Polignac conjecture is true for n=10

Diego Liberati Consiglio Nazionale delle Ricerche

An interesting occurrence of a gap 10 between consecutive primes is the pair (409 419), belonging to the infinite set of pairs (210k-11 210k-1): they are good candidates to be consecutive primes whit gap 10 because:

- 210k-9, 210k-7, 210k-5 and 210k-3 need to be composite being 210 a multiple of 3, 5 and 7;
- neither 3 nor 5 nor 7 could sieve either one in the pair, for the same reason.

Not all the primes with gap 10 need to belong to such set, nor all the pairs in such set are pair of primes, but it is sufficient to prove that infinitely many of them are both primes.

For that purpose, we need that both 210k-11 and 210k-1 are primes for infinitely many k.

In order not to be primes, they need to be sieved by at least one prime p greater than 7.

In fact, every prime p higher than 7 does sieve one of such candidate pairs, in at least one of its two positions, 2 times every p candidates, thus not sieving p-2 pairs every p candidates.

Then, in order to compute how many candidate pairs are not sieved by any of such infinitely many primes greater than 7, one needs to compute the product of the infinitely many fractions p-2/p over all the primes p greater than 7.

When p tends to the infinity, both the numerator and the denominator of such product tend to the infinity with the same strength (even if their fraction tends to be infinitesimal towards zero, quite slowly indeed, because p-2/p tends to increase toward 1 when p increases).

Thus, when the denominator tends to the infinity, also the numerator does, proving that there are infinitely many pairs of primes with gap 10 not sieved by any lower prime, then proving the conjecture.