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Good candidates to be pairs of consecutive primes with gap n=p-1 are the 
pairs in the set [k(q#)-p  k(q#)-1] where p>3 is prime, q# is the primorial of the 
highest prime q immediately lower than p and k a multiplying natural: in fact:

• no prime lower than p could sieve either one in the pair
• each odd in between is instead sieved by one of the primes lower than p.

Not all the primes with gap n need to belong to such set, nor all the pairs in 
such set are pair of primes, but it is sufficient to prove that infinitely many of them 
are both primes.

For that purpose, we need that both k(q#)-p and k(q#)-1 are primes for 
infinitely many k.

In order not to be primes, they need to be sieved by at least one prime greater 
than q. 

In fact, every prime r higher than q does sieve one of such candidate pairs, in 
at least one of its two positions, twice every r candidates, thus not sieving r-2 pairs 
every r candidates.

Then, in order to compute how many candidate pairs are not sieved by any of 
such infinitely many primes greater than q, one needs to compute the product of the 
infinitely many fractions r-2/r over all the primes r greater than q.

When r tends to the infinity, both the numerator and the denominator of such 
product tend to the infinity with the same strength (even if their fraction tends to be 
infinitesimal towards zero, quite slowly indeed, because r-2/r tends to increase 
toward 1 when q increases). 

Thus, when the denominator tends to the infinity, also the numerator does, 
proving that there are infinitely many pairs of primes with gap n=p-1>2 not sieved 
by any lower prime, then proving the conjecture.


