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Abstract

Accelerated strings in tangent bundle backgrounds are studied in fur-
ther detail than it has been done in the past. The worldsheet associated
with the accelerated open string described in this work envisages a contin-
uum family of worldlines of accelerated points. It is when one embeds the
two-dim string worldsheet into the tangent bundle TM background (asso-
ciated with a uniformly accelerated observer in spacetime) that the effects
of the maximal acceleration are manifested. The induced worldsheet met-
ric as a result of this embedding has a null horizon. It is the presence
of this null horizon that limits the acceleration values of the points inside
string. If the string crosses the null horizon some of its points will exceed
the maximal acceleration value and that portion of the string will become
causally disconnected from the rest of string outside the horizon. It is
explained why our results differ from those in the literature pertaining
the maximal acceleration modifications of the Rindler metric. We also
find a modified Rindler metric which has a true curvature singularity at
the location of the null horizon due to a finite maximal acceleration. One
of the salient features of studying the geometry of the tangent bundle is
that the underlying spacetime geometry becomes observer dependent as
Gibbons and Hawking envisioned long ago. We conclude with some re-
marks about generalized QFT in accelerated frames and the black hole
information paradox.

Keywords : Maximal Acceleration; Gravity; Rindler Spaces; Strings; Finsler
Geometry; Born Reciprocity; Phase Space.
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1 Born’s Reciprocal Relativity in Phase Space
and Maximal Acceleration

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
acceleration boosts (rotations) transformations of the 8D Phase space, where
Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other, were given by
[2] based on the group U(1, 3) and which is the Born version of the Lorentz
group SO(1, 3).

The U(1, 3) = SU(1, 3) ⊗ U(1) group transformations leave invariant the
symplectic 2-form Ω = − dt∧dp0+δijdx

i∧dpj ; i, j = 1, 2, 3 and also the following
Born-Green line interval in the 8D phase-space (in natural units h̄ = c = 1)

(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1

b2
(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)

2
)

(1.1)
the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions y, z, py, pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(1.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(1.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mPAmax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows
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λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales in eq-(1.3) coincide with the Planck time, length, momentum and
energy, respectively.

The U(1, 1) group transformation laws of the phase-space coordinatesX,T, P,E
which leave the interval (1.2) invariant are [2]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)
sinhξ

ξ
(1.4a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.4b)

X ′ = X coshξ + (ξv T −
ξa E

b2
)
sinhξ

ξ
(1.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4d)

ξv is the velocity-boost rapidity parameter and the ξa is the force (acceleration)
boost rapidity parameter of the primed-reference frame. These parameters are
defined respectively in terms of the velocity v = dX/dT and force f = dP/dT
(related to acceleration) as

tanh(
ξv
c

) =
v

c
; tanh(

ξa
b

) =
F

Fmax
(1.5)

It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = dT 2 − dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2− c2(dP )2]. Only the combination

(dσ)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.6)

is truly left invariant under force (acceleration) boosts (1.4). They also leave
invariant the symplectic 2-form (phase space areas) Ω = − dT ∧ E + dX ∧ dP .
One can verify that the transformations eqs-(1.4) are invariant under the discrete
transformations

(T,X)→ (E,P ); (E,P )→ (−T,−X), b→ 1

b
(1.7)

we argued [6] that the latter transformation b → 1
b is a manifestation of the

large/small tension T -duality symmetry in string theory. In natural units of
h̄ = c = 1, the maximal proper force b has the same dimensions as a string
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tension (energy per unit length) (mass)2. Novel physical consequences of Born’s
Reciprocal Relativity can be found in [5].

We proceed next with the physics of maximal acceleration. A review of
the arguments supporting the existence of a maximal acceleration for a mas-
sive particle and how different values for this upper limit can be predicted in
different physical situations was provided by [10]. In particular, the maximal
acceleration principle can be successfully used to prevent the occurrence of sin-
gularities in General Relativity, and of ultraviolet divergences in Quantum Field
Theory, see [10] and references therein. From the historical point of view the
maximal proper acceleration has been first derived starting from the principles
of Quantum Mechanics and Relativity by Caianiello [4], [11].

