoted as sine waves having frequencies f1 and f2, it is seen that the differences in frequencies
cause the phase difference between the sinusoids to grow further and further with each cycle, and this phase difference
is seen as the variable θ. Thus, at any instant n, the phase difference at the next instant n + 1 depends on the ratio
w = f2/f1 between the two frequencies and is given by the following iterated function, the modulus function signifying
the normalization of θ to [0, 1] as mentioned earlier [36].

θn+1 = mod(θn + w, 1) (10)

It is seen that for this iterative map, a rational value of w causes a periodic orbit, whereas in an irrational case,
the sequence of θn is seen to densely occupy the space defined by [0, 1], thus giving rise to a ‘quasiperiodic’ regime of
operation [36].

Arnold made a slight modification to the above mentioned iterated function by adding a nonlinear coupling term,
resulting in the following map, termed ‘The Standard Circle Map’ [38].

θn+1 = mod(θn + w +
K

2π
sin(2πθn), 1) (11)

The addition of the third term in the iterated function enables the control of the system behavior beyond periodic
and quasiperiodic regimes using K. This map can be studied as two regions, K below 1 and K above 1, as follows:

1. When K is varied from 0 to 1, it is seen that the circle map becomes a perfect homeomorphism of S1 onto itself.
In such a case, the behavior of the circle map depends on the rotation number R, a function of w and K defined
as follows [43, 44, 45, 46]:

R = lim
N→∞

1

N

N−1
∑

n=0

[w +
K

2π
sin(2πθn)] (12)

An irrational value of R renders the circle map equivalent to a pure rotation corresponding to the quasiperiodic
case, whereas a rational value of R causes a periodic orbit with periodic points on the unit circle similar to the
pure rotation case [38]. For small denominator f1, regions of frequency locking, termed ‘Arnold’s Tongues’ are
observed on the (w,K) plane [36, 38, 43, 44, 45, 46]. The nature of dynamics varies from purely quasiperiodic at
K = 0 to a peculiar ‘Devil’s Staircase’ pattern at K = 1 [38].

2. When K is greater than unity, noninvertible behavior is observed, leading to chaos. The Standard Circle Map
is seen to have negative sloped branches, where negative slopes greater than -1 give rise to cascades of period
doubling leading to chaos [36].In this scenario, the rotation number depends on the initial conditions, a defining
property of chaos.

3.2. The Frequency Map

The key objective in defining the ‘frequency map‘ from the circle map is to transfer the control of chaos from a system
related coupling parameter K to a signal based parameter r.

As a starting step, the Standard Circle Map mentioned above is viewed as a purely mathematical relation and θ is
written as fot where fo represents the normalized version of the angular frequency, given in the units of radians/sample,
with a full scale range of −π to π.

Also, the time factor t is set to one, representing one sample duration, between the ith and i + 1th instants. The
additive parameter w is rewritten as r where r=f2/f1 is the ratio between two normalized competing driving frequencies
f1 and f2 and is the principal control parameter for the present work. The value of K is arbitrarily set to 2π in order to
set the coefficient of the third term of the above equation to unity. It is noted that the value 2π set to K is above unity,
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and is thus a chaos generating value. Finally, the sinusoid sin(2πθ(i)) is viewed as a mathematical function representing
the input signal and is generalised to V (2πfo(i)), or alternatively V (fo(i)), with V representing the signal waveform fed
to the input of the proposed chaotic system. Using these substitutions, the above equation is rewritten as follows.

fo(i+ 1) = mod(fo(i) + r − V (fo(i)), 1) (13)

It is highlighted at this stage that, by making the various modifications to the standard circle map, its physical significance
is altered considerably, and it now takes a new form represented by frequency variables and input signal dependence. In
order to retain the consistency of the above equation, the various terms are normalized to π. First, the frequency fo and
the frequencies f1 and f2 are normalized to the radians/sample scale of [−π, π]. Finally, the term V (fo(i)) is limited
to π, i.e. 3.14 Volts by changing the modulus function from 1 to π, a value comprehensively encompassing the linear
and saturation operating regions of the transistor, as well as forms a convenient normalizing factor yielding effective
integration of the frequency and voltage terms. At this point, it is observed that the f and V terms of the above equation
are merely reduced to normalized mathematical numbers. Thus, the normalized version of the above equation, with the
f and V terms limited to π using a modulus function is given as follows:

fo(i+ 1) = mod(fo(i) +
f2
f1

− V (fo(i)), π) (14)

This iterated function is termed ‘The Frequency Map’ and forms the first perspective of single CMOS inverter chaos
generation in the present work.

Here the fo terms denote the output frequencies, whereas f1 and f2 denote the frequencies of the input (driving)
signals. V (fo) denotes the input signal waveform employed in the chaotic system.

The key components of the obtained frequency map are threefold, enumerated as follows:

1. The nonlinearity, provided by the modulus function represents the CMOS inverter switching operation, operating
in the cutoff and saturation regions.

