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Abstract

The adaptive rejection sampling (ARS) algorithm is a universal random gen-
erator for drawing samples efficiently from a univariate log-concave target
probability density function (pdf). ARS generates independent samples from
the target via rejection sampling with high acceptance rates. Indeed, ARS
yields a sequence of proposal functions that converge toward the target pdf,
so that the probability of accepting a sample approaches one. However, sam-
pling from the proposal pdf becomes more computational demanding each
time it is updated. In this work, we propose a novel ARS scheme, called
Cheap Adaptive Rejection Sampling (CARS), where the computational ef-
fort for drawing from the proposal remains constant, decided in advance by
the user. For generating a large number of desired samples, CARS is faster
than ARS.

Key words: Monte Carlo methods, Rejection Sampling, Adaptive
Rejection Sampling

1. Introduction

Random variate generation is required in different fields and several ap-
plications [Devroye, 1986, Hörmann et al., 2003, Robert and Casella, 2004].
Rejection sampling (RS) [Robert and Casella, 2004, Chapter 2] is a universal
sampling method which generates independent samples from a target prob-
ability density function (pdf). The sample is either accepted or rejected by
an adequate test of the ratio of the two pdfs. However, RS needs to establish
analytically a bound for the ratio of the target and proposal densities.
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Given a target density, the adaptive rejection sampling (ARS) method
[Gilks and Wild, 1992, Gilks, 1992] produces jointly both a suitable proposal
pdf and the upper bound for the ratio of the target density over this proposal.
Moreover, the main advantage of ARS is that ensures high acceptance rates,
since ARS yields a sequence of proposal functions that actually converge
toward the target pdf when the procedure is iterated. The construction of the
proposal pdf is obtained by a non-parametric procedure using a set of support
points (nodes), with increasing cardinality. When a sample is rejected in the
RS test, it is added to the set of support points. One limitation of ARS is that
it can be applied only with (univariate) log-concave target densities.1 For this
reason, several extensions have been proposed [Hörmann, 1995, Hirose and
A.Todoroki, 2005, Evans and Swartz, 1998, Görür and Teh, 2011, Martino
and Mı́guez, 2011], even mixing with MCMC techniques [Gilks et al., 1995,
Martino et al., 2013, 2015a]. A related RS-type method, automatic but non-
adaptive, that employs a piecewise constant construction of the proposal
density obtained with a pruning of the initial nodes, has been suggested in
[Martino et al., 2015b].

In this work, we focus on the computational cost required by ARS. The
ARS algorithm obtains high acceptance rates improving the proposal func-
tion, which becomes closer and closer to target function. Hence, this en-
hancement of the acceptance rate is obtained building more complex propos-
als, which become more computational demanding. The overall time of ARS
depends on both the acceptance rate and the time required for sampling from
the proposal pdf. The computational cost of ARS remains bounded since the
probability of updating the proposal pdf, Pt, vanishes to zero as the num-
ber of iterations t grows. However, for a finite t, there is always a positive
probability Pt > 0 of improving the proposal function, producing an increase
of the acceptance rate. This enhancement of the acceptance rate could not
balance out the increase of the time required for drawing from the new up-
dated proposal function. Namely, if the acceptance rate is enough close to 1,
a further improvement of the proposal function could become prejudicial.

Thus, we propose a novel ARS scheme, called Cheap Adaptive Rejection
Sampling (CARS), employing always a fixed number of nodes, i.e., the com-

1The possibility of applying ARS for drawing for multivariate densities depends on the
ability of constructing a sequence of non-parametric proposal pdfs in higher dimensions.
See, for instance, the piecewise constant construction in [Martino et al., 2015a] as a simpler
alternative procedure.
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putational effort required for sampling from the proposal remains constant,
selected in advance by the user. The new technique is able to increase the
acceptance rate on-line in the same fashion of the standard ARS method,
improving adaptively the location of the support points. The configuration
of the nodes converges to the best possible distribution which maximizes the
acceptance rate achievable with a fixed number of support points. Clearly,
the maximum obtainable acceptance rate with CARS is always smaller than
1, in general. However, for large value of required samples, the CARS algo-
rithm is faster than ARS for generating independent samples from the target,
as shown the numerical simulations.

