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Abstract—We compare several belief fusion methods, 

including the proportional conflict redistribution rules (PCR5 

and PCR6) for multiple sources. The PCR fusion of evidence 

methods have shown improvement over the classical Dempster-

Shafer and Bayesian fusion techniques in the presence of 

conflicting information. The PCR6 rule shows improvement over 

PCR5 when the number of sources increases. Using Hasse 

graphical diagrams, we highlight the comparison between the 

methods.  To our knowledge, this is the first such comparison 

between PCR5 and PCR6 with more than two sources. The 

results point toward a transition between PCR5 and PCR6 at 

three sources.   

Keywords—Probability, Belief Functions, Conflicting Data, 

Sensor Networks, Hasse Diagram   

I. INTRODUCTION  

Over the past decade, there have been numerous 

discussions on the proportional conflict redistribution rules 

(PCR) in evidential belief functions. A comprehensive 

analysis of belief functions includes Bayesian methods, 

Dempster-Shafer theory (DST), and Dezert-Smarandache 

theory (DSmT), as the origin of the PCR rules [1]. The most 

current PCR5 and PCR6 rules address the limitation of the DS 

rule for combining potentially highly conflicting sources of 

evidence by redistributing the belief mass. In the literature, 

few investigations directly compare the performance of PCR5 

versus PCR6 and if so, only for small number of sources. 

Hongfei et al. [2] compared PCR1-PCR6 with two 

sensors for three class classifications and found equivalent 

performance while suggesting PCR6f with a distribution 

proportion variation based on the global basic belief 

assignment (gbba). In another study by Smarandache and 

Dezert [3], PCR5 and PCR6 are compared for two priors and 

three classes with additions of a PCR5 fusion-conditional rule.  

The origins of the PCR rules development begin with the 

classic paper in 2005 [4] for two sources. In 2006, a summary 

of DSmT was provided in [5] and Martin and Osswald 

presented PCR6 [6] for multiple sources. Together, in 2008, 

these groups combined for a summary of qualitative and 

quantitative belief combination rules [7]. 

The belief analysis using PCR has been applied to many 

areas showing promise for different applications [8], [9], [10]. 

One area of interest is target tracking which began with DS 

methods [11], [12], [13]. Tracking, classification, and 

identification included the Joint-Belief Probability Data 

Association Filter (JBPDAF) with imagery intelligence 

(IMINT) with a DST classification. A update to DST included 

PCR5 tracking by Dezert and Tchamova et al. [14] and 

Dambreville et al. using the PCR6 [15]. Pannetier et al. 

combined the PCR methods for tracking and classification 

with IMINT [16] along with interactive multiple model (IMM) 

approaches [17].  Other cases include the particle filter (PF) 

with the PCR5 [18].  Finally, a recent update included the 

Tchamova, J. Dezert T-Conorm-Norm (TCN) as comparisons 

with the PCR5 fusion rule, Dempster's rule, and updates with 

the fuzzy fusion rules [19]. 

The relationships between DST, DSmT, and Bayesian 

approaches are demonstrated in Figure 1, which is based on J. 

Dezert’s DSmT tutorial. Each source assigns conditional 

probabilities to possible target classes, given observed 

measurements. In the Bayesian approach, the probabilities are 

fused directly. DST and DSmT introduce additional levels of 

uncertainty representation and methods for conflict 

redistribution.     

 

 
Figure 1 Comparison of Bayesian, Dempster-Shafer, and PCR5 Fusion 

Theories  

Along with the comparisons and applications of the PCR5 and 

PCR6 (although individually), there were developments in the 

PCR assessments. In particular, the relationship between DST 
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and Bayesian methods was investigated in [20] with the 

following conclusion:  

 
“Only in the very particular case where the basic belief 
assignments to combine are Bayesian and when the prior 

information is uniform (or vacuous), the Dempster’s rule remains 
consistent with the Bayes fusion rule., Dempster’s rule is 
incompatible with the Bayes rule and it is not a generalization of 

the Bayes fusion rule” 
 

Recently, the PCR6 was compared to an averaging rule [21]. 

