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ABSTRACT: 
One of the most successful theories of modern physics, quantum mechanics has undergone rigorous 

testing and validation, one of the primary motives being fanciful and informative applications of quantum 

information theory such as teleportation and superdense coding. Over the years, many explanations have 

been given for the mechanism and interpretation of the various quirks and mysteries of quantum 

mechanics, the latest entrant being a suggestion of nonlinearity and chaos underlying quantum mechanics. 

The present work purports to a formulation of quantum bit as a SU(2) Lie Group using a Chua’s chaos 

generator circuit as the basis. PSPICE simulations of the same are performed. Various basic quantum 

gates such as the Pauli X, Y, Z, Hadamard and CNOT gates are implemented using this formulation. 

Finally, the chaos-qubit formulation is validated using a real time application – quantum teleportation. 

The ability to successfully demonstrate the teleportation of a single qubit numerically suggests that the 

chaotic interpretation of quantum mechanics has some validity. Furthermore, it ushers in the era of low 

cost, high capacity, high security information systems using nonlinear electrical circuits. 
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INTRODUCTION: 
At the heart of nearly all of science today is Quantum Physics. Quantum mechanics is a theory so 

counter-intuitive, yet repeatedly tested and validated for its accuracy and precision [1]. Of the many 

applications of this branch of science, quantum information and computation stands out [2]. This is 

essentially due to the fact that quantum information promises fanciful yet incredibly useful applications 

such as quantum teleportation and superdense coding, which could potentially usher in the era of higher 

data security, capacity and ultrahigh processing speeds [3-6].  

A theory as counterintuitive as quantum mechanics is bound to have its controversies. Most of the 

controversies surrounding this theory stem from the various interpretations given by Einstein, Bohr, 

Bohm and the like regarding its various ‘quirks’ such as wavefunction collapse, quantum entanglement, 

symmetry breaking and so on [7-9].  

One relatively new interpretation of quantum mechanics is from a nonlinear perspective [10-13]. 

Specifically McHarris in [10] has argued about the possibility of nonlinearity and chaos underlying 

quantum mechanics. While a full fledged quantitative formulation awaits, the points raised by McHarris 

et al. seem to be intuitively valid. A brief summary of the key points, comparing chaotic and quantum 

behaviors raised are as follows: 



1. Nonlinear dynamics in its chaotic realm bridges the gap between the statistical nature of quantum 

mechanics and a more deterministic, more fundamental perspective without having to introduce 

hidden variables, adding completeness to a theory which was in Einstein’s words ‘correct yet 

incomplete’ [14, 15]. 

2. A one to one correspondence between cause and effect arising due to the determinism of chaos 

satisfies Einstein’s perspective of Quantum Mechanics, whereas the extreme sensitivity nature of 

chaos drastically reducing the certainty of prediction and supplying a practical statistical 

interpretation satisfies Bohr’s perspective of Quantum Mechanics, thus potentially resolving one 

of the most intense debates on Quantum Mechanics. 

3. The classical derivation of Bell’s inequality and subsequent violation of the same in the case of 

entanglement corresponds to an inaccuracy in the formulation [16-18]. Specifically, the subtle 

assumptions of non-correlation statistics have greatly suppressed the correlations that could occur 

in real time and raise the level of the inequality [10]. 

4. The existence of attractors and basins in the dynamics of chaotic systems suggests a tendency of 

such systems to quantize themselves, without external influence [10, 19]. 

5. A possibility of a nonlinear basis, motivated by instability, to explain spontaneous symmetry 

breaking and parity nonconservation [20, 21]. 

6. The possible equivalence of quantum diffraction and intermittent periods of order in chaos [10]. 

Chaos theory, as the flagship of Nonlinear Science, has found extensive applications in recent years in 

fields as diverse as biology, astrophysics, psychology and finance [22-26]. Specifically, in electronics, the 

Chua circuits are capable of creating extremely intricate chaotic patterns [27-29]. The circuits and the 

resulting patterns have been extensively used for various pattern formation studies and for secure 

communications based applications [30, 31]. 

The present article takes advantage of the extensive knowledge accumulated in the domain of Chua 

circuits, and proposes a quantum information system where the chaotic signal is postulated as the ‘qubit’.  

The implementation of various quantum gates and quantum teleportation using this formulation are then 

discussed. 

