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Abstract

The model of low-energy quantum gravity by the author is based on
the conjecture about an existence of the graviton background. An in-
teraction of photons and moving bodies with this background leads to
small additional effects having essential cosmological consequences. In
the model, redshifts of remote objects and the dimming of supernovae 1a
may be interpreted without any expansion of the Universe and without
dark energy. Some of these consequences are discussed and confronted
with supernovae 1a, long GRBs, and QSOs observations in this paper. It
is shown that the two-parametric theoretical luminosity distance of the
model fits observations with high confidence levels (100% for the SCP
Union 2.1, 43% for JLA compilations, 99.81% for long GRBs, and 13.73%
for quasars), if all data sets are corrected for no time dilation. These two
parameters are computable in the model.

PACS : 98.80.Es, 04.50.Kd, 04.60.Bc

1 Introduction

In contrast with classical electrodynamics in the XIX century or quantum elec-
trodynamics in the XX century, at present we have a complete lack of exper-
imental evidence to construct a theory of quantum gravity. From dimensional
reasons only, if one assumes that the Newton constant is universal for any scales,
the effects of quantum gravity are expected to be measurable over extremely
small distances or very high energies. There are proposals how to detect some
effects in a laboratory - for example, [1, 2], - or to observe a possible small viola-
tion of the Lorentz invariance for remote sources, but we have not any results in
a frame of current paradigms which may pave us to the goal. Another constrain
is, as I think, the common expectation that the future theory should be some
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symbiosis of the geometrical theory of general relativity and quantum mechan-
ics. Geometry is useful for a description of the average motion of big bodies
due to the universality of gravitation, but it is not the fact that quantum effects
may be described geometrically. It is also necessary to keep in mind that the
nature of gravity as well as the nature of quantum behavior of microparticles
are unknown - we have remarkable descriptions in different languages but not
understanding in both cases.

I describe here briefly some consequences of my approach to quantum gravity
[3, 4], in which the phenomenon is a very-low-energy one and is caused by the
background of super-strong interacting gravitons. The main quantum effect of
this approach is the Newtonian attraction; its small effects enforce us to look at
the known results of astrophysical observations from another point of view and
give us the reasons to doubt in the validity of the current standard cosmological
model.

2 The model of low-energy quantum gravity

The geometrical description of gravity in general relativity does not involve any
mechanism of interaction. It is similar to the Newtonian model: we don’t know
how it works. In my model of low-energy quantum gravity [3, 4], gravity is
considered as the screening effect. It is suggested that the background of super-
strong interacting gravitons exists in the universe. Its temperature should be
equal to the one of CMB. Screening this background creates for any pair of
bodies both attraction and repulsion forces due to pressure of gravitons. For
single gravitons, these forces are approximately balanced, but each of them is
much bigger than a force of Newtonian attraction. If single gravitons are pairing,
an attraction force due to pressure of such graviton pairs is twice exceeding a
corresponding repulsion force if graviton pairs are destructed by collisions with
a body. This peculiarity of the quantum mechanism of gravity leads to the
difference of inertial and gravitational masses of a black hole. In such the
model, the Newton constant is connected with the Hubble constant that gives
a possibility to obtain a theoretical estimate of the last. We deal here with
a flat non-expanding universe fulfilled with super-strong interacting gravitons;
it changes the meaning of the Hubble constant which describes magnitudes of
three small effects of quantum gravity but not any expansion or an age of the
universe.

3 Small effects of the model due to its quantum
nature

There are two small effects for photons in the sea of super-strong interacting
gravitons [3]: average energy losses of a photon due to forehead collisions with
gravitons and an additional relaxation of a photonic flux due to non-forehead
collisions of photons with gravitons. The first effect leads to the geometrical
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distance/redshift relation:

r(z) = ln(1 + z) · c/H0, (1)

where H0 is the Hubble constant, c is the velocity of light. The both effects lead
to the luminosity distance/redshift relation:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2 ≡ c/H0 · f1(z), (2)

where f1(z) ≡ ln(1+z) · (1+z)(1+b)/2; the ”constant” b belongs to the range 0 -
2.137 [5] (b = 2.137 for very soft radiation, and b → 0 for very hard one). For an
arbitrary source spectrum, a value of the factor b should be still computed. It is
clear that in a general case it should depend on a rest-frame spectrum and on a
redshift. Because of this, the Hubble diagram should be a multivalued function
of a redshift: for a given z, b may have different values for different kinds of
sources. Further more, the Hubble diagram may depend on the used procedure
of observations: different parts of rest-frame spectrum will be characterized with
different values of the parameter b.