A sensitivity comparison was then made [22] over the many 

rules including Dempster’s rule, Yager’s rule, Florea’s robust 

combination rule (RCR), disjunctive rule, Dubois and Prade’s 
rule, proportional conflict redistribution rule (PCR5), and 

mean rule [8]; however PCR6 was not included in the 

comparison. 

The review here presents an interesting development. In 

most cases, either the PCR5 or the PCR6 were used and 

typically compared to DST methods. In no cases, were they 

compared together for tracking and classification. Work by 

Blasch et al. [1] aimed to compare DST, Bayes, and PCR. The 

comparison demonstrated the benefits of PCR over DST and 

Bayes, but the study was limited as the PCR5 and PCR6 rules 

are the same for two source fusion.  

In this study, we seek to compare PCR5 with PCR6 with 

three and more sources, and thus add to the discussion of PCR 

rules. The rest of the paper is as follows. Sect. II discusses 

belief formalisms. Sect III introduces PCR5 and Sect. IV 

PCR6. Sect. V does a comparison. Finally, Sect. VI and VII 

provide discussion and conclusions. In addition to the 

performance comparison, we utilized graphical illustrations of 

PCR5 and PCR6 rules with Hasse diagrams in order to clarify 

the differences between the two. 

II. BELIEF FUNCTIONS FORMALISM 

Dempster-Shafer theory assumes a finite set ȳ of possible 

answers to a question, referred to as the frame of discernment. 

The events correspond to subsets of ȳ, with their uncertainty 

quantified by the basic probability assignment, or bpa (also 

referred to as basic belief assignment, or bba), which is a 

function ݉ǣ ʹஐ ՜ ሾͲǡͳሿ such that 

 ݉ሺሻ ൌ Ͳǡ (1)  

and 

  ݉ሺܣሻكஐ ൌ ͳǤ 
(2)  

 

The key idea here is that not all subsets of ȳ encode inferred 

information; some are basic events and can be assigned basic 

(elementary) probability mass. Those subsets that we assign 

non-zero ݉ሺሻ  are called focal elements. This structure is 

called a body of evidence. In the most general case all subsets 

of ȳ (all elements of the powerset of ȳ) may serve as focal 

elements, however in practice the set of focal elements is a 

subset of the powerset. 

DSmT generalizes the frame of discernment ȳ to consist 

of possibly overlapping sets. Overlapping sets highlights that 

the full set of possible events includes all possible 

intersections and unions of the elements of  ȳ  -which is a 

larger set of events than that of DST. In this work we only 

consider the Dempster model. 

A belief function ݈݁ܤǣ ʹஐ ՜ ሾͲǡͳሿ is computed from the bpa 

as follows: 

 

ሻܣሺ݈݁ܤ  ൌ  ݉ሺܤሻك ǡ 
(3)  

 

where ܣ  ك ȳ . The bpa can be recovered from the belief 

function using the following formula, 

 

 ݉ሺܣሻ ൌ ሺെͳሻȁ̳ȁ݈݁ܤሺܤሻك Ǥ 
(4)  

 

Thus there is a one-to-one correspondence between  ݉ 

and ݈݁ܤ. The belief functions satisfy the following properties: 

 

ሻሺ݈݁ܤ  ൌ Ͳǡ ሺȳሻ݈݁ܤ ൌ ͳǡ 
݈݁ܤ  ൭ራ ܣ

ୀଵ ൱   ሺെͳሻȁூȁାଵ݈݁ܤ ൭ሩ ூאܣ ൱ ǤூؿሼଵǡଶǤǤሽǡூஷ  

 

(5)  

 

The last property shows that belief functions are non-additive 

[8] even in the case of two disjoined subsets ܣ and ݈݁ܤ :ܤሺܣ  ሻܤ  ሻܣሺ݈݁ܤ   ሻ, in contrast to additivity ofܤሺ݈݁ܤ

probability functions. If, and only if, the focal elements of bpa 

are 1-element subsets (“singletons”) of  ȳ, does ݈݁ܤ  become 

equivalent and reduces to a probability function. 