Interesting results based on a simplified model (lacking covariance) were
applied to the Schwarzschild metric by [12], the Reissner - Nordstrom metric
by [13], the Kerr metric by [14] and the Robertson -Walker metric by [15]. A

non-covariant d2xµ

ds2 acceleration should be replaced by the covariant expression
D2xµ

Ds2 = d2xµ

ds2 + Γµαβ
dxα

ds
dxβ

ds . A fully covariant approach lead to a complete
integrability of equations of motion in spacetimes of constant curvature [16].

To study the geometry behind a maximal proper force and/or maximal ac-
celeration, we shall follow next the description by the authors [7], [8] where
one may study in detail the geometry of Lagrange-Finsler and Hamilton-Cartan
spaces and their higher order (jet bundles) generalizations The metric associ-
ated with the tangent space TMd can be written in the following block diagonal
form

(ds)2 = gij(x
k, ya) dxid xj + hab(x

i, ya) δya δyb, i, j, k = 1, 2, 3, ....d; a, b, c = 1, 2, 3, ....d
(1.9)

if instead of the standard coordinate-basis one introduces the anholonomic
frames (non-coordinate basis) defined as

δi = ∂i −N b
i (x, y) ∂b = ∂/∂xi −N b

i (x, y) ∂b; ∂a =
∂

dya
(1.10)

and its dual basis is

δα ≡ δuα = (δi = dxi, δa = dya +Na
k (x, y) dxk) (1.11)

where the N–coefficients define a nonlinear connection, N–connection structure,
see details in [7], [8]. As a very particular case one recovers the ordinary linear
connections if Na

i (x, y) = Γabi (x) yb.
The 8D tangent bundle infinitesimal interval is given by

(dσ)2 = gij(x, y) dxi dxj + hab(x, y) (dya − Na
c (x, y) dxc) (dyb − N b

d(x, y) dxd)
(1.12)

In the flat tangent bundle case, when there is a maximal proper acceleration M ,
one can find a coordinate system so that one has Na

c = 0, gij = ηij , hab = ηab
M2 .

The 8D cotangent space (phase-space) infinitesimal interval is
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(dω)2 = gij(x, p) dx
i dxj + hab(x, p) (dpa −Nac(x, p) dxc) (dpb −Nbd(x, p) dxd)

(1.13)
In the flat cotangent bundle case, when there is a maximal proper force b, one

can find a coordinate system so that one has Nac = 0, gij = ηij , h
ab = ηab(x,p)

b2 .
In another particular case, when

gij(x, y) = gij(x), hab(x, y) =
gab(x)

M2
, N b

d(x, y) = Γbdc(x)yc (1.14)

the 8D tangent bundle infinitesimal interval (1.12) becomes

(dσ)2 = gij(x) dxi dxj +
gab(x)

M2
(dya − Γace(x) ye dxc) (dyb − Γbde(x) ye dxd)

(1.15)
by factoring out the terms (ds)2 = gij(x) dxi dxj , after writing ye = dxe

ds , gives
in the right hand side of eq-(1.15)

(ds)2
(

1 +
gab
M2

(
dya

ds
− Γace(x)

dxe

ds

dxc

ds
) (
dyb

ds
− Γbde(x)

dxe

ds

dxd

ds
)

)
(1.16a)

therefore, one ends up by having

(dσ)2 = (ds)2
(

1 − g2(s)

M2

)
(1.16b)

where the (spacelike) covariant proper acceleration squared is

g2(s) = − gab(x) (
d2xa

ds2
− Γace(x)

dxe

ds

dxc

ds
) (
d2xb

ds2
− Γbde(x)

dxe

ds

dxd

ds
) (1.17)

after writing dya

ds = d2xa

ds2 . To sum up, in the special case described by eq-(1.14),
the 8D tangent bundle infinitesimal interval (1.12) can be written in terms of

the covariant proper acceleration D2xµ

Ds2 of a particle in the underlying spacetime
as displayed in eqs-(1.16).

