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1 Introduction

Decoding the nature of Dark Matter is one of the most enigmatic problems in Physics currently.
Recent experimental observations estimate that the dark matter content of the universe can be
given by the density Ωbh

2 = 0.1123±0.0035. However no conclusive experimental detection of Dark
Matter has been found yet, and it is important to build a theoretical model for Dark Matter that
can produce interesting experimental insights.

This report contains a review of the Thermal WIMP model of Dark Matter, specifically highlighting
the derivation of the basic equation using Boltzmann Equation and some results from Cosmology.
The treatment begins with re-derivation of some elementary results and assumption of some more
involved results to finally reach the relevant equation. We then proceed to the solution of the
equation, first analytically under some restrictive assumptions and then to a numerical solution.
Finally we go on to construct an improved numerical solution considering the time evolution of all
the parameters involved, mirroring a result which has been published very recently[4].

2 The Thermal WIMP Model

2.1 Boltzmann Equation

The set of all possible positions of ~q and ~p is called the phase space of the system. We define a
probability density function f(~q, ~p, t), such that at any instant of time t, the number of particles in
a small phase space volume d3~qd3~q is given by

dN ∝ f(~q, ~p, t)d3~qd3~q

The simplest non-trivial Hamiltonian studied in Kinetic theory is

H(~p1, ~p2, ..., ~pN , ~q1, ~q2, ..., ~qN ) =

N∑
i=2

[
~pi

2

2m
+ U(~qi)] +

1

2

N∑
i,j=1

V(~qi − ~qj)

Note: Here we consider the classical kinetic energy of N particles, each of mass m, in an external
potential U and a two-body interaction V between the particles.

Consider particles described by f, each experiencing an external force ~F not due to other particles.
Say, at time t, dN particles were within d3~qd3~p volume around ~q, ~p, then at time t + ∆t, the new
position will be ~q + ∆~q = ~q + ∆t

m ~p; the new momentum will be ~p+ ∆~p = ~p+ ~F∆t.

Now,

q′i = qi + q̇i∆t+O(∆t)2 ⇒ dq′i = dqi +
∂q̇i
∂qi

dqi∆t+O(∆t)2

p′i = pi + ṗi∆t+O(∆t)2 ⇒ dp′i = dpi +
∂ṗi
∂pi

dpi∆t+O(∆t)2

Thus,

d3~q′d3~p′ =

3∏
i=1

dq′idp
′
i

=

3∏
i=1

dqidpi[1 + (
∂q̇i
∂qi

+
∂ṗi
∂pi

)∆t+O(∆t)2]

(1)

Again, using Hamilton’s equations,

∂q̇i
∂qi

=
∂

∂qi
(
∂H
∂pi

) =
∂2H
∂pi∂qi

=
∂

∂pi
(
∂H
∂qi

) = −∂ṗi
∂pi
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Using the above result in (1), and neglecting second order terms of ∆t, we get

d3~q′d3~p′ = d3~qd3~p

This means that dN particles are transported to the vicinity of ~q′, ~p′ within a spread of volume
which is same as the volume spread in the phase space initially. Thus the density doesn’t change
with time if we follow a particular set of initial points, much like an incompressible fluid. However,
this was explained assuming no collision.

In the absence of collision, the phase space density function must satisfy the condition that

f(~q′, ~p′, t+ ∆t)d3~qd3~p = f(~q, ~p, t)d3~qd3~p

However, now if we include the effect of collision, the collection of phase points that we were following
will manifest a change in the particle density in the phase space volume d3~qd3~p. The change in the
number of particles in the vicinity of a particular point in the 6N-dimensional phase space is given
by

dNcoll = (
∂f

∂t
)coll∆td

3~q~p

= f(~q′, ~p′, t+ ∆t)d3~qd3~p− f(~q, ~p, t)d3~qd3~p

= ∆fd3~qd3~p

(2)

Dividing both sides of eq(1) by d3~qd3~p∆t and taking the infinitesemal limits, we get,

df

dt
= (

∂f

∂t
)coll

In Hamiltonian mechanics the above result can be succinctly captured in the operator notation,

L[f ] = C[f ] (3)

where L is the Liouville operator which determines how the phase space density function evolves
and C is the collision operator which is captures the effect of collision in the evolution of the phase
space density.

