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     The spectral lines given off by Hydrogen are well known and is simply described by the Rydberg 
formula. However, this only works on the hydrogen atom. If we try to describe the spectra with the 
Rydberg formula for helium and lithium, it fails – or does it? This a paper explores the idea that the 
spectra of heavier elements like helium and lithium can actually be described by just providing scal-
ing factors to the Rydberg formula to explain the spectra given off by multi-electron atoms. This 
shows that the spectra is not a complex multi-body problem and that there is a very simple stair case 
pattern that the spectra follows.  

 

1. Explaining the Hydrogen Spectra 

When you excite hydrogen gas by passing an electric current 
through it, it produces a particular kind of light which is com-
posed of only certain frequencies. See: 
 
http://hyperphysics.phy-
astr.gsu.edu/hbase/tables/hydspec.html 
 
One of the successes of quantum mechanics is its ability to repro-
duce the formula for the hydrogen spectra. The Rydberg formula 
predicts the spectra of hydrogen as well as the QM Schrodinger 
equations can. However, no one can give an explanation for why 
this formula works. A description of the Rydberg formula can be 
found at:  
 
https://en.wikipedia.org/wiki/Rydberg_formula  

It can be expressed as: v = 1/l = R (1/n1^2 - 1/n2^2)  

In this formula l = wavelength, v = frequency and R is the Ry-
dberg constant. The values n1 and n2 represent any 2 integer 
values representing the electron energy levels. Using this formu-
la, you can precisely calculate the frequencies that are in the light 
produced by hydrogen. 

Conventional quantum mechanics explain this as the result of an 
electron moving from one “electron shell” to another. The prob-
lem with this picture is how do you explain why the electrons 
maintain these “shells”? In atoms with dozens of electrons flying 
about, why don’t they collide and scatter? What could possibly 
hold them in their proper places? Quantum mechanics does not 
explain this and I think that it is impossible for the electrons to 
maintain any “shells”.  

 

Do we seriously think that for large atoms that electrons can 
maintain these stately orbits? For an atom like hydrogen, how is 
it this simple atom “grows” electron shells when it only has a 
single electron to begin with? There is simply nothing structural 
outside of a hydrogen nuclei that can support up to 8 external 
“shells” out of the nothingness of space. 

So if the electrons aren’t floating around the nucleus, then where 
are they normally? The radical answer is that the electrons are 
actually just statically bound into the nucleus. This means the 
electrons are just stuck to the protons just like two magnets might 
stick together. The electron doesn’t “orbit”, nor is it in a probalis-
tic cloud. It is just stuck right on the proton and is generally mo-
tionless. So a hydrogen atom is just an electron stuck on a proton. 
I have a whole new description of the atom which is based upon 
this concept called the Cubic Atomic Model. It is described by 
this paper: 

http://vixra.org/pdf/1303.0184v1.pdf 

The cubic atomic model does not assume that the electrons are 
outside of the nucleus. It assumes that they are an integral part of 
the nucleus. So how is the spectra of hydrogen generated if there 
are no electron shells to generate the spectra? 

The way I derive this is by assuming that space is quantized, that 
is, space is made out of fixed sized grains, like the grains of sand 
in a beach. Let’s say we call L, the diameter of the grain of space. 
This restricts the movements of electrons to only move in whole 
integer distances n*L from the nucleus of the atom.  

When you excite an atom, electrons are knocked loose from the 
nucleus and they can only travel integer distances away from the 
nucleus. So the main reason why electrons appear to have specif-
ic energy levels is because they can only exist at specific distances 
away from the nucleus. So there is no need to postulate that these 
electrons somehow exist in a mysterious “energy shell” floating 
around the nucleus with no apparent support. Instead when an 
atom is in the ground state, all the electrons fall straight into the 
nucleus and stop. 
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To derive the Rydberg formula using this quantized space model, 
we can trivially calculate the force between a hydrogen nucleus 
and an electron using Coulomb's law:  

F = KQ1Q2/R^2 where r = n*L  and Q1, Q2 are the charges of a 
proton and an electron. 