Next we shall discuss the maximal acceleration modifications to the Rindler
metric and explain why our results differ from those in [9]. The hyperbolic
wordline in Minkowski spacetime of a uniformly accelerated observer whose
constant proper acceleration is g is given by

x0 =
1

g
sinh(gs), x1 =

1

g
cosh(gs) (1.18)

from which one infers that

(
d2x0

ds2
)2 − (

d2x1

ds2
)2 = − g2 (1.19)

5



when the signature is chosen to be (+,−). The Rindler (curvilinear) coordinates
ξ, η are defined by the equations

x0 = ξ sinh(η), x1 = ξ cosh(η), (1.20)

Caution must be taken not to confuse the hyperbolic worldlines of Rindler space-
time with the hyperbolic worldline of an accelerated observer whose constant
(uniform) proper acceleration is g. Only at the very specific values ξ = 1

g , and
η = gs, one of the hyperbolic worldlines of the Rindler spacetime coincides
with the hyperbolic worldline of an accelerated observer whose constant proper
acceleration is g. The hyperbolic worldlines of Rindler spacetime consist of a
continuous family of uniformly accelerated observers O,O′,O′′, . . . in a two-dim
spacetime M2 with proper accelerations g, g′, g′′, . . . and whose affine parameters
associated with their hyperbolic worldlines are s, s′, s′′, . . . such that

η = gs = g′s′ = g′′s′′ = . . . ; g =
1

ξ
, g′ =

1

ξ′
, g′′ =

1

ξ′′
, . . . (1.21a)

Inverting the coordinate transformations of a Rindler spacetime one has

(x1)2 − (x0)2 = (ξ)2,
x0

x1
= tanh(η) ⇒ arctanh(

x0

x1
) = η (1.21b)

and the Rindler metric is given by

(ds)2Rindler = ξ2 (dη)2 − (dξ)2 = (dx0)2 − (dx1)2 (1.22)

the constant ξ lines are hyperbolas, and the constant η lines are straight lines
in the x0, x1 axes.

If ones chooses for conformal factor in eq-(1.16) the one associated with the
continuous family of uniformly accelerated observers g = 1

ξ in Rindler space-
times

Ω2 = 1 − g2

M2
= 1 − 1

ξ2 M2
(1.23)

the maximal acceleration corrections to the Rindler spacetime interval are then
given by

(ds̃)2 = (1− 1

ξ2M2
)
(
ξ2(dη)2 − (dξ)2

)
(1.24)

The metric (1.24) is conformally flat, when M2 = ∞ the conformal factor is
unity as expected. One can find a particle motion xµ(s) whose non-uniform
proper acceleration is such that eq-(1.19) becomes now

(
d2x0

ds2
)2 − (

d2x1

ds2
)2 = − g2(x0, x1) = − 1

ξ2
=

1

(x0)2 − (x1)2
(1.25a)
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subject to the condition

(
dx0

ds
)2 − (

dx1

ds
)2 = 1 (1.25b)

stemming from the normalization condition of the velocity gµν
dxµ

ds
dxν

ds = 1. We
may notice that our modified Rindler metric in eq-(1.24) differs from the one
in [9]

(ds̃)2 = (1− 1

ξ2M2
) ξ2(dη)2 − (dξ)2 = (ξ2 − 1

M2
) (dη)2 − (dξ)2 (1.26)

which is not conformally flat as it should be according to eqs-(1.16). The reason
the authors [9] obtained eq-(1.26) is because after the first differentiation of eq-
(1.20), giving ẋ0 = gξcosh(η), ẋ1 = gξsinh(η), they went ahead and substituted
g for 1

ξ , prior to performing the second differentiation dẋ0, dẋ1 in eq-(1.15)

(when the connection Γ = 0). The correct way to proceed is to use eqs-(1.16)
when the non-uniform proper acceleration is determined by eqs-(1.25).