The implementation of a chaos based quantum system yields a number of advantages – firstly, quantum 

information applications such as quantum teleportation and superdense coding hitherto possible only in 

expensive superconducting systems or high magnetic field environments can hence be performed with 

much lesser cost [32-35]. Secondly, it provides an experimental platform to verify most of the postulates 

of quantum mechanics including McHarris’ chaos-quantum equivalency [10]. Thirdly, a lot of unified 

theories in particle physics such as the one proposed by Lloyd use quantum bits as the basis [36, 37]. A 

chaos enabled implementation of such ‘computational universe’ models could potentially answer a lot of 

unanswered questions in science such as dark matter, black hole singularities and so on [36].  



METHODOLOGY: 

GENERATION OF CHAOS 

The first step in creating a chaos-quantum information equivalency is to develop a chaotic system. A 

Chua circuit as given in [38] acts as the basis system for generation of chaos. The circuit model is given 

in Fig.1. 

 

Figure 1 Generalized Chua Circuit 

This circuit is a solution to the system of three coupled ordinary differential equations given as follows, 

with NR being the nonlinear resistance (Chua Diode) [38]. 
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The Chua system is implemented in PSPICE using operational amplifier IC TL082 as mentioned in [38].  

It is observed that for the following RLC component values, a pattern similar to one reported as PC85 in 

[38] is obtained: 

                                                  

                      



 

Figure 2 PSPICE Implementation of Chua Circuit using Op Amps 

In the present work, we take one of the three outputs (V1, V2 and i3) as the parameter of interest. 

Specifically, we choose V1, which is plotted in Fig. 3.  

 

Figure 3 Generated Chaotic Signal V1 

The corresponding signal phase portrait is shown in Fig. 4. 

 

Figure 4 Signal Phase Portrait of Chua Circuit Output V1. 

The largest Lyapunov exponent (LE) of the chaotic signal is obtained as 1.295 using Rosenstein’s 

algorithm [39, 40], confirming its chaotic nature. 
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QUBIT FORMULATION 

The next step is to formulate the chaotic signal V1 as a qubit. In order to perform this, we first note the 

mapping between the Bloch sphere, a standard representation of a qubit, and the SU(2) Lie Group [41, 

42]. The Bloch sphere representation of a qubit is given in Fig. 5. 

 

Figure 5 Bloch Sphere Representation of a Qubit 

The quantum mechanical operators corresponding to the coordinates of the Bloch Sphere are described as 

the three 2x2 Pauli spin matrices defined as follows [43]: 
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It is noted that these matrices are precisely the generators of the SU(2) Lie group, and this forms the 

bottomline of the chaos-qubit formulation in the present work [44]. 

The 1D chaotic signal V1 is taken as the qubit. The Z operator is given by the flip of the dependant 

variable, amplitude, whereas the X operator is given by the flip of the independent variable, time. 

Level logic is assumed, logical ‘0’ is Ground (0V), and logical ‘1’ is the Supply Voltage Vdd (V). Thus if 

Vdd is 1V, then we have |0> = 0V, and |1> = 1V. Any voltage level in between 0V and 1V can thus be 

viewed as a superposition of the two states. For example, 0.7V corresponds to 0.7|1>+0.3|0>. 

Thus, the ‘superposed’ state is merely any state lying in between ‘pure’ 1 (0|0>+1|1>) (1V) and ‘pure’ 1 

‘pure’ 0 (1|0>+0|1>) (0V). 

One of the significant hallmarks of a quantum bit is the uncertainty concept, which enables the bits to take 

the superposed states. In other words, during measurement, the superposed state collapses into one of the 

two ‘pure’ states and until that point in time, the result is uncertain.  

This uncertainty can be viewed as the resultant of the complexity of the system. In the present work, the 

complexity, and hence, the apparent illusion of ‘uncertainty’ is achieved using chaos. 



QUANTUM GATES USING CHAOS: 
Using the qubit formulation described above, various quantum gates are implemented as follows. It is 

noteworthy that by fixing the Z and X operations as flipping without and with offset respectively, most of 

the quantum logic operations can be obtained by a combination of flips and offsets. 

For all gate implementations in the present work, the value of |1> is set as 1V and that of |0> is set at 0V. 

All other states can be found by a simple superposition of these states. 

1. The Pauli X gate, denoted by the    matrix exchanges |0> and |1> states. This is implemented 

mathematically as X = 1-V1 and the waveforms are shown in Fig. 6. This is a ‘phase flip’ 

operation. 