The generalization of L to general relativity is given by

L = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα

where Γαβγ is the Christoffel symbol. The metric used in standard Cosmology is the so called FRW
metric, in which the distribution has the property f(~q, ~p, t) = f(|~p|, t). It can be shown that the
Liouville operator then reduces to the form

L = E
∂

∂t
−Hp2 ∂

∂E
(4)

where H is the Hubble constant (H = ȧ
a , a being the scale factor in cosmology). We will return to

the form of the Collision operator after a short discussion on the evolution of the early universe.

2.2 Evolution of the early universe

We discuss in short about the thermal history of the universe in its first few minutes. The discussion
will be largely qualitative and we will just list out many results without proof.

The two important parameters that should be kept in mind while discussing the thermal history
of the universe are the rate of interactions (Γ) and the rate of expansion of the universe (Hubble’s
constant or H). When Γ � H, the time scale of the system allows it to go interact with each
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other and reach equilibrium without much effect of the expansion of the universe. However, as the
universe cools, Γ decreases faster than H, and hence at one point of time, the particles can decouple
from the thermal bath which is in equilibrium, as the particles may have moved so far apart that
they can’t interact with each other. This is the basic premise of the thermal WIMP model of Dark
Matter. In this model, these DM particles are thought to be weakly interacting massive particles
which decoupled from the thermal bath early during the evolution of the universe; what we estimate
to be the DM density is nothing but the ’cold’ relic of the once ’hot’ WIMPs.

For the purpose of our calculation we need the following results. Let T be the temperature of the
photon gas. The total radiation density is the sum over the energy densities of the relativistic species
only

ρr =
∑
i

=
π2

30
geff (T )T 4 (5)

The sum over particles may receive tow contributions:

• Relativistic species in thermal equilibrium with the photons, Ti = T � mi,

gtheff (T ) =
∑
bosons

gi +
7

8

∑
fermions

gi

When the tempertaure drops below the mass mi of the particle species it becomes non-relativistic
and is removed from the sum above. Away from mass thresholds, the thermal contributions is
independent of the temperature.

• Relativistic species which are not in thermal equilibrium with the photons; for the decoupled
species having a different temperature Ti, we have

gdeceff (T ) =
∑
bosons

gi(
Ti
T

)4 +
7

8

∑
fermions

gi(
Ti
T

)4

A similar expression can be written for the entropy density as well, for which we get

s =
2π2

45
heff (T )T 3 (6)

Now as before we can define heff = htheff + hdeceff , with htheff = gtheff ; and for the contribution from
decoupled species we get

hdeceff (T ) =
∑
bosons

gi(
Ti
T

)3 +
7

8

∑
fermions

gi(
Ti
T

)3 6= gdeceff (T )

As can be seen, for finding out both the energy density and the entropy density of the universe, it is
important to find out the contributions from all the particles available. In Table 1, we list out the
particles and their degrees of freedom in the standard model of particle physics.

For latter analysis, we require the exact form of how the geff varies with temperature. For this I have
taken data points from M. Laine’s paper[2]. Figure 1 shows the variation of heff with temperature.

2.3 From equilibrium to decoupling

The parameter that we are concerned about is the time evolution of the number density of a particle
species, in this case the candidate Dark Matter particle. We need an equation that governs the
evolution of the number density of the DM particle which was initially in equilibrium with the
thermal bath but which decoupled at some point during the evolution of the universe. More so, the
final relic density of the remaining Dark matter must satisfy the observational results.
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Table 1: The Standard Model Zoo[1]

Type Mass Spin g

quarks

t, t 173 GeV

0.50 2.2.3=12

b, b 4 GeV
c, c 1 GeV
s, s 100 MeV

d, d 5 MeV
u, u 2 MeV

gluons g 0 1.00 8.2=16

leptons

τ± 1777 MeV

0.50 2.2 + 2.1=6

µ± 106 MeV
e± 511 KeV

ντ , ντ < 0.6 eV
νµ, νµ < 0.6 eV
νe, νe < 0.6 eV

gauge bosons

W+ 80 GeV

1.00
3W− 80 GeV

Z0 91 GeV
γ 0 2

Higgs boson H0 125 GeV 0.00 1

Figure 1: The evolution of heff with x, where x=m/T, m=100 GeV
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The number density is given by

n =

∫
f(p, t)

gd3p

(2π)3

In order to get the evolution equation for n, eq (3) is to be integrated over the particle momenta
and summed over the spin degrees of freedom.