Actually, the factor b describes an analog of the blurring effect of tired-light
models. Due to the quantum nature of this effect in the model, non-forehead
collisions of photons with gravitons should lead to relatively big average angles
of deviations of photons of visible range:

Δϕ ∼ 10−3 eV

2.5 eV
= 4 · 10−4 rad,

where 10−3 eV and 2.5 eV are average graviton and photon energies. By mul-
tiple collisions, deviated photons will not be recognized as emitted by a small-
angle remote object. But images of high-z objects may be partly blurred due
to a fraction of low-energy gravitons.

The third small effect of this model is the constant deceleration of massive
bodies due to forehead collisions with gravitons. It is an analog of the redshift
in this model. We get for the body acceleration w by a non-zero velocity v:

w = −ac2(1 − v2/c2). (3)

For small velocities we have for it: w � −H0c. If the Hubble constant H0 is
equal to 2.14 · 10−18s−1 (it is the theoretical estimate of H0 in this approach),
a modulus of the acceleration will be equal to |w| � H0c = 6.419 · 10−10 m/s2,
that is of the same order of magnitude as a value of the observed additional
acceleration (8.74 ± 1.33) · 10−10m/s2 for NASA probes Pioneer 10/11 [6].

4 Advanced LIGO technologies may be partly
used to verify the redshift mechanism

The main conjecture of this approach about the quantum gravitational nature
of redshifts may be verified in a ground-based laser experiment. To do it, one
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Figure 1: The main line and the expected red-shifted satellite line of a stable
laser radiation spectrum after a delay line. Satellite’s position should be fixed
near ν − ε̄/h, and its intensity should linear rise with a path of photons in a
delay line, l. A center-of-mass of both lines is expected to be approximately
near ν − zν.

should compare spectra of laser radiation before and after passing some distance
l in a high-vacuum tube [7]. The temperature T of the graviton background
coincides in the model with the one of CMB. Assuming T = 2.7K, we have
for the average graviton energy: ε̄ = 8.98 eV. Because of the quantum nature
of redshift, the satellite of main laser line of frequency ν would appear after
passing the tube with a redshift of 10−3 eV/h, and its position should be fixed
(see Fig. 1, z is the redshift). It will be caused by the fact that on a very small
way in the tube only a small part of photons may collide with gravitons of the
background. The rest of them will have unchanged energies. The center-of-mass
of laser radiation spectrum should be shifted proportionally to a photon path.
Due to the quantum nature of shifting process, the ratio of satellite’s intensity
to main line’s intensity should have the order: ∼ hν

ε̄
H0
c l,. The theoretical value

of H0 in the model is: H0 = 2.14 · 10−18 s−1. An instability of a laser must be
only much smaller than 10−3 if a photon energy is equal to ∼ 1 eV. Given a
very low signal photon number frequency, one could use a single photon counter
to measure the intensity of the satellite line after a narrow-band filter with filter
transmittance k. If q is a quantum output of a photomultiplier cathode, fn is
a frequency of its noise pulses, and n is a desired signal-to-noise ratio, then an
evaluated time duration t of data acquisition would be equal to:

t =
(ε̄cn)2fn

(H0qkP l)2
,

where P is a laser power. Assuming for example: n = 10, fn = 103 s−1, q = 0.3,
k = 0.1, P = 200 W, l = 300 km, we have the estimate: t ≈ 3 · 103 s. Such the
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value of l may be achieved if one forces a laser beam to whipsaw many times
between mirrors in the vacuum tube with the length of a few kilometers.

Figure 2: The theoretical Hubble diagram μ0(z) of this model (solid); Super-
novae 1a observational data (circles, 82 points) are taken from Table 5 of [12]
and corrected for no time dilation.