 

Figure 6 Input and Output of Pauli X Gate 

2. The Pauli Z Gate denoted by    transforms |1> to -|1>, leaving |0> unchanged. This is a ‘sign 

flip’ operation, represented mathematically as Z=-V1. The waveforms are as shown in Fig. 7. 

 

Figure 7 Input and Output of Pauli Z Gate 

3. The Pauli Y Gate denoted by the    matrix is a hybrid of the sign and phase flip operations and is 

given by the cyclic relation          . The waveforms are given in Fig. 8. 



 

Figure 8 Input and Output of Pauli Y Gate 

The Hadamard Gate denoted by the matrix   
 

√ 
[
  
   

] performs the quantum interference operation, 

transforming pure states to superposed states and vice versa. Mathematically, H = ((1-V1)-0.5)*1.414 and 

can be physically realized using a combination of X/Z gates and clampers. The waveforms are as shown 

in Fig. 9. 

 
Figure 9 Input and Output of Hadamard Gate 

The Controlled NOT Gate or CNOT Gate is the quantum equivalent of an XOR gate and is represented as 

CNOT(V1a,V1b) = (V1a,V1a-V1b) for 2 qubits V1a and V1b. The matrix and waveforms are as shown 

in Fig. 10. 
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Figure 10 Input and Output of CNOT Gate 

One of the most fascinating applications of the Quantum Computing is in creating entangled states. This 

occurs when the phase relationship between two Qubits forces the observer to describe one particle in 

terms of another. In other words, any measurement made on one particle instantaneously affects the other. 

This is what Einstein famously described as ‘spooky action at a distance’ [9, 45-47]. 

The most celebrated way of generating entanglement is by creating the Bell states. The Bell states for a 

two qubit system are given as follows: 

|B00> = 0.707(|00>+|11>), |B01> = 0.707(|01>+|10>), |B10> = 0.707(|00>-|11>) and |B11> = 0.707(|01>-

|10>) 

The generation of the Bell states can be explained using a combination of the Hadamard and the CNOT 

gates. The schematic is shown in Fig. 11. 

 
Figure 11 Schematic of Quantum Entanglement 

By using the Hadamard gate, the first input is converted into the superposition form. This in turn, acts as a 

control for the CNOT gate, thus effectively ‘imposing’ its information onto the second bit. Thus the Bab 

(a,b=0,1) state is an entangled state, containing the information of a and b. 

The inputs and outputs of the Bell State Generation are shown in Fig. 12. 



 

Figure 12 Input and Output of Bell State Generation 

QUANTUM TELEPORTATION: 
In order to validate the chaos-qubit formulation and the quantum gate formulations mentioned above, a 1-

qubit quantum teleportation is implemented. Quantum teleportation is defined as transmitting a quantum 

state from one place to another without that state traversing the space in between [2-6].  

One bit quantum teleportation can be done using appropriate combinations of entanglement, CNOT, 

Hadamard, measurement and the Pauli X and Z gates. 

The schematic of a one bit Quantum Teleportation circuit using a Pauli X gate is shown in Fig. 13. 

 

Figure 13 Schematic of 1 qubit quantum teleportation 

The input q1 and teleported waveform q0o are shown in Fig. 14. 



 

Figure 14 Input and Output os Quantum Teleportation - Input  q1 in blue and output q0o in red 

As can be seen, the ‘teleported’ qubit q0o bears a fairly close resemblance to the original qubit q1, 

affirming the validity of the proposed chaos-qubit formulation. 

CONCLUSION 
After a short review of the possibilities of nonlinearity and chaos underlying quantum mechanics, the 

present work proposes a chaos-qubit formulation where a chaotic waveform is regarded as the qubit and 

the sign and phase flip operations as the corresponding SU(2) generators. Following this, various 

quantum gates are demonstrated using this formulation including applications such as quantum 

interference and quantum entanglement. Finally, to verify the formulation, a 1 qubit X gate quantum 

teleportation is implemented and the closeness of the original and teleported qubits indeed validate the 

formulation.  

Though a detailed investigation into the intricacies and quantitative formulation of a chaos induced 

quantum mechanics await, the present work took a small step in applying the chaos-quantum equivalency 

in the domain of quantum information processing. The success of quantum information using chaos opens 

the doors for a wide variety of applications, most notable of which are cost effective quantum 

computation and computational universe simulations.  
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