For the simple Thermal WIMP model we consider the computation for the case of annihilation of
the DM particle and its antiparticle to produce standard model particles which are immediately gets
into equilibrium with the thermal bath. Hence we are basically considering the interaction

χ+ χ↔ s+ s

For the sake of generality, we present the computations for the case of annihilations of two particles,
1 and 2, into two others, 3 and 4. At the end, we can infact sum over all possible final results
(channels). By integrating the Boltzmann equation by parts (3) over the particle momenta, it can
be rewritten as

g1

∫
C[f ]

d3p1

(2π)3E1
=

1

a3

d

dt
(a3n1) = ṅ1 + 3Hn1 (7)

Note, in the above calculation we are following the evolution of particle 1. Also, it is important to

note that we are implicitly using the fact that ṅ1 =
∫ df(E1,t)

dt
g1d

3p
(2π)3 =

∫ ∂f(E1,t)
∂t

g1d
3p

(2π)3 . This is so

because ∂E1

∂t = 0 as we are considering a system where there is no external force.

We need to understand the collision term for further analysis. We provide a heuristic explanation
of first the collision operator followed by a discussion on the form of the LHS of eq(5). The collision
term is given by:

C[f(p1)] =
1

2

∑
spins

∫∫∫
(2π)4δ4(p1 + p2 − p3 − p4)

×[W (p1, p2 → p3, p4)f(p1)f(p2)(1± f(p3))(1± f(p4))

−W (p3, p4 → p1, p2)f(p3)f(p4)(1± f(p1))(1± f(p2))]× dΠ2dΠ3dΠ4

(8)

A few things to note here: the 4-fold δ function ensures conservation of the 4-momentum in the
collision process. Secondly, we are integrating over the relativistic phase space volume where the

volume element is given by dΠ = g 1
(2π)3

d3p
2E . Also, W here refers to the collision probability which

is given by the squared matrix element of the Transition Matrix. The ± sign refers to the effect of
the nature of the particles (bosons or fermions) on the collision. Heuristically, this makes sense as
in the equation we are taking care of the effect of ’in’ and ’out’ of the particles in the phase space.

We can now express eq(5) as

ṅ1 + 3Hn1 =
∑
spins

∫∫∫∫
(2π)4δ4(p1 + p2 − p3 − p4)

×[W (p1, p2 → p3, p4)f(p1)f(p2)(1± f(p3))(1± f(p4))

−W (p3, p4 → p1, p2)f(p3)f(p4)(1± f(p1))(1± f(p2))]× dΠ1dΠ2dΠ3dΠ4

(9)

We now employ some assumptions to simplify the integral that we have to solve in eq(5).

1. We neglect statistical factors. For massive particles decoupling early during the evolution of the
universe, we can be fairly certain that Bose condensation or Fermi degeneracy doesn’t arise we can
replace the Fermi-Dirac and Bose-Einstein statistics by Maxwell Boltzmann and neglect the blocking
and stimulated emission factors.

2. By CP-invariance, it can be argued that W (p1, p2 → p3, p4) = W (p3, p4 → p1, p2). We assume
that the interaction χ+ χ↔ s+ s there is no CP violation. A more useful relation is the unitarity
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of the transition matrix:∑
spins

∫∫∫∫
(2π)4δ4(p1 + p2 − p3 − p4)W (p1, p2 → p3, p4)dΠ3dΠ4 =

∑
spins

∫∫∫∫
(2π)4δ4(p1 + p2 − p3 − p4)W (p3, p4 → p1, p2)dΠ3dΠ4

(10)

We now define the cross section times velocity for the relevant interaction as:∑
spins

∫∫∫∫
(2π)4δ4(p1 + p2 − p3 − p4)W (p1, p2 → p3, p4)dΠ3dΠ4 =

4E1E2g1g2vmσ1,2→3,4

(11)

where vm = [(p1.p2)2 −m2
1m

2
2]1/2, i.e. the Moller velocity is defined in a way to make the quantity

vmn1n2 Lorentz invariant. The factor g1g2 arises because of the averaging of all the spins. For all
processes 1 + 2→ anything we can replace σ1,2→3,4 by σ.