A combination of evidence coming from different sources 

is a key feature of DST. Given two bodies of evidence with 

bpa’s ݉ଵand ݉ଶ that are combined or “fused”, the conjunctive 

rule is given by the following formula:        

 

 ݉ଵתଶሺܣሻ ൌ  ݉ଵሺܤሻ݉ଶሺܥሻתୀ Ǥ 
(6)  

 

The result of (6) needs to be normalized in order to satisfy (2).  

Dividing ݉ଵתଶ by 1-K achieves normalization, with 

 

ܭ  ൌ  ݉ଵሺܤሻ݉ଶሺܥሻתୀ Ǥ 
(7)  

 

Formulas (6) and (7) correspond to the Dempster’s rule of 
combination. The un-normalized version (6) of the Dempster’s 
rule is used in Transferable Belief Models [23]. 

The quantity ܭis referred to as the total conflicting mass. 

The classical Dempster’s rule is inconsistent in the presence of 

conflicting evidence, as has been shown recently in [20], 

although the inconsistencies have been pointed out by earlier 

researchers, starting with Lotfi Zadeh. Therefore, other 

combination rules have been proposed. We consider the 

Proportional Conflict Redistribution rules (PCR5 and PCR6 
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rules) proposed in [4], [6]. The main idea behind the PCR 

rules is to consider each term in the total conflicting mass 

separately and redistribute the mass of the term to the events 

involved in this term’s conflict. The next sections provide a 

detailed description of these rules.                   

III. PROPORTIONAL CONFLICT REDISTRIBUTION 5 (PCR5) 

The general formulas for PCR5 and PCR6 are given in [4], 

and [6] respectively. Due to large number of indices and 

nested summations, they are difficult to understand. Several 

examples of these formulas for simple cases are given in the 

earlier publications, for example [5]. Here, we attempt to 

make the rules more understandable by illustrating them with 

diagrams. 

We consider the fusion of an arbitrary number of sources, ܵ א ሼͳǡʹǡ ǥ ሽ. The first step in both PCR5 and PCR6 is to 

compute the conjunctive combination of all sources, which is 

the generalization of (6), for all subsets of ȳǡ ܣ ك ȳ: 

 

ሻܣሺת݉  ൌ  ݉ଵሺ ଵܺሻ݉ଶሺܺଶሻ ǥ ݉ௌሺ ௌܺሻభתమתǥתೄୀ Ǥ 
(8)  

 

The total conflicting mass is given as follows,   

 

ܭ  ൌ  ݉ଵሺ ଵܺሻ݉ଶሺܺଶሻ ǥ ݉ௌሺ ௌܺሻభתమתǥתೄୀ Ǥ 
(9)  

 

Each term in (9) is referred to as a partial conflicting 

mass, and is denoted by ݉ሺ ଵܺ ת ܺଶ ת ǥ ת ௌܺሻ. Each partial 

conflicting mass is redistributed to its subsets in proportion to 

the basic probability mass already assigned to these subsets. 

In order to illustrate the rules, we will utilize a graphical 

representation of a collection of sets, called Hasse diagrams. 

In general, Hasse diagrams represent partially ordered sets, or 

posets [24]. Poset is a set with relation of partial order defined 

on it. This relation is usually referred to as “less than”, 

denoted by .  On the diagrams, the elements of a poset are 

shown as circles and the related elements are connected by 

lines.   In the case of sets, two sets are related if one of them is 

a subset of the other - in other words the relation of partial 

order is the set inclusion relation. 

 

EXAMPLE 1: 

Consider the case of S=3 sources. The frame of discernment 

contains only 2 elements, A and B, ȳ ൌ ሼܣǡ  ሽ, with the basicܤ

probability mass assignments for each source given in Table 1. 