The advanced LIGO detectors [8], which were used to observe the gravitational-
wave event GW150914, have many technological achievements needed to do the
described experiment: stable powerful lasers and input optics, high-vacuum
tubes with optical resonator that multiplies the physical length by the number
of round-trips of the light, mirror suspension systems with actuators. Some pa-
rameters of LIGO systems are of the same order as in the considered example.
If one constructs the future LIGO detector with some additional equipment,
the verification of the redshift mechanism may be performed in parallel with
the main task or during a calibration stage of the detector.

5 Cosmological consequences of the model

There are the two circumstances introduced in the model to rich the needed
strength of gravitational attraction: 1) gravitons should be super-strong in-
teracting, and 2) a part of gravitons should be paired and the pairs must be
destructed by interaction with bodies. It leads to the very unexpected con-
sequence: in the model, a black hole should have different gravitational and
inertial masses, i. e. its possible existence contradicts to general relativity. An-
other unexpected feature of this approach is a necessity of ”an atomic structure”
of matter, because the considered mechanism doesn’t work without it.
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Figure 3: The two theoretical Hubble diagrams: μ0(z) of this model with b =
1.137 taking into account the effect of time dilation of the standard model
(solid); μc(z) for a flat Universe with the concordance cosmology by ΩM = 0.27
and w = −1 (dash).

The property of asymptotic freedom of this model at very short distances
leads to the important consequences, too. First, a black hole mass threshold
should exist. A full mass of black hole should be restricted from the bottom
with m0; the rough estimate for it is: m0 ∼ 107M�. The range of transition to
gravitational asymptotic freedom for a pair of protons is between 10−11 −10−13

meter, and for a pair of electrons it is between 10−13 − 10−15 meter. This
transition is non-universal; it means, second, that a geometrical description of
gravity on this or smaller scales, for example on the Planck one, is not valid.

Any massive body moving relative to the graviton background should suffer
in the model the constant deceleration of the order of ∼ H0c, i. e. of the
same order as an anomalous acceleration of the NASA’s deep space probes (the
Pioneer anomaly) [6]. Recently, it was shown by S. Turyshev et al [9], that the
thermal origin of the Pioneer anomaly is very possible. From another side, the
mass discrepancy in spiral galaxies appears at very low accelerations less than
some a0 and not much above a0 [10], where the boundary acceleration a0 has
the same order. The need for dark matter in spiral galaxies appears at very low
accelerations. A simple alternative to dark matter is MOND by M. Milgrom
[11], in which such the boundary acceleration is introduced by hand. The main
feature of MOND is the strengthening of gravitational attraction in a case of
low accelerations; I do not think that an exact form of this strengthening has
been guessed in MOND. But MOND gives us a clear hint that general relativity
may be not valid on galactic or bigger scales of distances, and its application in
cosmology is in doubt. In my model, the universal deceleration of bodies should
lead in any bound system to an additional acceleration of them relative to the
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system’s center of inertia. Some additional strengthening of gravitation on a
periphery of galaxies may be caused in the model by the destruction of graviton
pairs flying through their central parts whereas pairs flying to the center are
destructed in a less degree. The problem is open in this model.

Figure 4: The theoretical Hubble diagram μ0(z) of this model (solid); Super-
novae 1a observational data (580 points of the SCP Union 2.1 compilation) are
taken from [13] and corrected for no time dilation.

The standard cosmological model is based on the assumption that redshifts
of remote objects arise due to an expansion of the Universe. The model was re-
builded a few times to save this base, the last innovation of it is an introduction
of dark energy. Many people are searching for dark energy now or plan to do it,
for example, with the help of big colliders. This basic cosmological assumption
is considered by the community as a dogma, an invioalable sanctuary of present
cosmology. For example, all observations of remote objects in the time domain
are corrected for time dilation - but this effect is an attribute only of the standard
model. In my model this assumption does not seem to be absolutely necessary.
There exists a possibility in the model to interpret observations in another
manner, without any expansion of the Universe.