3. We assume that the standard model particles thus formed are in kinetic and chemical equilibrium,
which means that as soon as they are produced, they go into equilibrium with other particles; hence
their distributions can be replaced by their equilibrium (MB) distribution : f3f4 = feq3 feq4

4. In equilibrium, if we assume MB distribution and impose energy conservation, we get feq1 feq2 =
feq3 feq4

Now using all the above results in eq(5), we eq(7) reduces to the form:

ṅ1 + 3Hn1 = −
∫∫

σvm(dn1dn2 − dneq1 dn
eq
2 ) (12)

We now use the following argument to simplify the expression. We assume that 1,2 remain in
kinetic equilibrium even when it deviates from chemical equilibrium. In that case it can be deduced
from symmetry arguments that the distribution functions in kinetic equilibrium is proportional to
the distribution function in chemical equilibrium with a proportional factor which is independent of
momentum; hence the factor f1f2

feq
1 feq

2
can be taken out of the integral, so that we will get the following

equation

ṅ1 + 3Hn1 = − < σvm > (n1n2 − neq1 n
eq
2 ) (13)

where

< σvm >=

∫∫
σvmdn

eq
1 dn

eq
2∫∫

dneq1 dn
eq
2

Our basic aim is to solve eq (12) for the interaction χ+ χ→ s+ s to find out the evolution of DM
particles and find the relic density.

3 Solution of the number density evolution equation

3.1 Approximate analytic solution

We first recast eq(12) by change of variables. We assume similar DM particles (χ is the same as χ)
colliding to give SM particles. We first define Y = n

s and x = m
T . Then Y is a proxy variable for the

number density and x is the proxy variable for time or consequently the temperature of the universe
(inverse). We then get from eq(12)

dY

dx
=

1

3H

ds

dx
< σvm > (Y 2 − Y eq2)
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Here
Yeq =

neq
s

=
g

(2π)3/2
x3/2e−x

In the FRW universe, we know

H = (
8

3
πGρ)1/2

With above result, (5) and (6), we arrive at the following form of equation for the evolution of Y,

dY

dx
= −(

45G

π
)−1/2 g

1/2
∗

x2
< σvm > (Y 2 − Y eq2) (14)

Here we define

g
1/2
∗ =

heff

g
1/2
eff

(1 +
1

3

T

heff

dheff
dT

)

We intend to find Y∞; for that we may assume that Y � yeq for fx� xf . Hence we get

1

y∞
≈ 1

y(xf )
+

√
π

45G
m

∫ ∞
xf

dx
< σvm >

x2

√
g∗(x)

Neglecting 1
y(xf ) and assuming < σvm > to be constant we get the result

Y∞ ≈

√
45G

πg∗(xf )

xf
m

1

< σvm >

The relic density is given by

Ωh2 =
s0Y∞mh

2

ρcrit

In the above results, if we put the present entropy density to be 2890cm2, g∗(xf ) ≈ 100, ρcrit =
1.05× 10−5h2GeV cm−3, xf ≈ 20 (the reason behind taking xf in this way will be clear in the next
section) and take the mass of each particle to be ≈ 100GeV , then we can match the relic density
Ωh2 = 0.1126 with the interaction strength of < σvm >≈ 2× 10−26cm3/s. The interaction strength
is approximately the same as the interaction cross section that we expect from Weak interaction.

This is sometimes referred to as the ’WIMP Miracle’ as the relic density is exactly matched by
massive particles interacting with a cross section similar to that of Weak Interaction.

3.2 Preliminary Numerical Solution

Here we develop a numerical method to find the evolution of the WIMPs. We start by the equation

dY

dx
= − s(m)

H(m)

<σvm>

x2
(Y 2 − Y 2

eq) (15)

We then shift the x-dependent prefactor by defining a variable

y =
s(m)

H(m)
<σvm>Y = λY

Then the above equation reduces to

dy

dx
= − 1

x2
(y2 − y2

eq) (16)

with
yeq = 0.290

m
√
g∗
√

8πG
< σvm > x3/2e−x
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Figure 2: The evolution of y with x = m/T for m = 100 GeV, for three different cross sections of
interaction

We are assuming the DM particles to be Majorana fermions with 2 degrees of freedom.