There are, of course, 4 elements in the powerset of ȳ. 

TABLE 1 

ǡሽ ሼሽ ሼሼ    ሽ ݉ଵ  0.6  0.4 ݉ଶ   0.3 0.7 ݉ଷ   0.1 0.9

 

The conflicting mass is obtained by listing all set 

combinations from the 3 sources that result in empty 

intersection and have non-zero mass assignments. In this case, 

there are 4
3
=64 combinations of sets (4 from each of the 3 

sources). Out of these, we have only the following 3 partial 

conflicts (Table 2): 

TABLE 2 

Partial Conflict Terms Values ݉ଵሺሼܣሽሻ݉ଶሺሼܤሽሻ݉ଷሺሼܤሽሻ 0.018 ݉ଵሺሼܣሽሻ݉ଶሺሼܣǡ ǡܣሽሻ݉ଷሺሼܤሽሻ݉ଶሺሼܣሽሻ 0.042 ݉ଵሺሼܤሽሻ݉ଷሺሼܤ  ሽሻ 0.162ܤ

Total Conflicting Mass: 0.222 

  

Consider the first partial conflict. The redistribution of the 

mass (0.018) using PCR5 rule is illustrated in Fig. 2. 

 

 
Figure 2 Redistribution of the first partial conflicting mass from Table 2 

according to PCR5. X  and X  are the masses added to the sets A and B 
respectively. 

The masses X  and X  are computed using the following 

formulas, with curvy brackets removed for clarity: 

 

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܤሻ݉ଷሺܤሻ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଶሺܤሻ݉ଷሺܤሻ ܺܭ ൌ ݉ଶሺܤሻ݉ଷሺܤሻ݉ଵሺܣሻ  ݉ଶሺܤሻ݉ଷሺܤሻ  ܭ

 

(10)  

The key feature of PCR5 is that the mass assignments 

coming from several sources and assigned to the same subset 

(B in this example) are multiplied, and after this multiplication 

the conflicting mass is divided proportionally to the mass in 

each unique conflicting subset. Thus in this example we divide  K into two parts proportional to mଵሺAሻ and mଶሺBሻmଷሺBሻ.  

 Consider the next partial conflict (row 2 in Table 2). The 

redistribution of the mass (0.042) using PCR5 rule is 

illustrated in Fig. 3.  

 
Figure 3 Redistribution of the second partial conflicting mass from Table 2 

according to PCR5. ܺ  and ܺ  are the masses added to the sets A and B 
respectively. 
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Here, the masses ܺ and ܺ are computed using the following 

formulas (again with curvy brackets removed for clarity): 

 

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܣǡ ሻܤሻ݉ଷሺܤ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଷሺܤሻ ܺܭ ൌ ݉ଷሺܤሻ݉ଵሺܣሻ  ݉ଷሺܤሻ ܭ  

 

 

(11)  

In order to understand this redistribution, we invoke the 

concept of canonical form of the set ( see [8], Vol. 2, page 

209). In this case, ܿሺܣ ת ሺܣ  ሻܤ ת ሻܤ ൌ ܣ ת ܤ , which 

clarifies that only the sets ܣ and ܤ remaining in the canonical 

form are in conflict with each other. The proportions of the 

conflicting mass ܭ are computed with respect to the canonical 

form, which is why ݉ଶሺܣǡ  .ሻ is not used in the proportionsܤ

Mass ݉ଶሺܣǡ ሻܤ  is used however, in the computation of  ܭ 

itself. The third partial conflict is resolved analogously, as 

shown in Fig. 4 and the formulas below. 

 

 
Figure 4 Redistribution of the third partial conflicting mass from Table 2 

according to PCR5. ܺ  and ܺ  are the masses added to the sets A and B 

respectively. 

The redistributed massed are given as follows. 