2. The control parameter r=f2/f1 is an additive parameter and determines when the system transits from order to
chaos and vice versa.

3. The V (fo) introduces a signal dependence, thus enabling the controlling of chaos by changing the waveform used as
input. For instance, in the case of sinusoidally driven system, V (fo) becomes sin(fo(i)) which can be decomposed
into a power series containing the odd powers of (fo(i)). Thus, the signal dependance introduces nonlinearity in
addition to the system nonlinearity obtained by the switching function.

The frequency map derived above can be studied using standard tools such as the Bifurcation and Cobweb Plots.
The Bifurcation plot is a plot showing the values of output parameter fo(i) as a function of the control parameter r
[3, 4]. Thus, the bifurcation plot shows the transitions from order, represented by less ‘crowded’ values of r to chaos,
seen as densely ‘crowded’ and ‘grassy’ regions of r and vice versa [3, 4]. The bifurcation plot for the proposed Frequency
Map is shown in Fig. (6) for r ranging from 0 to 2, from which two key inferences can be derived:

1. The pattern is periodic, since it repeats itself with a period of 1.

2. The control values of r close to integers (1,2,...) and half-integers (0.5, 1.5,...) give rise to more orderly and
quasiperiodic behavior whereas non integral ratios such as 0.22 or 0.41 for instance give rise to chaos.

Figure 6: Bifurcation plot of the Frequency Map
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While the bifurcation plot depicts the output fo(i) as a function of r, a plot that graphically visualizes the successive
iterations of fo(i) for a fixed r is the Cobweb Plot [3, 4]. This plot is shown in Fig. (7), Fig. (8) and Fig. (9) for an
integer r of 10, rational r of 10.7 and an irrational r of 3.4π respectively. It is seen that the r values corresponding to
more chaotic regions in the bifurcation plots show spaced out and denser non-repetitive patterns in the cobweb plots.
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Figure 7: Cobweb plot of the frequency map for r = 10
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Figure 8: Cobweb plot of the frequency map for r = 10.7
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Figure 9: Cobweb plot of the frequency map for r = 3.4π

4. ‘Amplitude Map’: The Second Perspective

In order to form an amplitude map for the schematic of Fig. (5), the sigmoid representing the CMOS Inverter transfer
function, shown in Equation 3 is considered. Output Variable Vy is replaced with C representing the chaotic output,
and the input variable Vx is replaced as the sum of two sinusoids, with the rewritten equation as follows. For the sake
of convenience, the amplitudes of both sinusoids are set equal at ‘A’.

C = 0.0118 +
0.9646

1 + 1023.0414(Asin(2πf1t)+Asin(2πf2t)−0.3965)
(15)

The amplitude map can be written in terms of the time derivative of C, by converting it into a difference equation
as follows:

dC

dt
= Cn+1 − Cn (16)
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Cn+1 = Cn −
51.1766[2Aπf1cos(2πf1t) + 2Arπf1cos(2πrf1t)]10

23.0414(Asin(2πf1t)+Asin(2πrf1t)−0.3965)

1 + 1023.0414(Asin(2πf1t)+Asin(2πf1rt)−0.39652
(17)

Based in this, the ‘Amplitude Map’ is obtained as in Equation 9.
It is seen that this Amplitude Map incorporates the Nonlinearity of the CMOS transistors through the sigmoid

function, while also preserving the signal based nonlinearity denoted by the f1 and r terms.
As was the case with the frequency map, the amplitude map is analyzed by plotting a bifurcation plot with r ranging

from 0 to 10, and is shown in Fig. (10) for a A value of 0.2. It is seen that the bifurcation plot shows multiple overlapping
‘lobes’ with varying widths. Certain non chaotic points such as the one with r = 3 can be discerned from the ornamental
pattern. However, for larger values of A, such as 0.4, ‘purely chaotic’ amplitude maps can be obtained, as shown in Fig.
(11), where regions of non-chaotic order are almost non-existent [47, 48, 49].

Figure 10: Amplitude Map Bifurcation Plot for A = 0.2

Figure 11: Amplitude Map Bifurcation Plot for A = 0.4

A key tool to analyze the chaotic behavior in an amplitude map is the phase portrait, which displays the derivative
dC/dt as a function of C. This plot describes the stability aspects of the chaotic system behavior and points of stability
around which the system revolves, qualitatively serving as a tool to assess various chaotic parameters such as sensitivity
and ergodicity [3, 4]. Based on the Amplitude Map of Equation 17, r is set to π, and the phase portraits for A = 0.2
and A = 0.4 are shown in Fig. (12) and Fig. (13) respectively. It is seen that for a higher value of A, the phase portrait
is much more dense and ornamental, testifying to the ‘purely chaotic’ bifurcation map seen earlier.