We do the numerical analysis in two parts so that it doesn’t blow up [the Mathematica code is
attached in appendix A]. The analysis is done for 100 GeV WIMPs for three different cross sections
10−9,10−10,10−11 GeV −2. [viz. Fig 2]

Here it is evident that at xf ≈ 20, the number density falls to its relic value, without much depen-
dence on the cross section at all.

A more suggestive way to plot the graph that shows how the relic density decreases with increasing
cross section is given below:

Figure 3: The evolution of y with x = m/T for m = 100 GeV, for two different cross sections of
interaction

3.3 Improved numerical analysis

We now present an improved numerical analysis mirroring a result that has been published very
recently[4]. Here we take into account the evolution of g and h with time and that leads to some

8



interesting results. We recast the well known evolution equation by means of another substitution
W = lnY , to get

dW

dx
=

λ

x2
[1 +

1

3

d(lnh)

d(lnT )
]
h

g1/2
(e(2Weq−W ) − eW ) (17)

Here λ = 2.76 × 1035m < σvm > and Weq = lnYeq, with Yeq = 0.290x
3/2e−x

h (m in GeV, and
< σvm > in cm3s−1). We now estimate, given the mass of each DM particle what should be the
cross section to match the relic density of DM.

The mathematica code is attached in Appendix B. The basic idea of the numerical approach is to
first reduce the stiffness of the original equation by necessary variable changes, then import the
result of variation of g and h with T from the text file generated by M. Laine et al[3] and finally
solve the equation with the degrees of freedom as dynamic parameters. This analysis is done for
a given mass for a given range of cross sections, and then the cross section that matches the final
relic density (here it is taken to be Ωbh

2 = 0.11) is chosen. This process is iterated over a range of
masses of DM particles. Finally we plot the required cross section for a given mass of DM particle
in Fig. 4.

Figure 4: The variation of cross section with DM particle mass

Figure 4 shows deviation for the cross section of interaction from the canonical result that is often
quoted 3 × 10−26, for light DM particles. We survey masses in the range (10−1 − 103GeV ). For
lighter particles, we find a cross section as high as 5× 10−26cm3/s.
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4 Further scope

The above result opens up new scopes regarding the study of WIMP relics. In experiments, for
example, detecting a light DM particle will involve different cross sections. Furthermore, the devia-
tion in the cross section arises purely due to the fact that the variation of g with temperature (1.e.
evolution of Universe) has been taken care of. But the current analysis depends on the standard
model of particles. Since there definitely are particles beyond the standard model, the cross sections
might change further with addition of more particles in the analysis.
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A Mathematica code for 3.2

Relic Density

Calculations

Basic Calculations (*Reference Tanedo, Murayama*)

m = 1000(*GeV*);(*this equation follows from Tanedo’s numerical \

calculation following Murayama’s HW*)

gstarhalf = 10;

Mpl = 2.44*10^18 (*GeV*);

n = 0(*s channel*);

s = 10^-10 (*cross section in Gev^-2*);

a = 0.192*gstarhalf*Mpl*m*s;

soln1 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),

y[1] == a*E^-1},

y,

{x, 1, 20}];

w = Evaluate[y[20] /. soln1];

soln2 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),

y[20] == w},

y,

{x, 20, 10000}];

g1 = LogLogPlot[Evaluate[y[x] /. soln1], {x, 1, 20},

PlotRange -> {{1, 10000}, {1, 10^12}}];

g2 = LogLogPlot[Evaluate[y[x] /. soln2], {x, 20, 10000},

PlotRange -> {{1, 10000}, {1, 10^12}}];

m = 100(*GeV*);

gstarhalf = 10;

Mpl = 2.44*10^18 (*GeV*);

n = 0(*s channel*);

s = 10^-10 (*cross section in Gev^-2*);

a = 0.192*gstarhalf*Mpl*m*s;

soln1 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),
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y[1] == a*E^-1},

y,

{x, 1, 20}];

w = Evaluate[y[20] /. soln1];

soln2 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),

y[20] == w},

y,

{x, 20, 10000}];

g3 = LogLogPlot[Evaluate[y[x] /. soln1], {x, 1, 20},

PlotRange -> {{1, 10000}, {1, 10^12}}];

g4 = LogLogPlot[Evaluate[y[x] /. soln2], {x, 20, 10000},

PlotRange -> {{1, 10000}, {1, 10^12}}];

m = 10(*GeV*);

gstarhalf = 10;

