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Abstract: 
The present work pertains to the generation of a chaotic signal by taking the inverse Fourier Transform of 

a Fractal Spectral Profile. The presence of chaos is ascertained and characterized using phase portraits, 

recurrence plots, Lyapunov exponents and Kolmogorov entropies. This signal is modulated by a 

hyperbolic secant solitary pulse to formulate the “Fractal Chaotic Solitary Wavelet” (FCSW), the analysis 

of which reveals vanishing higher moments, translating to efficient capabilities of burst and discontinuity 

detection, apart from the advantage of security owing to the induced unpredictability of chaos. This 

results in the proposed Fractal Chaotic Solitary Wavelets having potential applications in secure 

telecommunications and encryption systems. 
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1. Introduction 
The study of Nonlinear Dynamics and Chaos Theory, fuelled by the recent advancements in signal 

processing and computing technologies have enhanced and enriched man‟s understanding of the 

complexities and intricacies of nature [1-9]. Among the most beautiful aspects of nature are the concepts 

of fractals, which essentially are structures where every part of the signal represents the whole [10]. From 

fern fronds to snail shells and snowflakes, fractal based designs are present in virtually every aspect of 

nature [10-13]. Mathematically, the most popular known fractal is the Mandelbrot set fractal generator, 

shown in Fig. 1, which is said to contain within itself, every known fractal configuration, in its infinite 

iterations [10].  

Chaos Theory, with its characteristic signatures of determinism and an extremely sensitive dependence on 

initial conditions is another flagship of nonlinear dynamics, and has found widespread application in 

physics, biology and engineering [1-9]. The self-similar fractal nature and the unpredictability of chaos 

signals, leading to their „theoretically deterministic yet practically random‟ nature, have enabled the use 

of chaotic signals for secure communication applications, where these signals are generated using op-amp 

based physical realizations of nonlinear partial differential equations [9]. 

In the present work, recursive iteration is used to construct a fractal spectral profile, whose inverse 

Fourier Transform yields the „fractal signal‟. The presence of chaos in the generated signal is 

quantitatively asserted using the Kolmogorov Entropy and Lyapunov Exponent. Finally, the generated 

signal is modulated by a hyperbolic secant pulse, giving rise to a fractal chaotic solitary wavelet (FCSW), 

which possesses an efficient burst detection capability, as seen from the vanishing higher moments. This 

property, along with the property of security enabled by chaos-induced uncertainty, as seen from the 



Kolmogorov Entropy, enables the use of fractal chaotic solitary wavelets in secure communications and 

encryption techniques. 

 

Figure 1 The Mandelbrot Set Fractal Generator 

2. Generation of Fractal Chaotic Signals  
The starting step in the proposed generation of fractal chaotic signals, is to define a fractal spectral 

profile. In the present work, the fractal spectrum is represented as follows: 
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Where L is the length of the spectral profile, set to 500 in the present work, and N is the number of 

iterations, set to 10 in the present work; r is the control parameter, determining the spectral components 

generated, and (f) is the unit impulse function, which yields a value of 1 at f=0, and 0 everywhere else. 

The time series signal C(t) is derived from C(f) by taking the inverse Fourier Transform, and the presence 

of chaos in C(t) is ascertained using the following nonlinear analysis techniques: 

1. Phase Portrait: This is a plot of time derivative of the signal in terms of the signal, illustrating the 

phase space dynamics and qualitatively serving as a tool to assess sensitivity and ergodicity. The 

detection of ornamental and rich patterns in a phase portrait is a clear indicator of the presence of 

chaos underlying the scattering dynamics [9]. 

2. Recurrence Plot: The main premise in the concept of recurrence plot is that most natural 

processes possess recurrent behavior in the form of periodicities and irregular cyclicitie, with 

recurrence is defined as a condition where states in the system are arbitrarily close after some 

time of divergence [14]. For a discrete signal with N samples denoted by x(n), n<=N, the 

recurrence between the ith and jth point R(i,j) is given by  (   )   ‖ ( )   ( )‖   , T being a 

threshold. The collection of all the points R(i,j) for all i,j<N form the Recurrence Matrix R, a plot 

of which is termed the Recurrence Plot (RP) [14]. 



3. Largest Lyapunov Exponent (LLE): This is a measure of a system's sensitive dependence on 

initial conditions. In the present work, Rosenstein's algorithm is used to compute the Lyapunov 

Exponents λi from the voltage waveform, where the sensitive dependence is characterized by the 

divergence samples dj(i) between nearest trajectories represented by i given as follows, Cj being a 

normalization constant [15,16]: .)(;)( 11 )( tti
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4. Kolmogorov Entropy (K): The Kolmogorov entropy (K), measured in information units of nats 

per symbol denotes the entropy and thus the uncertainty present in the signal, and large values 

indicate more dynamic and unpredictable behavior [15]. 

The nonlinear analysis for the signal generated using Eq. 1 is performed setting r to values of 2 and 3. The 

corresponding results are plotted in Fig. 2 and 3.  

