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Abstract The homogeneity symmetry is re-examined and shown to be non-unitary,
with no requirement for the imaginary unit. This removes symmetry, as reason, for
imposing unitarity (or self-adjointness) – by Postulate. The work here is part of a
project researching logical independence in quantum mathematics, for the purpose
of advancing a full and complete theory of quantum randomness.
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1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [7], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in (Boolean) mathematical propositions [8,9]. Logical independence refers to
the null logical connectivity that exists between mathematical propositions (in the
same language) that neither prove nor disprove one another. In experiments meas-
uring photon polarisation, Tomasz Paterek et al demonstrate statistics correlating
predictable outcomes with logically dependent mathematical propositions, and ran-
dom outcomes with propositions that are logically independent.

While those Boolean propositions do convey definitive information about quantum
randomness, any insight they offer is obscure. In order to advance a full and com-
plete theory of quantum randomness, understanding is needed of how this Boolean
logical independence connects with standard textbook quantum theory.

In a related article by this author [4], logical independence in Elementary Algebra
is discussed. This is the very familiar algebra upon which Applied Mathematics
and Mathematical Physics rest. Logical independence in this algebra is well-known
to Mathematical Logic [12]. Of particular interest is logical independence of the
imaginary scalars, seen in contrast to logical dependence of the rational scalars –
and – the possible prospect that these two types of logical information might pass
into quantum mathematics. As it happens, the passage of that logical information
is blocked. It is prevented by, not by unitarity itself, but because unitarity (or
self-adjointness) is imposed axiomatically – by Postulate.
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Historically, the reason for unitarity is the universal need for preserved invari-
ance of probability amplitude. Interpretationally, this universality is seen to imply
that all fundamental symmetries in Nature are ontologically unitary [5, p109][6,
p34]. This would indicate that unitarity should be a blanket condition covering
the whole of quantum theory — and should be regarded as axiomatic. In short,
unitarity is never in absence.

The findings of this paper contradicts the belief that symmetries are intrinsically
unitary. It shows that the homogeneity symmetry, generally purported to imply the
Canonical Commutation Relation [5, p115][11, p44], is not itself unitary, does not
imply the Canonical Commutation Relation, indicating that the Relation’s unitarity
originates elswhere.

This removes symmetry, as reason, for imposing unitarity –by Postulate.

2 The basic symmetry of wave mechanics: homogeneity of space

The Canonical Commutation Relation

px− xp = −i~

embodies core algebra at the heart of wave mechanics. The professed significance of
this relation is that it represents the homogeneity of space, with general acceptance
by quantum theorists, as being unitary. In this paper, I re-examine and scrutinise
the Canonical Relation’s derivation and establish that the homogeneity symmetry
is itself not unitary. And in consequence establish that the Canonical Commuta-
tion Relation does not, itself, faithfully represent homogeneity, but contains other
(unitary) information also.

Imposing homogeneity on a system is identical to imposing a null physical
effect, under arbitrary translation of reference frame. To formulate this arbitrary
translation, resulting in null effect, the principle we invoke is Form Invariance.
This is the concept, from relativity, that symmetry transformations leave (physical)
formulae fixed in form, though values may alter [10]. In the case at hand, the
relevant formula whose form is held fixed is the eigenvalue equation for position:

x |fx (x)〉 = x |fx (x)〉 . (1)

The san-serif x, here, is a label for fx whose eigenvalue is x. The variable x (curly)
is the function domain. The use of two different variables, here, may seem unusual
and pointless. In fact, logically they are different. x is quantified existentially but
x is quantified universally.