2. Adaptive Rejection Sampling

We denote the target density as

π̄(x) =
1

cπ
π(x) =

1

cπ
exp

(
V (x)

)
, x ∈ X ⊆ R,

with cπ =
∫
X π(x)dx. The adaptive proposal pdf is denoted as

q̄t(x) =
1

ct
qt(x) =

1

cπ
exp

(
Wt(x)

)
,

where ct =
∫
X qt(x)dx and t ∈ N. In order to apply rejection sampling (RS),

it is necessary to build qt(x) as an envelope function of π(x), i.e.,

qt(x) ≥ π(x), or Wt(x) ≥ V (x), (1)

for all x ∈ X and t ∈ N. As a consequence, it is important to observe that

ct ≥ cπ, ∀t ∈ N. (2)

Let us assume that V (x) = log π(x) is concave, and we are able to evaluate
the function V (x) and its first derivative V ′(x).2 The adaptive rejection

2The evaluation of V ′(x) is not strictly necessary, since the function qt(x) can also
construct using a derivative-free procedure (e.g., see [Gilks, 1992] or the piecewise con-
stant construction in [Martino et al., 2015a]). For the sake of simplicity, we consider the
construction involving tangent lines.
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sampling (ARS) technique [Gilks, 1992, Gilks and Wild, 1992] considers a
set of support points at the t-th iteration,

St = {s1, s2, . . . , smt} ⊂ X ,

such that s1 < . . . < smt and mt = |St|, for constructing the envelope
function qt(x) in a non-parametric way. We denote as wi(x) as the straight
line tangent to V (x) at si for i = 1, . . . ,mt. Thus, we can build a piecewise
linear function,

Wt(x) = min[w1(x), . . . , wmt(x)], x ∈ X . (3)

Hence, the proposal pdf defined as q̄t(x) ∝ qt(x) = exp(Wt(x)), is formed by
exponential pieces in such a way that Wt(x) ≥ V (x), so that qt(x) ≥ π(x),
when V (x) is concave (i.e., π(x) is log-concave). Figure 1 depicts an example
of piecewise linear function Wt(x) built with mt = 3 support points.

€ 

s1

€ 

s2

€ 

s3

€ 

w1(x)€ 

w2 (x)

€ 

w3(x)

€ 

V (x)

€ 

Wt (x)

Figure 1: Example of construction of the piecewise linear function Wt(x) with mt = 3
support points, such that Wt(x) ≥ V (x).

Table 1 summarizes the ARS algorithm for drawing N independent sam-
ples from π̄(x). At each iteration t, a sample x′ is drawn from q̄t(x) and

accepted with probability π(x′)
qt(x′)

, otherwise is rejected. Note that a new point
is added to the support set St whenever it is rejected in the RS test improv-
ing the construction of qt(x). Clearly, denoting as T the total number of
iterations of the algorithm, we have always T ≥ N since several samples are
discarded.
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Table 1: Adaptive Rejection Sampling (ARS) algorithm.
Initialization:

1. Set t = 0 and n = 0. Choose an initial set S0 = {s1, . . . , sm0}.

Iterations (while n < N):

2. Build the proposal qt(x), given the set of support points St =
{s1, . . . , smt}, according to Eq. (3).

3. Draw x′ ∼ q̄t(x) ∝ qt(x) and u′ ∼ U([0, 1]).

4. If u′ > π(x′)
qt(x′)

, then reject x′, update

St+1 = St ∪ {x′},

and set t = t+ 1. Go back to step 2.

5. If u′ ≤ p(x′)
πt(x′)

, then accept x′, setting xn = x′.

6. Set St+1 = St, t = t+ 1, n = n+ 1 and return to step 2.

Outputs: The N accepted samples x1, . . . , xN .

3. Computational cost of ARS

The computational cost of an ARS-type method depends on two elements:

1. The averaged number of accepted samples, i.e., the acceptance rate.

2. The computational effort required for sampling from qt(x).

We desire that the acceptance rate is close to 1 and, simultaneously, that the
spent time required for drawing from qt(x) is small. In general, there exists
a trade-off since an increase of the acceptance rate requires the use of a more
complicated proposal density qt(x). ARS is an automatic procedure which
provides a possible compromise. Below, we analyze some important features
of a standard ARS scheme.

5



3.1. Acceptance rate

The averaged number of accepted samples, i.e., the acceptance rate, is

ηt =

∫
π(x)

qt(x)
q̄t(x)dx =

cπ
ct
, (4)

that is 0 ≤ ηt ≤ 1 since ct ≥ cπ, ∀t ∈ N, by construction. Defining the L1

distance between πt(x) and p(x) as

D(qt, π) = ‖qt(x)− π(x)‖1 =

∫
X
|qt(x)− π(x)|dx, (5)

ARS ensures that D(qt, π)→ 0 when t→∞, and as a consequence ct → cπ.
Thus, ηt tends to one as t→∞. Indeed, as ηt → 1, ARS becomes virtually
an exact sampler after a some iterations.