The scalar curvature corresponding to the conformally flat metric (1.24) is

R̃ = Ω−2 [ R − 2 (d− 1) ∇a∇aln Ω − (d− 2) (d− 1) (∇aln Ω) (∇aln Ω) ]
(1.27a)

in d = 2, due to the fact that R = 0, one arrives after plugging in the expression
(1.23) for the conformal factor, at

R̃ = − 4

ξ4M2

(
1 − 1

ξ2M2

)−3
(1.27b)

after using

∇a∇aln Ω =
1√
|g|

∂a(
√
|g| gab∂b ln Ω),

√
|g| = ξ, g00 = ξ−2, g11 = −1

(1.28)
The most salient features of the maximal acceleration modifications of the
Rindler metric (1.24) is that there is a null horizon (ds̃)2 = 0 and a true singu-
larity R̃ = ∞ at the location of the maximal acceleration hyperbola given by
ξ = 1

gmax
= 1

M . R = 0 at ξ = 0 and ξ =∞. One has a shifted horizon associ-

ated with the modified Rindler metric (1.24). The null horizon corresponds to
the hyperbola (x1)2 − (x0)2 = 1

M2 rather than the straight lines (asymptotes)
x0 = ±x1 ⇒ ξ = 0, η = ±∞ in Rindler (flat) spacetimes.

Another example is given by the worldline of an observer (particle) in d = 2
dimensions defined by the equations

d2x0

ds2
= F (x0),

d2x1

ds2
= H(x0) (1.29)
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one can integrate the above differential equations by quadratures giving

s =
1√
2

∫
dx0√∫
F (x0) dx0

(1.30a)

s =
1√
2

∫
dx1√∫
H(x1) dx1

(1.30b)

the functions F (x0), H(x1) must obey the constraints∫
F (x0) dx0 −

∫
H(x1) dx1 =

1

2
(1.31)

resulting from the condition gµν
dxµ

ds
dxν

ds = 1. The proper acceleration squared
is now

(
d2x0

ds2
)2 − (

d2x1

ds2
)2 = F (x0)2 − H(x1)2 = − g2(x0, x1) (1.32)

furnishing the spacetime dependent conformal factor

Ω2 = 1 − g2(x0, x1)

M2
(1.33)

and leading to a more complicated expression for the scalar curvature. To
conclude, when the worldline of an observer (particle) is not one of uniform

acceleration g = constant, we have d2xµ

ds2 6= g2xµ and the conformal factor Ω2

is a more complicated function leading to different expressions for the scalar
curvature R̃. Thus, the spacetime geometry becomes observer dependent as
the authors [18] envisioned long ago.

Liouville’s equation is the nonlinear partial differential equation satisfied by
the conformal factor Ω with respect to a flat Euclidean metric in two dimensions
such that the scaled metric Ω2(dx2+dy2) leads to a surface of constant Gaussian
curvature K. One can also obtain the Minkowski version of Liouville’s equation
directly from eq-(1.26) in d = 2, when R = 0, giving

∇a∇aln Ω = − K

2
Ω2 (1.34)

in Euclidean signature one can use complex coordinates z = x1+ix0, z̄ = x1−ix0
so that the most general solution for Ω2 is given in terms of two arbitrary
meromorphic functions ρ(z), ρ̄(z̄) , and its derivatives, as follows

Ω2 =

(
4

ρ′(z) ρ̄′(z̄)

( 1 + K ρ(z) ρ̄(z̄) )2

) 1
2

(1.35)

thus an analytic continuation (via a Wick rotation) of the solutions (1.35) will
give the expression for the non-uniform proper acceleration squared g2(x0, x1) =
M2(1− Ω2) associated with the surfaces of constant Gaussian curvature.
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A more rigorous procedure requires to study the geometry in curved (co) tan-
gent spaces following the Lagrange-Finsler and Hamilton-Cartan spaces [7], [8].
More recently a study of gravity in curved phase spaces was performed by [19].
The geometry of the (co) tangent bundle of spacetime was studied via the intro-
duction of nonlinear connections associated with certain nonholonomic mod-
ifications of Riemann–Cartan gravity within the context of Finsler geometry.
The curvature tensors in the (co) tangent bundle of spacetime were explicitly
constructed leading to the analog of the Einstein vacuum field equations. The
geometry of Hamilton Spaces associated with curved phase spaces followed. An
explicit construction of a gauge theory of gravity in the 8D co-tangent bundle
T ∗M of spacetime was provided, and based on the gauge group SO(6, 2)×s R8

which acts on the tangent space to the cotangent bundle T(x,p)T
∗M at each point

(x,p). Several gravitational actions associated with the geometry of curved
phase spaces were presented.