 

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܣǡ ሻܤሻ݉ଷሺܤ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଷሺܤሻ ܺܭ ൌ ݉ଷሺܤሻ݉ଵሺܣሻ  ݉ଷሺܤሻ ܭ  

 

(12)  

At this point we observe that the first partial conflict was also 

redistributed according to the canonical form, except we had 

to remember to multiply the masses assigned to the same sets 

by different sources. The general procedure for PCR5 appears 

to be as follows: 

 

The PCR5 Procedure 
1. Compute conjunctive consensus (8), (9) 

2. List all partial conflicts 

3. For each partial conflict, 

a. compute canonical form and the corresponding 

masses (multiplying some of them) 

b. Redistribute the conflict with respect to the sets in 

the canonical form  

EXAMPLE 2: 

Consider another example that illustrates the PCR5 procedure. 

The set ȳ consists of 3 elements, ȳ ൌ ሼܣǡ ǡܤ  ሽ. The followingܥ

bodies of evidence are given in Table 3. There are now 8 

elements in the powerset of ȳ. 

TABLE 3 

ǡሽ ሼሽ ሼሼ   ǡሽ ሼሽ ሼ ǡሽ ሼ ǡሽ ሼ ǡ  ሽ ݉ଵ  0.2      0.8 ݉ଶ   0.3     0.7 ݉ଷ       0.3 0.7

 

The following table lists the partial conflicts for this 

example. 

TABLE 4 

Partial Conflict Terms Values ݉ଵሺሼܣሽሻ݉ଶሺሼܤሽሻ݉ଷሺሼܤǡ ǡܣሽሻ݉ଶሺሼܣሽሻ 0.018 ݉ଵሺሼܥ ǡܤ ǡܤሽሻ݉ଷሺሼܥ ǡܣሽሻ݉ଷሺሼܤሽሻ݉ଶሺሼܣሽሻ 0.042 ݉ଵሺሼܥ ǡܤ  ሽሻ 0.042ܥ

Total Conflicting Mass: 0.102 

 

Consider the first conflict. The diagram depicting the sets 

involved in the conflict is given in Fig. 5. 

 

 
Figure 5 Redistribution of the first partial conflicting mass from Table 4 

according to PCR5. ܺ  and ܺ  are the masses added to the sets A and B 
respectively. 

In this case, the canonical form of the sets involved in the 

partial conflict is ܿ൫ܣ ת ܤ ת ሺܤ  ሻ൯ܥ ൌ ܣ ת ܤ The set .ܤ   ܥ

disappears from the canonical form. Since ܤ  ܥ  was 

“absorbed” by ܤ, and the two sets are not identical, and we do 

not multiply their weights. Thus the redistribution is done as 

follows: 

   

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܤሻ݉ଷሺܤǡ ሻܥ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଶሺܤሻ ܺܭ ൌ ݉ଶሺܤሻ݉ଵሺܣሻ  ݉ଶሺܤሻ ܭ  

 

 

(13)  

In the second conflict, we obtain the following diagram: 
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Figure 6 Redistribution of the second partial conflicting mass from Table 4 

according to PCR5. ܺ and ܺ  are the masses added to the sets A and BC 
respectively. 

  The canonical form for this conflict is ܿ൫ܣ ת ሺܤ  ሻܥ ܣሺת  ܤ  ሻ൯ܥ ൌ ܣ ת ሺܤ   ሻ.  There are no masses that needܥ

to be multiplied. Thus, the redistribution is computed as 

follows: 

   

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܣǡ ǡܤ ǡܤሻ݉ଷሺܥ ሻܥ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଷሺܤǡ ሻܥ ܺܭ ൌ ݉ଶሺܤǡ ሻܣሻ݉ଵሺܥ  ݉ଷሺܤǡ ሻܥ ܭ  (14)  

 

Next we discuss PCR6 in a similar graphical manner. 

IV. PROPORTIONAL CONFLICT REDISTRIBUTION 6 (PCR6) 

The PCR6 rule was proposed as simplification of PCR5 [6]. 