Since we're dealing with hydrogen with a single +1 charge and -1 
charge, it simplifies to:  

F = K/R^2  

I claim that the energy of the spectral lines emitted is exactly pro-
portional to the difference in electrostatic force as calculated by 
Coulomb's law for any 2 values of r where R = n*L.  

So for a transition from 2 to 3, we calculate the difference. For 
simplification, we take L=1 (the diameter of an aether particle) in 
arbitrary units. Since we are only talking about proportionality, 
the constant K can be anything, so let us set it to K=1 so it drops 
out as well:  

Difference in force for a 2->3 transition  = 1/2^2 -1/3^2  

If we were to take a different transition, say 3 to 5, we get:  

Difference in force = 1/3^2 -1/5^2  

In general, we have:  

Difference in force = 1/n1^2 -1/n2^2 where n1 is the starting 
level and n2 is the finishing level.  Now note that this is 
EXACTLY, the same format as the Rydberg formula!  

Since I claim proportionality, we can add in any constant, so we 
can add the Rydberg constant R and equate it directly to energy.  

Energy = R(1/n1^2 -1/n2^2)  

And since energy is inversely proportional to wavelength for 
light, we can write the complete Rydberg formula as:  

1/wavelength = R(1/n1^2 -1/n2^2)  

This interpretation immediately solves some questions about the 
Rydberg formula. The use of 1/r^2 terms is not just happen-
stance, it is a directly result of the forces calculated by Coulomb's 
law. It also answers how an electron should actually be perceived 
when it is radiating. It is simply an electron, moving fixed dis-
tances towards and away from the central proton as it being ion-
ized. When it is not ionized, the electron falls to the lowest level 
basically resting on the proton. The quanization is not due to 
some magical something that forces the electron into fixed sized 
orbits, it is space itself which does the quantization. This is a con-
cept, which I think is much easier to accept. Johann Balmer who 
discovered this formula could not justify how electrons maintain 
their stately orbits around the nucleus, but this derivation solves 
that problem by forcing the electron to only exist at fixed distanc-

es away from the nucleus for short periods of time due to the 
granular nature of space itself.  

For the hydrogen atom, we can experimentally observe the elec-
tron being up to 8 steps away from the central hydrogen proton 
before it falls back down to the proton and releases the kinetic 
energy as a photon. This is like dropping a bowling ball on the 
ground. The higher up you lift the ball, the bigger crash it is go-
ing to make when it hits the floor. If you were limited to lifting 
the ball in only 1 foot increments, the crash you would get would 
fall into very specific energies. This is exactly what we observe in 
the hydrogen spectra. 

2. Calculating the spectra of Helium 

It should be noted that use of the QM Schrodinger equations to 
calculate the spectra of Helium or any other element is a com-
plete failure. No simple formula or equations exist and the prob-
lem has to be treated as an ultra complex multi-body problem 
that can only be approximated on a super computer. This is be-
cause you have to consider not only the electron that is transi-
tioning orbits, but you need to consider all the other electrons 
that are supposedly floating around outside the nucleus. 

However, if you adopt the idea that the electrons which are not 
participating in the transition are safely locked away inside the 
atomic nucleus, then you can get back to the very simple picture 
of a single electron stepping outside of a central charge. 

The spectra of Helium appears very complicated comparted to 
hydrogen 

The list of spectral data can be found at: 

http://physics.nist.gov/ PhysRefData/ASD/lines_form. html 

We have seen that the Rydberg formula can be used to calculate 
the atomic spectra of Hydrogen. What we need to do is to find a 
“pattern” to the data. If we just group the spectral data so that we 
group all the lines that belong to the same n1 together, the graph 
reveals a very interesting staircase pattern. 