5. Implementation in Hardware

The validation of the Frequency and Amplitude Maps is carried out by implementing the circuit schematic of Fig.
(5) in hardware using MTP50 series low frequency transistors, using the setup shown in Fig. (14). In order to validate
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Figure 12: Amplitude Map Phase portrait for A = 0.2
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Figure 13: Amplitude Map Phase portrait for A = 0.4

the amplitude map, the phase portrait of the output signal for A = 0.4 and r = π is plotted in Fig. (15). The similarity
with the theoretically obtained phase portrait of Fig. (13) is clearly evident.

In order to validate the frequency map, the Fourier Spectra (FFT) of the generated chaotic output is plotted in Fig.
(16), Fig. (17) and Fig. (18) for r values of 10, 10.7 and 3.4π respectively. It is seen that the trends of the spectra are
in accordance with the cobweb plots of Fig. (7), Fig. (8) and Fig. (9), with denser cobweb plots corresponding to more
chaotic regions in Fig. (6) and consequently having denser frequency components in FFT Spectra.

Figure 14: Experimental setup for generation of frequency dependent chaos
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Figure 15: Experimentally obtained Phase portrait for A = 0.4

The chaotic nature of the obtained signal C is assertively established by calculating the largest Lyapunov Exponent
(LLE), a measure of a system’s sensitive dependence on initial conditions [41, 42]. Rosenstein’s algorithm is used to
compute the Lyapunov Exponents λi from the voltage waveform, where the sensitive dependence is characterized by
the divergence samples dj(i) between nearest trajectories represented by j given as follows, Cj being a normalization
constant [41, 42]:

dj(i) = Cje
λi(iδt) (18)

The Largest Lyapunov exponent thus obtained for the chaotic signal is 9.385 for an r value of π, the positive value
proving the fact that the signal is indeed chaotic.
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Figure 16: Output Signal FFT Spectrum for r = 10

Figure 17: Output Signal FFT Spectrum for r = 10.7

Figure 18: Output Signal FFT Spectrum for r = 3.4π
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The worthiness of the generated signal as a potential candidate as a carrier for secure communications can be
established by ascertaining the amount of information that can be carried by the signal. This is precisely quantified
by the Kolmogorov Entropy, a statistical measure of the uncertainty of the signal [41, 42]. By assigning each of the
N quantifiable states of the amplitude of C as an event i, the Kolmogorov Entropy K2 obtained depends on their
probabilities pi according to the relation [41, 42]

K2 = −

N
∑

i=1

pi log pi (19)

Since the chaotic output waveform is a continuously varying amplitude, a very high value of N such as 100000 is selected
as the number of quantifiable states. Thus, the presence of each of the N states is viewed as an event pi. The K2 value
thus obtained is 3.96 bits/symbol, clearly testifying to the information carrying capacity of the generated chaotic signal
C.

According to the basic premise of the proposed frequency dependent chaos, as witnessed by the iterative map and
bifurcation diagrams described earlier, the nature of the chaos generated depends on the frequency of the driving signal.
Various of frequency ratio r ranging from 1 to 2 in steps of 0.1 are implemented, and the corresponding parameters of
LLE, K2 are tabulated in Table 1. From the table, it is observed that the frequency of the driving signals indeed affect
the nature of chaos generated, and the trend reflects the one seen in the bifurcation diagram of Fig. (6). For this reason,
the generated chaos is termed ‘Frequency Dependent Chaos’.

Table 1: Effect of r on the Generated Chaos
Ratio r LLE K2 (bits/sym)
1.1 9.18 6.67
1.2 10.01 6.92
1.3 9.84 6.87
1.4 9.57 6.81
1.5 9.17 6.77
1.6 9.21 6.79
1.7 9.89 6.88
1.8 9.66 6.82
1.9 9.12 6.73

6. Conclusion

After exploring the nonlinear behavior of a CMOS inverter, a novel approach to generation of chaos using single
CMOS inverter is proposed. The theoretical basis for the proposed circuit is explored in two perspectives. The first
perspective corresponds to frequency, viewing the chaos generator as a nonlinear coupling of two oscillations with
competing frequencies. Based on this premise, the Standard Circle Map is studied and a Frequency Map describing the
chaos generator is derived from it. The trends of this map are explored using bifurcation and cobweb plots. Following
this, the second perspective, based on amplitude is discussed. A sigmoid function describing the CMOS inverter transfer
characteristics is taken and by adapting its derivative to a difference equation, an amplitude iterative map is formed.
This map is studied using the bifurcation plot and phase portraits. Finally, an experimental implementation of the
proposed chaos generator is performed, and the phase portraits and FFT spectrum trends are seen to agree with
the theoretical models described earlier. Nonlinear characterization of the generated output signal is performed using
Lyapunov Exponents and Kolmogorov Entropy. In conclusion, it is seen that the frequency dependent chaos proposed
in the present work offers a radical shift from system oriented chaos generation to signal oriented chaos generation, with
the obvious advantages of easy tunability and simplicity of design, which form the novelty of the present work.
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