The general formula for PCR6 is also complex and can be 

difficult to understand. Here we present PCR6 as a procedure 

illustrated with diagrams and tables. The procedure for PCR6 

can be summarized as follows. 

 

The PCR6 Procedure 
1. Compute conjunctive consensus (8), (9) 

2. List all partial conflicts 

3. For each partial conflict, redistribute the conflict to the sets 

involved in the conflict proportionally relative to their 

masses. 

 

The transformation to canonical form is absent here and also 

the multiplication of the mass assigned to the same sets by 

different sources.  

 
Figure 7 Redistribution of the first partial conflicting mass from Table 2 

according to PCR6. ܺ and Xଵ  Xଶ are the masses added to the sets A and 

B respectively. 

Consider the first example from Section III, given in Table 1. 

The redistribution can be illustrated by the diagram in Fig. 7, 

corresponding to the first partial conflict listed in Table 2. 

    As we can see, the mass that is moving to set B consists of 

two parts. The formulas are given below. 

 

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܤሻ݉ଷሺܤሻ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଶሺܤሻ  ݉ଷሺܤሻ ଵܺܭ ൌ ݉ଶሺܤሻ݉ଵሺܣሻ  ݉ଶሺܤሻ  ݉ଷሺܤሻ ଵܺܭ ൌ ݉ଷሺܤሻ݉ଵሺܣሻ  ݉ଶሺܤሻ  ݉ଷሺܤሻ ܭ

 

 

(15)  

Consider the diagram in Fig.8, for the second conflict in Table 

2. 

 
Figure 8 Redistribution of the second partial conflicting mass from Table 2 

according to PCR6. ܺ and ܺ and ܺ are the masses added to the sets A, B, 
and AB respectively. 

The difference between PCR5 and PCR6 is more prominent 

here since the set ܣ   receives some mass in case of PCR6 ܤ

and it did not receive any mass in the case of PCR5. The 

formulas are as follows. 

 

ܭ  ൌ ݉ଵሺܣሻ݉ଶሺܣ  ሻܤሻ݉ଷሺܤ
ܺ ൌ ݉ଵሺܣሻ݉ଵሺܣሻ  ݉ଶሺܣ  ሻܤ  ݉ଷሺܤሻ ܭ

ܺ ൌ ݉ଶሺܣ  ሻܣሻ݉ଵሺܤ  ݉ଶሺܣ  ሻܤ  ݉ଷሺܤሻ ܺܭ ൌ ݉ଷሺܤሻ݉ଵሺܣሻ  ݉ଶሺܣܤ  ሻܤ  ݉ଷሺܤሻ ܭ
 

 

(16)  

In light of these examples, the general procedure for 

PCR6 becomes clear. 

Having presented PCR5 and PCR6 using the diagrams, 

we now seek a comparison of multiple sensors over multiple 

sets. The method supports both classification and tracking.  

 

V. PERFORMANCE COMPARISONS 

In this section, we compare the performance of several fusion 

rules using simulated scenarios. The simulation is 

implemented for an arbitrary number of sensors S and possible 

targets N. We assume that each sensor can be assigned a 

confusion matrix that characterizes its classification accuracy. 
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If the true object is o୧ and the sensor made a decision  , the 

corresponding confusion matrix entry is defined as ܯܥሺ݅ǡ ݆ሻ ൌPr ሺȁሻ. This implies that, given that the sensor declared , 

we get the probability mass assigned to the set of possible 

targets as Pr ሺȁሻ. This mass can be computed using Bayes 

formula, but we need to know the a priori target probabilities: 

  

 Pr൫o୧หo୨൯ ൌ Pr൫o୨หo୧൯ Pሺo୧ሻܼ Ǥ (17)  

 