 

In this graph, the Lyman series shows all the transitions that start 
with n1 = 1. The first datapoint on the left shows the transition 
from n1 = 1 to n2 = 2. It goes to n2 = 10. It can be seen that this 
corresponds to the shortest wavelength, highest energy transi-
tions. We then see the Balmer series starting at n1 =2.  Despite the 
obvious pattern seen in the data, there are no references to any-
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one actually making a plot like this to show this very specific 
pattern. 

The mainstream also recognizes that the Rydberg formula  can be 
extended to calculate the spectra of Hydrogen-like ions by add-
ing a factor of Z^2. These ions are any atoms which have been 
fully ionized and a single electron interacts with only the posi-
tively charged nucleus. For example, if you remove the 2 elec-
trons from Helium, this ion is identified as He II. If you only re-
move 1 electron, this is called He I. The spectra for He II can be 
accurately calculated using only the extended Rydberg formula. 

1/l = R Z^2(1/n1^2 - 1/n2^2) 

If you plot the calculated He II spectra wavelength against the 
electron level transitions (e.g. 1->2, 1->3, ... 2->3, 2->4..etc.) on 
a logarithmic scale, the graph appears like a staircase leading up 
which looks just like the hydrogen spectra. So what might start 
out as looking as a random mess, actually follows a very strict 
pattern. When the starting energy level increase by 1 (e.g 1->2 vs. 
2->3), this causes a large step up in the frequency. The calculated 
spectra matches up well with the observed He II spectra. 

Using the data from the NIST database the spectral lines for He II 
and He I can be graphed. Remember that the He II lines are com-
pletely predicted by the extended Rydberg formula. But we can 
clearly see that the He I spectra also appears as this same stair-
case pattern, but at a longer wavelength. This nearly identical 
shape suggests that the He I spectra can be calculated as simply 
being a scaled version of the He II spectra. 

 

The Excel spreadsheet used to create this graph and a Microsoft 
word document of this article is available upon request (spectra-
HE.xls). 

The NIST data contains the electronic transitions and the ions 
that represent the observed wavelength. In most cases, this is 
what was used to plot the point on the graph. The Y axis shows 
the wavelength in nanometers. The X axis lists the 32 electron 
transitions in ascending order. 

Since the He I spectrum appears so close to the He II spectrum, is 
there a simple formula that can transform one into the other? 
This is basically a curve fitting exercise. It does appear that a dif-
ferent formula can be applied at each energy level to calculate the 
spectral wavelengths. 

For N1 = 1 (transitions starting at N1 = 1), the curve can be 
represented by the formula: 

Rydberg(N1,N2)+28.14-(N2)*0. 044 

Where Rydberg(N1,N2) represents the result of the extended 
Rydberg formula for He II and N1 represents the starting elec-
tron level and N2 represents the ending electron level. For exam-
ple, the 1->2 transition calculates to 58.427 nm and matches with 
the observed result of 58.43 nm. This appears to be a constant 
minus a scaling factor based on N2. 

For N1 = 2, the formula changes to: 

Rydberg(1,N2)*13-N2*3.55 

This appears to be a scaling factor on the Rydberg formula minus 
a scaling factor of N2, however, the shape of the curve better 
matches N1=1, so the Rydberg formula is shown with a starting 
level N1=1. 

For n = 3,4,5,6 the formula is represented as: 

Rydberg(N1,N2)*4 

This is a straight scaling by 4 for all of the higher energy level 
shells. 

The following is the calculated He I spectral data based on these 
formulas. Columns N1 & N2 represent the electron shell transi-
tion number. The third column represents the observed wave-
length and fourth represents the calculated wavelength. The last 
column shows the difference between the observed and calculat-
ed values which is typically less than a percent difference.  If you 
were to plot the calculated values over the experimental values, 
you could hardly tell the difference. 