2 Maximal Acceleration and Strings in Tangent
Bundle Backgrounds

The Polyakov bosonic string action is

S = T

∫
dσ dτ

√
|det hαβ | hαβ ∂αxµ ∂βxν gµν (2.1)

T is the string tension. hαβ(σ, τ) is an auxiliary two-dim worldsheet metric
α, β = 1, 2. xµ(σ, τ), µ, ν = 1, 2, . . . , D are the D embedding functions of the
two-dim string worldsheet into the D-dim target spacetime background whose
metric is gµν(xρ). In the conformal gauge hαβ = eφηαβ the Polyakov action
becomes

S = T

∫
dσ dτ gµν

(
∂xµ

∂τ

∂xν

∂τ
− ∂xµ

∂σ

∂xν

∂σ

)
(2.2)

In flat target spacetime backgrounds gµν = ηµν , the equations of motion asso-
ciated with the Polyakov action in the conformal gauge are

δS

δxµ
= 0 ⇒ ∂2xµ

∂τ2
− ∂2xµ

∂σ2
= 0, µ = 1, 2, ...., D (2.3)

in curved target spacetime backgrounds the equations of motion are more com-
plicated and involve the Christoffel connection Γµνρ of the D-dim target space-
time background 1

∂2xµ

∂τ2
− ∂2xµ

∂σ2
+ Γµνρ (

∂xµ

∂τ
+

∂xµ

∂σ
) (
∂xρ

∂τ
+

∂xρ

∂σ
) = 0 (2.4)

1In flat spaces the connection coefficients are not necessarily zero if one uses curvilinear
coordinates
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In addition to the equations of motion one must include the constraint equations
resulting from a variation of the Polyakov action with respect to the auxiliary
world sheet metric metric hαβ , prior to fixing the conformal gauge,

gµν

(
∂xµ

∂τ

∂xν

∂τ
+

∂xµ

∂σ

∂xν

∂σ

)
= 0 (2.5)

gµν
∂xµ

∂τ

∂xν

∂σ
= 0 (2.6)

In flat target spacetime backgrounds gµν = ηµν , the most general solutions
to eqs-(2.3, 2.5, 2.6) are of the form

xµ(σ, τ) = f (µ)(σ + τ) + h(µ)(σ − τ) (2.7)

where f (µ)(σ + τ), h(µ)(σ − τ) are D arbitrary functions of σ ± τ , respectively.
Of particular physical interest are the solutions in the D = 2 case given by

f (0)(σ + τ) =
L

2
eκ(σ+τ), h(0)(σ − τ) = − L

2
eκ(σ−τ) (2.8a)

f (1)(σ + τ) =
L

2
eκ(σ+τ), h(1)(σ − τ) =

L

2
eκ(σ−τ) (2.8b)

and from which we infer that

x0 = L eκσ sinh(κτ), x1 = L eκσ cosh(κτ), κ > 0, L > 0 (2.9)

the spatial variable σ ranges from −λ2 ≤ σ ≤ λ
2 where the proper string length

is λ.
The physical relevance of the above solutions is that they have the same

form as a continuous family of hyperbolic worldlines

x0 = ξ(σ) sinh(η(τ)), x1 = ξ(σ) cosh(η(τ)) (2.10)

like those comprising the Rindler spacetime coordinates. In a Rindler frame
of reference (accelerated frame) the solutions (2.9) to the string equations of
motion are simply

ξ(σ, τ) = L eκσ, η(σ, τ) = κ τ (2.11)

In the inertial frame of reference involving the coordinates x0, x1 one has an open
string extended along the x1 axis whose extreme ends (and all the intermediate
points) have different accelerations along the x1 axis. There is an acceleration
gradient along the points of the string. One may envision two heavy quarks
with the same mass at the end points of the open string lying along the x1-axis
and subjected to different accelerations (forces). The left end point has a
greater acceleration than the right end point. As time evolves the string length
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gets larger. This may seem paradoxical, and we shall explain why it is so at
the end of this section, contrary to the naive intuition.