3.2. Drawing from the proposal pdf

Let us denote the exponential pieces as

hi(x) = ewi(x), i = 1, . . . , N, (6)

so that

qt(x) = hi(x), for x ∈ Ii = (ei−1, ei], i = 1, . . . , N,

where ei is the intersection point between the straight lines wi(x) and wi+1(x),
for i = 2, . . . , N − 1, and e0 = −∞ and eN = +∞ (if X = R). Thus, for
drawing a sample x′ from q̄t(x) = 1

ct
qt(x), we need to:

1. Compute analytically the area Ai below each exponential piece, i.e.,
Ai =

∫
Ii hi(x)dx and obtain the normalized weights

ρi =
Ai∑N
n=1An

=
Ai
ct
, (7)

where we have observed that ct =
∑N

n=1An =
∫
X qt(x)dx.

2. Select an index j∗ (namely, one piece) according to the probability mass
ρi, i = 1, . . . , N .
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3. Draw x′ from hj∗(x) restricted within the domain Ij∗ = (ej∗−1, ej∗ ], and
zero outside (i.e., from a truncated exponential pdf).

Observe that, at step 2, a multinomial sampling is required. It is clear that
the computational cost for drawing one sample from qt(x) increases as the
number of pieces grows or, equivalently, the number of support points grows.
Fortunately, the computational cost in ARS is automatically controlled by
the algorithm, since the probability of adding a new support point

Pt = 1− ηt =
1

ct
D(qt, π), (8)

tends to zero as t → ∞, since the distance in Eq. (5) vanishes to zero, i.e.,
D(qt, π)→ 0.

4. ARS with fixed number of support points

We have seen that the probability of adding a new support point Pt van-
ishes to zero as t → ∞. However, for a finite t, we have always a positive
probability Pt > 0 of adding a new point (although small), so that a new
support point could be incorporated producing an increase of the acceptance
rate. After a certain iteration τ , i.e., t > τ , this improvement of the ac-
ceptance rate could not balance out the increase of the time required for
drawing from the proposal, due to the addition of the new point. Namely,
if the acceptance rate is enough close to 1, a further addition of a support
point could slow down the algorithm, becoming prejudicial.

In this work, we provide an alternative adaptive procedure for ARS, called
Cheap Adaptive Rejection Sampling (CARS), which uses a fixed number of
support points. When a sample is rejected, a test for swapping the rejected
sample with the closest support point within St is performed, so that the total
number of points remains constant. Unlike in the standard ARS method, in
the new adaptive scheme the test is deterministic. The underlying idea is
based on the following observation. The standard ARS algorithm yields
a decreasing sequence of normalizing constants {ct}t∈N of the proposal pdf
converging to cπ =

∫
X π(x)dx, i.e.,

c0 ≥ c1 . . . ≥ ct . . . ≥ c∞ = cπ. (9)

Clearly, since the acceptance rate is ηt = cπ
ct

this means that ηt → 1. In
CARS, we provide an alternative way for producing this decreasing sequence
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of normalizing constants {ct}. Indeed, an exchange between two points is
accepted if it produces a reduction in the normalizing constant of the corre-
sponding proposal pdf. More specifically, consider the set

St = {s1, s2, . . . , sM},

contained M support points. When a sample x′ is rejected in the RS test,
the closest support point s∗ in St is obtained, i.e.,

s∗ = arg min
si∈St
|si − x′|.

We recall that we denote with qt(x) the proposal pdf built using St and with
ct its normalizing constant. Then, we consider a new set

G = St ∪ {x′}\{s∗}, (10)

namely, including x′ and removing s∗. We denote with g(x) the proposal
built using the alternative set of support points G, and cg =

∫
X g(x)dx. If

cg < ct,

then the swap is accepted, i.e., we set St+1 = G for the next iteration, oth-
erwise the set remains unchanged, St+1 = St. The complete algorithm is
outlined in Table 2. Note that ct is always computed (in any case, for both
ARS and CARS) at the step 3, for sampling from qt(x). Furthermore ob-
serve that, after the first iteration, step 2 can be skipped since the new
proposal pdf qt+1(x) has been already constructed in the previous iteration,
i.e., qt+1(x) = qt(x), or at step 4.3, i.e., qt+1(x) = g(x).