With form held fixed, as the reference system is displaced, variation in the po-
sition operator x determines a group relation, representing the homogeneity sym-
metry. Under arbitrarily small displacements, this group corresponds to a linear
algebra representing homogeneity locally (Lie group and Lie algebra). To maintain
the form of (1), under translation, the basis |fx〉 is cleverly managed: while the
translation transforms the basis from |fx〉 to |f x−ε〉, a similarity transformation is
also applied, chosen to revert |f x−ε〉 back to |fx〉. In this way |fx〉 is held static. We
see below that, actually, similarity transforms can be found only for a certain class
of functions:

{
ψx ∈ L1}

⊂ {fx}.
The similarity transformations are the one-parameter subgroup of the general

linear group, S (ε) ⊂ S ∈ GL (F), with the transformation parameter ε coincidingF is any infinite field.
with the displacement parameter. The overall scheme of transformations is depicted
in Figure 1.

In standard theory, textbook understanding is that S (ε) is intrinsically and
necessarily unitary, and it is in that unitarity where the Canonical Commutation

x |fx〉 = x |fx〉

��

Ox→Ox′

translation // x |f x−ε〉 = (x + ε) |f x−ε〉

|fx−ε〉→|ψx−ε〉→|ψx〉 similarity

��(
SxS−1 − ε1

)
|ψx〉 = x |ψx〉

(
SxS−1 − ε1

)
|ψx〉 = x |ψx〉oo

Figure 1 Scheme of transformations. The bottom left hand formula is the resulting group
relation.
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f          (x)

Figure 2 Passive translation of a function Two reference systems, Ox and Ox′ , arbit-
rarily displaced by ε, individually act as reference systems for position of a function fx. If the
x-space is homogeneous, then regardless of the value of ε, physics concerning this function is
described by formulae whose form remains invariant, though values may change. Note: The
function and reference frames are not epistemic; fx is non-observable and Ox and Ox′ are not
observers.

Relation finds its unitary origins. And so, because its presence is thought intrinsic-
ally necessary, unitarity is imposed axiomatically on the theory, by Postulate. The
upshot is that standard theory imposes Hilbert space on vectors |fx〉. This imposed
unitarity is added information, extra to the information of homogeneity. In con-
sequence, the underlying symmetry beneath wave mechanics is not homogeneity of
space, but instead, a unitary subgroup.

As an experiment, we proceed, in this paper, by treating unitarity as a purely sep-
arate issue from homogeneity, allowing S (ε) it’s widest generality, so that the whole
information of homogeneity (upto the general linear similarity transformation) is
faithfully and genuinely conveyed through the theory.

The experiment begins with the eigenvalue equation for position (1) being re-
written, as the eigenformula in the quantified proposition (2). From here on, all
informal assumptions are to be shed, with the Dirac notation dropped to avoid any
inference that vectors are intended as orthogonal, in Hilbert space, or equipped
with a scalar product; none of these is implied.

Consider the eigenformula for position operator x, eigenfunctions fx and eigen-
values x, seen from the reference frame Ox:

∀x∃x∃x∃fx | xfx (x) = xfx (x) (2)
Translation: Applying the translation first. Under translation, homogeneity de- Substitution involving quantified

variables

∀β∀γ∃α | α = β + γ

∀β∃γ | γ = β + β

⇒ ∀β∃α | α = β + β + β

For logically dependent substitution, an ex-
istential quantifier of one proposition should
be matched with a universal quantifier of the
other. This is because, for this type of substitu-
tion coincidence is certain and not accidental.
Matching quantifiers are underlined.

mands existence of an equally relevant reference frame Ox′ displaced arbitrarily
through ε. See Figure 2. Form Invariance guarantees a formula for Ox′ of the same
form as that for Ox in (2), thus:

∀x′∃x∃x′∃f ′x | xf ′x (x′) = x′f ′x (x′) (3)
A relation for x is to be evaluated, so x is held static for all reference frames. The
translation transforms position, thus:

∀ε∀x′∃x | x 7→ x′ = x + ε (4)

and transforms the function, thus:

∀ε∀x′∀f ′x∃fx∃x | fx (x) 7→ f ′x (x′) = fx−ε (x− ε) (5)

Substituting (4) and (5) into (3) gives the translated formula:

∀x∀ε∃x∃x∃fx | xfx−ε (x− ε) = (x + ε) fx−ε (x− ε) . (6)

ψ

Figure 3 The linear
transformations S exist
only for bounded ψx.