N1     N2     Observe   Calc        % Difference 
1       2       58.43       58.43       0.00 
1       3       53.70       53.64       0.12 
1       4       52.22       52.26       0.09 
1       5       51.56       51.65       0.18 
1       6       51.20       51.31       0.21 
1       7       50.99       51.09       0.19 
1       8       50.86       50.93       0.14 
1       9       50.77       50.81       0.08 
1       10      50.70       50.71       0.02 
2       3       388.87      387.78      0.28 
2       4       318.77      322.53      1.17 
2       5       294.51      301.71      2.38 
2       6       282.91      290.75      2.70 
2       7       276.38      283.32      2.45 
2       8       272.32      277.48      1.86 
2       9       269.61      272.46      1.05 
2       10      267.71      267.91      0.08 
3       4       1868.53     1874.61     0.32 
3       5       1279.06     1281.47     0.19 
3       6       1031.12     1093.52     5.71 
3       7       970.26      1004.67     3.43 
3       8       960.34      954.35      0.63 
3       9       952.62      922.66      3.25 
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4       5       4048.99     4050.08     0.03 
4       6       3091.69     2624.45     17.80 
4       7       2113.78     2164.95     2.36 
4       8       1954.31     1944.04     0.53 
5       6                   7455.82 
5       7                   4651.26 
5       8                   3738.53 
6       7                   12365.19 
6       8                   7498.43 

These calculations do not account for all of the 96 observed He I 
spectral lines. This limited calculation provides at most 32 values 
and for He I, there are no observed values for transitions starting 
from the 5 & 6 level, so this calculation accounts for 27 of 96 lines. 
There may certainly be other processes involved which create the 
other observed values, however, it is remarkable how closely the 
observed values can be matched with the calculated ones. 

Another aspect of atomic spectra which appears to be absent in 
the literature is the calculation of the relative intensity for the 
spectral lines. If you do a similar plot of energy level transitions 
against the relative intensity found in the NIST data for hydro-
gen this produces a very regular saw tooth shape where each 
group for similar n1 drops down rapidly. 

 

The relative intensity can be calculated for N1=1,2,3 as: 

(1/N1^3*1000)*1/(N2-N1)^(2.23- (N1^2)*0.13) 

For N1 = 4,5,6 
(1/N1^3*1000)*1/(N2-N1) 

The intensity appears to drop as the inverse cube. These calcula-
tions are able to reproduce the observed relative intensities as 
found in the NIST data. 

This exact same formula also appears to apply to the relative 
intensity for He II. The graph for Helium shows the experimen-
tally observed values in light blue He II. For He I, the intensity 
follows the formula for N1=1, it partially follows when N1=2, but 

after that the relative intensity becomes chaotic and does not ap-
pear to follow any pattern. 

 

3. Calculating the spectra of Lithium 

The same spectra analysis can be applied to the next element in 
the periodic table which is lithium. The graph of the lithium 
looks like this: 

 

This is just a simple plot of the line data found in the NIST data-
base ordered by species and grouped by transitions. What may 
have appeared to be a random scatter chart of lines, now appears 
as a very ordered set of data. 

For lithium II and I, the electron transition states stated in the 
NIST data do not directly provide all of the transition states 
required to plot the points on this graph. In this case, some of the 
points have been selected based upon where one would "predict" 
where a point would exist on the graph and using those points 
having the greatest relative intensity. The regularity of the pat-
tern allows you to make these predictions. If you take a ruler and 
match up with any 2 of the peaks of the steps, you can predict 
where the next step should appear. After this peak, one would 
expect to find a set of 1/N2^2 decreasing values and relative 
intensities. By using this methodology, the experimental data has 
been matched to the electron transitions as shown in pink in the 
graph. 
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The Li II values (shown as yellow in the graph) can be calculated 
with the following formulas: 

For N1=1 
Rydberg(N1,N2)+6.42 

For N1=2 
Rydberg(N1,N2)*2 

For N1=3,4,6 
Rydberg(N1,N2)*2.3 

For N1=5 
Rydberg(N1,N2)*2.145+(N2-5)* 124 

Spectral data points can also be found for Li I which has 3 elec-
trons bound to the atom with only 1 free electron. This also 
shows the familiar staircase pattern. The formulas for Li I have 
not been calculated, but it should be obvious that a best fit for-
mula could be found for these data points. 