The picture is different in the Rindler accelerated frame displayed by eqs-
(2.11). The string just sits idly between the fixed end points ξ1 = L e−

κλ
2 ; ξ2 = L e

κλ
2

and the (dimensionless) temporal coordinate η = κτ simply keeps ticking away
linearly with the string’s clock time τ . This is the analogy of a particle sitting
at rest with a clock ticking away.

These results (2.9) are very different from the findings of [17] where the
line joining the two heavy masses (at the end points of the string) is always
parallel to the y-axis (x2-axis). These masses were both subjected to the same
acceleration (forces) along the horizontal x1 direction. The spatial shape of the
string at any given time is a catenary (hyperbola) of finite length. The string
dynamics can be envisioned as an accelerated catenary with an acceleration
gradient from the center point to the end points (the center of the string had
the greatest acceleration).

One can now embed the two-dim string’s worldsheet into a four-dim back-
ground corresponding to the four-dim tangent bundle TM2 of a 2-dim spacetime
M2. If one chooses for the tangent bundle metric the one corresponding to the
maximal acceleration corrections, the embedding condition reads

hαβ dσ
α dσβ = (1− g2

M2
) gµν dx

µ dxν (2.12)

from which one obtains the induced worldsheet metric as a result of the embed-
ding

hαβ = (1− g2

M2
) gµν

∂xµ

∂σα
∂xµ

∂σβ
(2.13)

let us now use for embedding functions xµ(σ, τ) those resulting from the solu-
tions to the string equations of motion in flat target backgrounds gµν = ηµν and
given by eqs-(2.9). Eqs-(2.9, 2.13) will then yield

h00 = (1− g2

M2
)

(
(
∂x0

∂τ
)2 − (

∂x1

∂τ
)2
)

= (1− g2

M2
) L2 κ2 e2κσ (2.14a)

h11 = (1− g2

M2
)

(
(
∂x0

∂σ
)2 − (

∂x1

∂σ
)2
)

= − (1− g2

M2
) L2 κ2 e2κσ (2.14b)

hence, the induced worldsheet interval as a result of the embedding is

(ds)2 = (1− g2

M2
) L2 κ2 e2κσ ( (dτ)2 − (dσ)2 ) (2.15)

one still has a conformally flat metric, whose conformal factor is 2

2It was a conformally flat worldsheet metric hαβ = eφηαβ in the Polyakov that led to the
string equations of motion and its solutions.
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(1− g2

M2
) L2 κ2 e2κσ (2.16)

The metric has a null horizon at g = M .
Before continuing we must include the role of the remaining two coordinates

ẋ0 = dx0

ds ; ẋ1 = dx1

ds of the four-dim tangent bundle TM2 corresponding to the
motion of a uniformly accelerated observer O in a two-dim spacetime M2 with
proper constant acceleration g and whose affine parameter associated with its
hyperbolic worldline is s. A careful analysis reveals that the condition η = gs =
κτ , deduced from eqs-(1.21a), will allow us to replace cosh(κτ), sinh(κτ) for
cosh(gs), sinh(gs), respectively, in the string solutions (2.9) and perform the
derivatives

ẋ0 =
dx0

ds
= g x1 = g L eκσ cosh(κτ),

ẋ1 =
dx1

ds
= g x0 = g L eκσ sinh(κτ) (2.17)

Therefore, eqs-(2.9) and eqs-(2.17) are the relevant solutions we are looking for
the accelerated open string in the tangent bundle TM2. They describe the four
embedding coordinates x0(σ, τ), x1(σ, τ), ẋ0(σ, τ), ẋ1(σ, τ) corresponding to an
accelerated open string moving in a flat target tangent bundle TM2 background
with metric gµν = ηµν ; gµ̇ν̇ =

ηµν
M2 , µ, ν = 0, 1.