Similarity: Applying the similarity transformation.
This involves the one parameter linear operator S(ε).
Such an S(ε) exists only if there exists a space of func-
tions ψx, that is complete, normalisable,and not restric-
ted to separable1 functions, that is also a subset of the
translatable functions fx. Logically, the act of assuming
such an S(ε) hypothesises that such a class of functions
does indeed exist. No such function space is guaran-
teed. Accordingly, the assertion of proposition (7) is
newly assumed information entering the system.

∀x∀ε∀ψx−ε∃S∃ψx | S−1
(ε)ψx (x) = ψx−ε (x− ε) . (7)

1 Separable means countable, as are the integers, as opposed to continuous, like the reals.
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In standard theory, S(ε) is set unitary by the mathematician. Doing that restricts
the space of functions ψx to the Hilbert space L2. Here, S(ε) is a member of the one
parameter subgroup of the infinite dimensional, (non-unitary) general linear group
GL (F). This restricts ψx not to the Hilbert space L2 but to the Banach space L1.

The similarity transformation is formed, thus:

∀x∀ε∃x∃x∃ψx∃S | S(ε)xS−1
(ε)ψx (x) = (x + ε)ψx (x) .

Introducing the trivial eigenformula: ∀ψx∀x∀ε | ε1ψx (x) = εψx (x) and subtracting:

∀x∀ε∃x∃x∃ψx∃S |
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) = xψx (x) . (8)

Now comparing the original position eigenformula (2) against the transformed one
(8), we deduce the group relation for similarity transformed homogeneity:

∀x∀ε∃x∃x∃ψx∃S | xψx (x) =
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) . (9)

From this group relation, the commutator for the Lie algebra is now computed.
Because S(ε) is a one-parameter subgroup of GL (F), there exists a unique linear
operator g for real parameters ε, such that:

∀S∃g | S(ε) = eεg (10)

Noting that homogeneity is totally independent of scale, an arbitrary scale factor
η is extracted, thus: ∀g∀η∃k : g = ηk, implying:

∀η∀S∃k | S(ε) = eηεk (11)
∀η∀S∃k | S−1

(ε) = S(−ε) = e−ηεk (12)

Substitution of (11) and (12) into (9) gives:

∀x∀η∃x∃ψx∃x∃k | exp (+ηεk) x exp (−ηεk)ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
1 + ηεk +O

(
ε2

)]
x

[
1− ηεk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
x + ηεkx +O

(
ε2

)] [
1− ηεk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
x + ηεkx− ηεxk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k | [kx− xk]ψx (x) =
[
η−11−O (ε)

]
ψx (x)

At the limit, as ε→ 0, we have:

∀x∀η∃x∃ψx∃x∃k | [k,x]ψx (x) = η−11ψx (x) (13)

And by a similar proof, conditional on the existence of eigenfunctions χ (k), of k:

∀k∀η∃k∃χk∃x∃k | [x,k]χk (k) = η−11χk (k) . (14)

Importantly, we see (13) and (14) are ∀η, rather than the particular case of η−1 = −i
that we see in the unitary subalgebra we know as the Canonical Commutation
Relation:

[k,x] = −i1 or [p,x] = −i~1 (15)

Conclusion

The above establishes that the homogeneity symmetry is not a source of unitary
information in wave mechanics. And therefore, if the reason given for postulating
that quantum theory should be unitary or self-adjoint, is that symmetries in Nature
are ontologically unitary, then either, a different reason must be found, and the
postulate must be withdrawn.

This opens up the possibility of a logical modification to quantum theory,
where quantum theory remains open to unitarity, but where, that unitarity (or
self-adjointness) is not axiomatically imposed by Postulate.

As a further possibility, that modified quantum theory would be open to lo-
gical independence, entering from elementary algebra, well-known to Mathematical
Logic.
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