The calculations match fairly closely with the observed Li data 
except for N1=1 and N2=5-9. Here we see an unusual dip in the 
wavelength compared to calculations. This dip can also be seen 
in the Li I data as well, so there may be somethIng structural in 
Li that causes this deviation. 

The analysis for the next element Beryllium becomes even more 
difficult as we are faced with a nearly continuous spectra. For 
example, to do the analysis of Be I, the only points that appeared 
to be known with any confidence are the very highest transitions 
which have very few spectral lines in the longest wavelengths. 
Based on the slope of those data points, the rest of the points 
were selected. For Be, even the ion identification needed to be 
occasionally ignored to find best fit data points. Due to this diffi-
culty, the exact quality of the data point selection is questionable. 
However, there is enough data to speculate that the overall shape 
and slope of the graph is correct and the graph contains most of 
the brightest observed lines.  

 

Compared with lithium, we see that the Li III and Li II are closely 
spaced like Be IV and Be III. The next ion Li I and Be II appear to 
be further spaced away. Be I appears closely spaced with Be II. 
This similar pattern suggests that the ions may follow a predicta-

ble energy pattern and it provides confidence that the Be graph 
correctly describes the energy pattern. 

4. Conclusion 

From the spectral data for hydrogen through beryllium, a regular 
pattern can be seen in the data. The spectra may initially appear 
to be a random collection of oddly spaced lines, but when you 
look at the pattern of overlapping wavelengths created by the 
different ions, it is easy to see how such a pattern is created. 

A relatively crude curve matching formula was created to match 
this pattern which was based only upon the starting and ending 
electron level N1 & N2. It is possible that more sophisticated 
analysis will reveal an even simpler formula to describe the very 
regular staircase pattern found in the data. 

Since the spectra can be described entirely as a function of N1 & 
N2, it would appear that the problem of calculating spectra may 
not be a complex multi-body problem as was previously thought. 
Whatever effect that the electrons have in shielding the nucleus, 
this effect appears to be constant and so you only need to consid-
er the nucleus and the electron as a simple two body problem 
like it is in the original Rydberg formula. 

However, not all of the spectra can be explained, as there are still 
numerous unexplained lines. However, by eliminating the points 
which can be explained, it may be possible to find further pat-
terns in the unexplained lines. These other lines may require 
complex multi-body calculations. These calculations also do not 
take into account any fine differences such as the lamb shift. It 
only covers transitions that can be described using N1 and N2 as 
parameters. 

Only the first four elements have been examined using this anal-
ysis. This can be extended to the other elements as well and other 
regularities may appear which may further enhance our under-
standing of the atom. The formulas derived could also have other 
uses such as in the generation of synthetic spectra for use in as-
tronomy and may lead to a more accurate understanding of 
which lines belong to what electronic transition. These formulas 
may allow the prediction and detection of as of yet undiscovered 
spectral lines. 

It is extremely surprising that the regularity of the spectral lines 
has not been prominently noted in the literature. The analysis 
done here is extremely simple and obvious. The regularity of the 
H and He II relative spectral intensity should be part of any 
standard description of the spectra for H and He as it follows a 
very regular pattern. 

The formulas presented may have been created Ad Hoc to match 
the data and it is unclear why they have the form that they do. 
However, like Bohr and Rydberg who were also unable to ex-
plain why the spectra appear the way they do, it is important to 
continue to explore and find patterns within the data that can be 
described by simple formulas in the hopes that one will find the 
underlying mechanisms. This analysis deserves further research 
and may open new avenues in the science of the atom. 

 