Therefore, with the CARS algorithm, we obtain again a decreasing se-
quence of {ct}t∈N

c0 ≥ c1 . . . ≥ ct . . . ≥ c∞,

but c∞ 6= cπ so that ηt → η∞ < 1, in general. The value η∞ is the highest
acceptance rate that can be obtained with M support points, given the target
function π(x). Therefore, CARS yields a sequence of sets S1, . . . ,St, . . . that
converges to the stationary set S∞ containing the best configuration of M
support points for maximizing the acceptance rate, when the target function
is π(x) and given a specific construction procedure for the proposal qt(x).3

3The best configuration S∞ depends on the specific construction procedure employed
for building the sequence of proposal functions q1, q2 . . . , qt, . . .
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Table 2: Cheap Adaptive Rejection Sampling (CARS) algorithm.
Initialization:

1. Set t = 0 and n = 0. Choose a value M and an initial set S0 =
{s1, . . . , sM}.

Iterations (while n < N):

2. Build the proposal qt(x), given the current set St, according to Eq.
(3) or other suitable procedures.

3. Draw x′ ∼ q̄t(x) ∝ qt(x) and u′ ∼ U([0, 1]).

4. If u′ > π(x′)
qt(x′)

, then reject x′ and:

4.1 Find the closest point s∗ in St,

s∗ = arg min
si∈St
|si − x′|.

4.2 Build the alternative proposal g(x) based on the set of points

G = St ∪ {x′}\{s∗}

and compute cg =
∫
X g(x)dx.

4.3 If cg < ct, set St+1 = G, otherwise, if cg ≥ ct, set St+1 = St.
Set t = t+ 1 and go back to step 2.

5. If u′ ≤ p(x′)
πt(x′)

, then accept x′, setting xn = x′.

6. Set St+1 = St, t = t+ 1, n = n+ 1 and return to step 2.

Outputs: The N accepted samples x1, . . . , xN .

5. Numerical simulations

We consider a Gaussian density as (typical) log-concave target pdf and
test both ARS and CARS. Namely, we consider

π̄(x) ∝ π(x) = exp

(
− x2

2σ2

)
, x ∈ R,
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with σ2 = 1
2
. We compare ARS and CARS in terms of the time required

for generating N ∈ {5000, 1000} samples. In all cases and both techniques,
we consider a initial set of support points S0 = {s1, . . . , s0} with cardinality
m0 = |S0| ∈ {3, 5, 10} (clearly, M = m0 in CARS) where the initial points
are chosen uniformly in [−2, 2] at each simulation, i.e., si ∼ U([−2, 2]).4

We run 500 independent simulations for each case and compute the re-
quired time for generating N samples (using a Matlab code), the averaged
number of final support points (denote as E[mT ]) and the acceptance rate
reached in the final iteration (denoted as E[ηT ]; averaged over the 500 runs),
for both techniques. Table 3 shows the results. The time is normalized with
respect to the time spent by ARS with N = 5000, |S0| = 3. The results show
that CARS is always faster than ARS. We can observe that both methods
obtain acceptance rates close to 1. CARS reaches acceptance rates always
greater of 0.87 using only 3 nodes. CARS obtains an more than 0.98 employ-
ing only 10 nodes and after generating N = 5000 independent samples. Fig.
2 depicts the wasted time, the final acceptance rate and the final number of
nodes, as function of number N of generated samples. We can observe that
CARS is significantly faster than ARS when N grows, owing to ARS yields
a sensible increase of the number of support points that corresponds to an
infinitesimal increase of the acceptance rate, whereas CARS the number of
nodes remains constant. Figure 3 shows a sequence of proposal pdfs con-
structed by CARS, using 3 nodes and starting with S0 = {−1.5,−1, 1.8}.
The L1 distance D(qt, π) is reduced progressively and the acceptance rate
improved. The final set of support point is St = {−1.0261,−0.0173, 1.0305},
close to the optimal one S∞ = {−1, 0, 1}.
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W. Hörmann, J. Leydold, and G. Derflinger. Automatic nonuniform random
variate generation. Springer, 2003.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
2004.

W. R. Gilks and P. Wild. Adaptive Rejection Sampling for Gibbs Sampling.
Applied Statistics, 41(2):337–348, 1992.

W. R. Gilks. Derivative-free Adaptive Rejection Sampling for Gibbs Sam-
pling. Bayesian Statistics, 4:641–649, 1992.

L. Martino, J. Read, and D. Luengo. Independent doubly adaptive rejection
Metropolis sampling within Gibbs sampling. IEEE Transactions on Signal
Processing, 63(12):3123–3138, 2015a.

11



1 2 3 4 5
x 104

0

2

4

6

8

10

12

N

Required Time

 

 

ARS
CARS

(a)

1 2 3 4 5
x 104

0.6

0.8

1

N

Final Acceptance Rate

 

 

ARS
CARS

(b)

1 2 3 4 5
x 104

0

20

40

60

N

Final number of support points

 

 

ARS
CARS

(c)

Figure 2: (a) Spent time, (b) final acceptance rate, and (c) final number of support
points, as function of the number N of drawn samples, for ARS (squares) and CARS
(triangles).
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Figure 3: Example of sequence of proposal pdfs obtained by CARS, starting with S0 =
{−1.5,−1, 1.8}. We can observe that the L1 distance D(qt, π) is reduced progressively.
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