 

Figure 2 Nonlinear Analysis of C(t) with r=2 

 

Figure 3 Nonlinear Analysis of C(t) with r=3 

It is seen that in both the cases, the spectral profile shows a self-similar fractal nature, with every 

harmonic under L/r containing the similar distribution of sub-harmonics. The recurrence plot shows a 

darker trend, and more periodicity seen for r=3. A similar trend is also seen in the LLE values, obtained 

as 9.6205 and 5.3212 for r=2 and r=3 respectively. The corresponding K values are obtained as 5.2503 

bits/symbol and 5.3257 bits/symbol respectively, indicating the chaotic and unpredictable nature of the 

generated signal. 



Similar analysis is performed for a non-integer value of r, 1.1. The results are shown in Fig. 4, with LLE 

and K values obtained as 11.3598 and 6.0023 bits/symbol respectively, showing much higher chaoticity 

for non-integer r values.  

 

Figure 4 Nonlinear Analysis of C(t) with r=1.1 

3. The Fractal Chaotic Solitary  Wavelet 
The next step involves the formulation of a wavelet using the generated signal C(t). The hyperbolic secant 

signal (sech) is used to modulate C(t), with the resultant signal ϕ(t) defined as the father wavelet, or the 

scaling function. The Father Wavelet ϕ thus defined is used as the basis to form the „Mother Wavelet‟ ψ, 

such that the following criteria are satisfied [17-24]: 

1. ψ(t) belongs to a subspace of the space   ( )   ( ), the space of absolutely 
and square integrable measurable functions. 
2. ϕ(t) and ψ(t) are orthogonal to each other. 

3. ψ(t) has zero mean, i.e. the following holds: ∫  ( )    
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4. ψ(t) has unity square norm, as per the following equation: ∫ | ( )|     
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5. It is preferable, but not a mandatory criterion to ensure that ψ(t) possesses a 

higher number M vanishing moments. In other words, for all m<M, ∫    ( )    
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The Mother Wavelet ψ is used to define the daughter wavelets  (   )( ) in the following fashion 

with a > 0 denoting the „scale‟ and b ϵ   denoting the „shift‟:     ( )   
 

√ 
 (

   

 
). 

Based on the above procedure, the father and mother ‘Fractal Chaotic Solitary Wavelets’  (FCSW) have 

been formed using the MATLAB Wavelet Toolbox. The Father and Mother Wavelet Signals are plotted in 

Fig. 5, along with the decomposition and reconstruction low/high pass filter coefficients. 



 

Figure 5 Father and Mother FCSW Wavelets 

One of the preferable but not mandatory criteria mentioned above in the mother wavelet formulation is 

the presence of vanishing higher moments, where the „m‟th moment of the mother wavelet ψ is given by 

Eq. 4 [17-24]. Physically, the existence of vanishing higher moments signifies that the wavelet has a 

compact, continuous, smooth structure, and that the analysis of bursts in signals with such wavelets can 

be carried out with minimal filtering [17-24].  

In order to investigate and characterize the performance of the FCSW, the moments upto the tenth order 

of the wavelet are computed and compared with the corresponding moments of established wavelets, 

namely Daubechies 4 (DB4), Biorthogonal 4.4 (BIOR4.4), Coiflet 4 (COIF4) and the Discrete Meyer 

Wavelet (DMEY) [10]. The moments are tabulated in Table 1. 

Table 1 Moments of Various Wavelets upto the Tenth Order 

Moments DB4 BIOR4.4 COIF4 DMEY FCSW 

First 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Second 1.33E-01 1.09E-01 4.26E-02 9.90E-03 1.10E-02 

Third 2.05E-02 5.41E-02 1.96E-02 3.30E-03 1.10E-03 

Fourth 1.13E-01 9.95E-02 3.74E-02 7.60E-03 2.20E-03 

Fifth 3.25E-02 8.78E-02 3.19E-02 5.40E-03 9.50E-04 

Sixth 1.05E-01 1.12E-01 4.10E-02 7.30E-03 9.38E-04 

Seventh 4.19E-02 1.16E-01 4.19E-02 6.60E-03 4.47E-04 

Eighth 9.95E-02 3.45E-01 4.85E-02 7.60E-03 4.10E-04 

Ninth 4.96E-02 1.47E-01 5.24E-02 7.60E-03 3.10E-04 

Tenth 9.56E-02 1.66E-01 5.87E-02 8.30E-03 2.26E-04 

 

From Table 1, it is seen that the higher moments of the FCSW tend toward zero. From this trend, it is 

seen that even the Meyer wavelet moments increase after a certain order (sixth). This gives the formulated 

solitary wavelet the exclusive advantages of smoothness, compactness and effective detection of bursts as 

explained earlier. 

4. Conclusion 
Taking cue from the successful advancement of nonlinear dynamics in recent times, the present work 

proposes, designs and characterizes a chaotic signal generated using a fractal spectral profile. Specifically, 

the signals are generated by taking the inverse Fourier Transform of a fractal spectral profile generated 

using Eq. 1, and the presence of chaos is ascertained and quantitatively characterized using phase 

portraits, recurrence plots, Lyapunov exponents and Kolmogorov entropies. Following this, the generated 

chaotic signal is modulated by a hyperbolic secant signal, to form a “Fractal Chaotic Solitary Wavelet”, 

which is seen to possess vanishing higher moments, resulting in efficient detection of bursts and 



discontinuities, apart from the security aspect introduced by the chaos induced uncertainty. This results in 

the proposed Fractal Chaotic Solitary Wavelets having applications in secure telecommunications and 

encryption systems. 
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