The denominator ܼ is the normalization factor. Thus, the 

rows of confusion matrix contain the probability distribution 

of the target declaration given the true target class. At each 

step of the simulation, we sample from the distribution given 

by Pr ሺή ȁሻ. We then use the Bayes formula (17) to compute 

the posterior probabilities for each target. These probabilities 

are fused directly in the Bayesian fusion approach. In order to 

apply the belief function based approaches, we select the 

argument with the maximum posterior probability as the most 

likely target and assign the maximum posterior probability as 

the probability mass for this target. The rest of the probability 

mass is assigned to the sure event ȳ. The bodies of evidence 

corresponding to each sensor are then combined with each 

other and with the body of evidence from the previous time 

step. The simulation procedure is outlined below. The generic ܧܷܵܨ function in step 8 is substituted by a particular rule, such 

as PCR6, etc. Line 9 computes pignistic probabilities used for 

decision making, as described in [25]. 

 

Multi-sensor fusion simulation 

Given:  ܰ – number of targets ܵ – number of sensors ܭ௫ – number of time steps in the simulation ܯܥ௦ – confusion matrices, ݏ ൌ ͳǤ Ǥ ܵ ܶ-target type for time step ݇, ݇ ൌ ͳǤ Ǥ ௫  ݉ሺȳሻܭ ൌ ͳ, the initial bodies of evidence is total ignorance 

1. For each time step ݇ 

2.   For each sensor ݏ 

௦ȁ௦is a sample from Prሺ     .3 ܶǡ ሻݏ ؠ ௦ሺήǡܯܥ ܶሻ 

4.     Compute Pr ሺ௧ȁ௦ሻ for ௧ ൌ ͳǤ Ǥ ܰ 

ҧ௧     .5 ൌ arg maxೖ Pr ሺ௧ȁ௦ሻ – max a posteriori target  

6.     Create body of evidence ȳ௦, such that 

7.          
݉௦ሺҧ௧ሻ ൌ max Pr ሺ௧ȁ௦ሻ        ݉௦ሺȳሻ ൌ ͳ െ max Pr ሺ௧ȁ௦ሻ  

8. Combine previous fused body of evidence with the new 

bodies of evidence, ݉ ൌ ሺ݉ିଵǡܧܷܵܨ ݉ଵǡ Ǥ Ǥ ǡ ݉ௌሻ 

9. Compute pignistic probabilities from ݉, ݐ݁ܤ 

10. Make target declaration based on the maximum ݐ݁ܤ  

 

A. Case 1: Tracking and Classification: 2 sources 

A sample result of simulation is shown in Fig. 9. The true 

class of the observed target changes over time and thus 

conflict is introduced between the subsequent measurements. 

In addition, false target declarations cause conflict as well. 

The ability of different fusion methods to recover from these 

conflicts in a timely manner can be observed. 

We set the number of time steps to 120, and perform 50 

independent runs. The average values over 50 runs are shown 

in the Fig. 9, which is made for target class 1. 

  

 
Figure 9 Target tracking and classification simulation, in case of N=2 possible 

targets and S=2 sources.  

The “Truth” value equals to 0 when the true target class is 
not 1 and it equals to 1 when the true target class is 1. The plot 

shows how the probability mass assigned to target class 1 by 

the fused body of evidence changes over time, for 5 

combination rules. As we can see, the PCR5 and PCR6 rules 

are the best at handling conflicting information which is 

reflected in the short transition time when the true target class 

switches (steps 20, 50, 70, and 80). 

The classification accuracy of the fusion rules is 

estimated by dividing the number of steps with correct target 

class declaration by the total number of time steps. As it can 

be expected from Fig. 9, the accuracy of PCR5 and PCR6 is 

higher than the accuracy of DST and the other rules. 

B. Tracking and Classification: S sources 

In the next experiments, we ran the simulations with 

increasing number of sources. The results obtained for the 2 

class case are shown in Fig. 10. 