We shall examine carefully the solutions (2.9, 2.17) to the string equations
of motion in the tangent bundle TM2. g is the uniform proper acceleration
of a particle (let us say an “observer” O ). Its hyperbolic world line xµ(g, s)
will coincide with the hyperbolic world line xµ(σ, τ) of a certain point inside
the interior of the string if η = κτ = gs, and there is a value of σ = σ∗ such
that ξ(σ∗) = Leκσ∗ = 1

g . In particular, there is a null horizon in the string’s

worldsheet metric (2.15) when there exists a value of σ = σh such

ξh = Leκσh =
1

g
=

1

M
⇒ σh = − 1

κ
ln(LM), κ > 0, L > 0 (2.18)

The σ spatial variable of an open string of proper length λ ranges from −λ2 ≤
σ ≤ λ

2 . If σh lies within this interval : −λ2 < − 1
κ ln(LM) < λ

2 , there are two
causally disconnected regions in the open string worldsheet. Namely, there is a
portion of the open string worldsheet that lies to the left (inside) of the horizon
and another portion which lies to the right (outside) of the horizon.

Whereas the string worldsheet lies outside the horizon if − 1
κ ln(LM) < −λ2 ,

and now there are no causally disconnected regions in the open string world-
sheet. In this case the open string worldsheet lies entirely to the right (outside)
of the horizon. In the limiting case when the horizon lies at the very left-end of
the open string one has

1

κ
ln(LM) =

λ

2
, κ > 0, L > 0 (2.19)
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from which one learns that a finite open string proper length λ is not compatible
with an infinite maximal acceleration value M → ∞. Since the proper string
length λ ≥ 0 cannot be negative one infers from eq-(2.19) that the maximal
acceleration must obey M ≥ 1

L ⇒ L ≥ 1
M . In the point particle limit case

λ = 0, eq-(2.19) furnishes a lower bound for the maximal acceleration M = 1
L .

The spatial separation between the extreme ends of the open string at τ = 0
is

∆x(τ = 0) = x(
λ

2
, τ = 0) − x(−λ

2
, τ = 0) = 2L sinh(

κλ

2
) (2.20)

Because the string at τ = x0 = 0 is at rest, 3 one may equate ∆x(τ = 0) to the
string proper length λ, and which in turn, it allows us to solve for κ as follows

sinh(
κλ

2
) =

λ

2L
⇒ κλ

2
= sinh−1(

λ

2L
) =

ln

(
λ

2L
+

√
1 + (

λ

2L
)2

)
⇒

κ =
2

λ
ln

(
λ

2L
+

√
1 + (

λ

2L
)2

)
(2.21)

In this limiting case, when the string barely lies outside the horizon, upon
inserting eq-(2.21) into eq-(2.19) yields

ln(LM) =
κλ

2
= ln

(
λ

2L
+

√
1 + (

λ

2L
)2

)
(2.22

leading finally to

LM =
λ

2L
+

√
1 + (

λ

2L
)2 ≥ 1 ⇒ M ≥ 1

L
(2.23)

if one chooses the plus sign under the square root and due to L > 0.
One should notice that it is not required to set L = λ. The upshot of having

L 6= λ is that after setting λ = 0 in eq-(2.23) it gives LM = 1⇒M = 1
L , so it is

still possible to have a finite maximal acceleration M 6=∞ by simply choosing
L 6= 0, despite having a zero proper string length λ = 0. Therefore, when
the string collapses to a point, the point particle can still move with a finite
maximal acceleration. If λ 6= 0, and L 6= λ, the analysis of the above equations
reveals that the finite maximal acceleration M is greater than the acceleration
of all the points inside the string (except the left-end point). In particular, one
has M > 1

L where 1
L is the acceleration of the center point (σ = 0) of the string.

Similar findings were obtained by [17].

3The velocity of all the points inside the string is zero at τ = x0 = 0, despite that there is
acceleration
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If one were to choose L = λ, we have a finite maximal acceleration M 6=∞
associated to a nonzero proper string length λ 6= 0. However, in this case,
when λ = 0 (point particle) eq-(2.23) yields M > 1

L = 1
λ leading to an infinite

maximal acceleration M =∞.
Based on these findings, it is preferable to have L 6= λ so that one can still

have a finite maximal acceleration. The Planck scale LP has been postulated to
be the minimal length scale in nature [20] yielding a finite maximal acceleration
of M = 1

LP
(in natural c = 1 units) . Eq-(2.23) implies in this case that

M = 1
LP
≥ 1

L ⇒ LP ≤ L. 4

The string spatial length at a time τ is

L(τ) = 2L sinh(
κλ

2
) cosh(κτ) (2.24)

when λ = 0 ⇒ L(τ) = 0 as expected when the string collapses to a point
particle. The results for the string length in eq-(2.24) are exact and simpler
than those obtained by [17] involving elliptic functions.