Mpl = 2.44*10^18 (*GeV*);

n = 0(*s channel*);

s = 10^-10 (*cross section in Gev^-2*);

a = 0.192*gstarhalf*Mpl*m*s;

soln1 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),

y[1] == a*E^-1},

y,

{x, 1, 20}];

w = Evaluate[y[20] /. soln1];

soln2 = NDSolve[

{y’[x] == -(x^(-2 - n)) ((y[x])^2 - (a*x^(1.5)*E^(-x))^2),

y[20] == w},

y,

{x, 20, 10000}];

g5 = LogLogPlot[Evaluate[y[x] /. soln1], {x, 1, 20},

PlotRange -> {{1, 10000}, {1, 10^12}}];

g6 = LogLogPlot[Evaluate[y[x] /. soln2], {x, 20, 10000},

PlotRange -> {{1, 10000}, {1, 10^12}}];

Show[g1, g2, g3, g4, g5, g6,

AxesLabel -> {"x",

"y - (3 different c.s)"}](*This graph shows the y dependence on \

mass/cross section *)

B Mathematica code for 3.3

logspace[increments_, start_, end_] :=

Module[{a}, (a = Range[0, increments];

Exp[a/increments*Log[(end - start) + 1]] - 1 + start)];

mass = N[logspace[19, 0.1, 1000]]; (*GeV*)

sigma = Range[0, 1000]*9*10^-29 + 10^-26;(*cm^3/s*)

T = ReadList[

"G:\\Dark Matter Project\\Numerical Solution\\some data \

files\\TGeV.txt", Number];

g =

ReadList[
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"G:\\Dark Matter Project\\Numerical Solution\\some data \

files\\g.txt", Number];

geff =

ReadList [

"G:\\Dark Matter Project\\Numerical Solution\\some data \

files\\effG.txt", Number];

z = Riffle [T, g];

z1 = Partition[z, 2];

g = Interpolation[z1, InterpolationOrder -> 1];

z2 = Riffle[T, geff];

z3 = Partition[z2, 2];

geff = Interpolation[z3, InterpolationOrder -> 1];

m = Part[mass, 1];

For[z5 = 0, z5 < 1001, z5++,

{s = Part[sigma, z5 + 1];

Yeq[X_] := 0.290*X^(1.5)*E^(-X)/g[m/X];

Weq[X_] := Log[Yeq[X]];

sol = NDSolve[

{U’[u] == (2.76*10^35*m*s/u^2)*

geff[m/u]*(E^(2*Weq[u] - U[u]) - E^(U[u])),

U[1] == Weq[1]},

U,

{u, 1, 1000}];

Wf = Evaluate[U[1000] /. sol];

Yf = E^Wf;

sigmah2 = Part[Yf*m*2.752*10^8, 1];

Clear[Yeq, Weq, X, sol, U, u, Wf, Yf];

If[sigmah2 < 0.11, sigma3 = ScientificForm[s]; Break[];];

Clear[sigmah2, s];

}

];

output = {{m, sigma3}};

Clear[m, z5, sigma3];

For[z6 = 2, z6 < 21, z6++,

{m = Part[mass, z6];

For[z5 = 0, z5 < 1001, z5++,

{s = Part[sigma, z5 + 1];

Yeq[X_] := 0.290*X^(1.5)*E^(-X)/g[m/X];

Weq[X_] := Log[Yeq[X]];

sol = NDSolve[

{U’[u] == (2.76*10^35*m*s/u^2)*

geff[m/u]*(E^(2*Weq[u] - U[u]) - E^(U[u])),

U[1] == Weq[1]},

U,

{u, 1, 1000}];

Wf = Evaluate[U[1000] /. sol];

Yf = E^Wf;

sigmah2 = Part[Yf*m*2.752*10^8, 1];

Clear[Yeq, Weq, X, sol, U, u, Wf, Yf];

If[sigmah2 < 0.11, sigma3 = ScientificForm[s]; Break[];];

Clear[sigmah2, s];

}
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];

output = Append[output, {m, sigma3}];

Clear[m, z5, sigma3];

}

];

Export["G:\\Dark Matter Project\\Numerical Solution\\some data \

files\\output_1.txt", output, "Table"]
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