 

 
Figure 10 Classification accuracy of target tracking and classification in  

simulated scenarios with S=1,2,3,4, and 5 sources. AVG simply averages the 

bpa’s. 
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These results show an interesting trend. As the number of 

sources increases, the performance of PCR5 significantly 

deteriorates. The other rules show consistent performance, 

with PCR6 resulting in the highest accuracy. 

In our analysis, we used a variety of confusion matrices to 

represent the source classification used for the simulations; 

Table 5 shows some examples of randomly generated 

confusion matrices. 

TABLE 5 

CM1 

0.8992 0.1008 

0.0647 0.9353 
 

CM2 

0.8763 0.1237 

0.0717 0.9283 
 

CM3 

0.7364 0.2636 

0.1908 0.8092 
 

CM4 

0.6271 0.3729 

0.3071 0.6929 
 

CM5 

0.6856 0.3144 

0.2756 0.7244 
 

 

 

 In Fig. 11, we show another results of a similar 

experiment, where the number of time steps was set to 30 and 

the number of sources varied from 1 to 7. The cross-over point 

between PCR5 and PCR6 is between 3 and 4 sources. Again, 

the performance of PCR5 decreases to basically chance level 

for 6 and 7 sources (and less than DST). 

 

 
Figure 11 Classification accuracy of target tracking and classification in  

simulated scenarios with S=1 through 7 sources, for 2 targets. AVG simply 

averages the bpa’s. 

Note that in our simulation, the number of masses of evidence 

that need to be combined equals to the number of sources plus 

one as we combine the current time step evidence with the 

fused body of evidence from the next step. This explains why 

the performance of PCR5 and PCR6 is exactly the same for 

one source, since the procedures become identical when 

combining two bodies of evidence [6]. 

VI. DISCUSSION 

In order to demonstrate the results presented in this work we 

have accomplished the following tasks.  

 

1. Investigated PCR5 and PCR6 rules and presented them in 

graphical form. Although this is not a novel contribution, 

we believe that it significantly improves the readability 

of PCR rules by non-experts in the area. 

2. Implemented PCR5 and PCR6 for S sources and N targets. 

Our implementation of PCR6 was compared against 

Arnaud Martin’s toolbox implementation to yield 
identical numeric results. However, our implementation 

is significantly faster than Martin’s. We were unable to 
find alternative PCR5 implementation to compare to our 

own.  

3. Verified that PCR5 and PCR6 give the same results for 

S=2 and any number of targets N. This agreement with 

the theory boosted our confidence in our PCR5 

implementation. 

4. Implemented a simulation of multiple source target 

tracking and classification for arbitrary number of 

sources and possible targets. 

5. Compared classification accuracy of PCR5, PCR6, DST, 

Average, and Bayes fusion rules for N=2 target tracking 

and classification problem for the number of sources S=1 

through 7.  

 

While there has not been a study of this kind reported, we 

found that PCR5 is not well suited for many sources. An 

obvious concern is that the implementation needs to be 

validated; however, as per the literature, the trend is consistent 

where PCR5 is not suggested for many sources. What is thus a 

contribution is that PCR5 is typically used with 2 sources of 

which we have shown that it is also useful for three sources. 

Its performance for more than three sources is lower than 

PCR6. We suggest that further independent investigations be 

conducted to compare PCR5 and PCR6. We also note that the 

average fusion rule demonstrated performance comparable to 

PCR6. This concurs with the recent work comparing PCR6 

and average fusion rule [21].   

VII. CONCLUSIONS 

In this study, we have compared several fusion methods and 

demonstrated the improved performance of PCR5 and PCR6 

over the classical Dempster-Shafer and Bayesian 

methodologies. Additionally, we utilized Hasse diagrams to 

improve the understandability of the PCR methods. Through a 

comparative study, the advantage of PCR6 over PCR5 for 

more than three sources was presented. Future work includes 

updating the comparison with developments in PCR such as 

the fuzzy-combination rules, combination of our 

implementation with latest techniques in tracking and situation 

modeling [26] [27], and utilization of our implementations 

with real data.    
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