We discussed earlier that in the Rindler accelerated frame of reference the
open string just sits idly between the fixed points ξ1 = L e−

κλ
2 and ξ2 = L e

κλ
2 .

In that frame of reference the string length is constant and given by eq-(2.20).
Since the string energy and length remain constant, the string tension (given
by the energy per unit length) is constant in the Rindler accelerated frame of
reference, as it should.

Matters are quite different in the inertial frame of reference (x0, x1 axes).
The spatial string length increases with time as displayed in eqs-(2.24). Since
the string is being accelerated (due to the external forces acting on the two
masses at the end points), with an acceleration gradient along its points, the
string’s energy also keeps increasing with time such that the energy per unit
length (tension) still remains constant.

Eq-(1.21a) will help us find the reason why the string stretches with time in
the inertial frame, and the left end point will never catch up with the right end
point despite g1 > g2. This is because the proper times s1, s2 associated with
the respective hyperbolic lines of the two end points obey s1 < s2, such that
g1s1 = g2s2. One “must give time to time” in oder for one end point to catch
up with the other, which is not the case here since s1 < s2.

In essence, to conclude, the worldsheet associated with the accelerated open
string described in this work envisages a continuum family of worldlines of
accelerated points, whose proper accelerations are g(σ) = 1

ξ(σ) = (Leκσ)−1.

η = κτ = gs, where g, s vary along the hyperbolic worldlines of the points
of the string, but κ is constant. It is when one embeds the two-dim string
worldsheet into the four-dim tangent bundle TM2 background (associated with
a uniformly accelerated point particle/observer) that the effects of the maximal
acceleration M are manifested The induced worldsheet interval as a result of
the embedding in TM2

4If the minimal Planck scale postulate holds one cannot have λ = 0. Nevertheless one can
still view a “point” particle as the center of mass of the string.

14



(ds)2 = (1− g2

M2
) L2 κ2 e2κσ ( (dτ)2 − (dσ)2 ) (2.25)

has a null horizon at g = M . It is the presence of this null horizon that limits
the acceleration values of the points inside string. If the string crosses the null
horizon, some of its points will exceed the maximal acceleration value and that
portion of the string will become causally disconnected from the rest of string
outside the horizon.

The study of accelerated strings in curved backgrounds, like those reflected
by the metric of eq-(1.24), is more difficult. The scalar curvature (1.27) has a
true singularity at the horizon location. One could generalize the results of this
work to the case of strings propagating in the cotangent bundle T ∗M (phase
spaces). Born Reciprocal Relativity postulates a maximal proper force which
one could fix to be mP c

2/LP , and given in terms of the Planck length, mass and
speed of light. A photon has zero mass, and since the proper time of a photon
path in spacetime is null, one needs another affine parameter to describe the
motion of a photon. Hence it is plausible to have an infinite maximal proper
acceleration for a photon such that mphotonaphoton = mP c

2/LP = finite. Con-
sequently one could have an infinite maximal acceleration and finite maximal
speed for the photon, while still having a finite maximal proper force.

To finalize, it is worth mentioning that, recently, Dasgupta [21] re-investigated
the Bogoliubov transformations which relate the Minkowski inertial vacuum to
the vacuum of an accelerated observer. He implemented the transformation
using a non-unitary operator used in formulations of irreversible systems by
Prigogine [22]. An attempt was discussed to generalize Quantum Field Theory
(QFT) for accelerated frames using this new connection to Prigogine transfor-
mations. It is warranted to build a generalized QFT in accelerated frames which
is compatible with the Quaplectic group transformations in Born’s Reciprocal
Relativity [1]. This may shed some light into the resolution of the black hole
information paradox by recurring to novel physical principles and which are
beyond the many current proposals based on standard QFT in curved Rieman-
nian spacetimes. This generalized QFT in accelerated frames would allow for
pure states to evolve into mixed states so that the Hawking black hole emission
process would no longer be paradoxical.
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