5.1 The Hubble diagram of this model

In this model, the luminosity distance is given by Eq. 2. The theoretical value
of relaxation factor b for a soft radiation is b = 2.137. Let us begin with this
value of b, considering the Hubble constant as a single free parameter to fit
observations. The theoretical Hubble diagram of this model is compared with
Supernovae 1a observational data by Riess et al. [12] (corrected for no time
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dilation as: μ(z) → μ(z) + 2.5 · lg(1 + z)) in Fig. 2. As you can see, the
theoretical diagram fits observations very well without any dark energy.

Figure 5: Values of k(z) (580 points) and < k(z) >, < k(z) > +σk, < k(z) >
−σk (lines) for the SCP Union 2.1 compilation.

The luminosity distance in the concordance cosmology by w = −1 is:

DL(z) = c/H0 · (1 + z)
∫ z

0

[(1 + x)3ΩM + (1 − ΩM )]−0.5dx ≡ c/H0 · f2(z), (4)

where f2(z) ≡ (1 + z)
∫ z

0
[(1 + x)3ΩM + (1 − ΩM )]−0.5, ΩM is the normalized

matter density. To demonstrate how similar are predictions about distance
moduli as a function of redshift of this model and of the concordance cosmology,
the two theoretical Hubble diagrams are sown in Fig. 3: μ0(z) of this model
with b = 1.137 taking into account the effect of time dilation of the standard
model (solid); and μc(z) for a flat Universe with the concordance cosmology by
ΩM = 0.27 and w = −1 (dash). You can see a good accordance of this diagrams
up to z ≈ 4.

At present, two big compilations of SN 1a observations are available: the
SCP Union 2.1 compilation (580 supernovae) [13] and the JLA compilation
(740 supernovae) [14]. These compilations may be used to evaluate the Hubble
constant in this approach. Using the definition of distance modulus: μ(z) =
5lgDL(z)(Mpc) + 25, we get from Eq. 2 for the theoretical distance modulus
μ0(z): μ0(z) = 5lgf1(z) + k, where the constant k is equal to:

k ≡ 5lg(c/H0) + 25.

If the model fits observations, then we shall have for k(z):

k(z) = μ(z) − 5lgf1(z), (5)
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Figure 6: The theoretical Hubble diagram μ0(z) of this model with b = 2.365
(solid); Supernovae 1a observational data (31 binned points of the JLA com-
pilation) are taken from Tables F.1 and F.2 of [14] and corrected for no time
dilation.

where μ(z) is an observational value of distance modulus. The weighted average
value of k(z) :

< k(z) >=
∑

k(zi)/σ2
i∑

1/σ2
i

, (6)

where σ2
i is a dispersion of μ(zi), will be the best estimate of k. Here, σ2

i is
defined as: σ2

i = σ2
i stat + σ2

i sys. The average value of the Hubble constant may
be found as:

< H0 >=
c · 105

10<k(z)>/5 · Mpc
. (7)

For a standard deviation of the Hubble constant we have:

σ0 =
ln10· < H0 >

5
· σk, (8)

where σ2
k is a weighted dispersion of k, which is calculated with the same weights

as < k(z) > .
The theoretical Hubble diagram μ0(z) of this model with < k(z) > which is

calculated using the SCP Union 2.1 compilation [13] is shown in Fig. 4 together
with observational points corrected for no time dilation. Values of k(z) (580
points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines) are shown in Fig.
5. For this compilation we have: < k > ±σk = 43.216 ± 0.194. Calculating the
χ2 value as:

χ2 =
∑ (k(zi)− < H0 >)2

σ2
i

, (9)
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we get χ2 = 239.635. By 579 degrees of freedom of this data set, it means that
the hypothesis that k(z) = const cannot be rejected with 100% C.L. Using
Eqs. 6, 7, we get for the Hubble constant from the fitting:

< H0 > ±σ0 = (2.211 ± 0.198) · 10−18 s−1 = (68.223 ± 6.097)
km

s · Mpc
.

The theoretical value of the Hubble constant in the model: H0 = 2.14·10−18 s−1 =
66.875 km · s−1 · Mpc−1 belongs to this range. The traditional dimension
km · s−1 · Mpc−1 is not connected here with any expansion.

Figure 7: Values of k(z) (31 binned points) and < k(z) >, < k(z) > +σk, <
k(z) > −σk (lines) for the JLA compilation.

To repeat the above calculations for the JLA compilation, I have used 31
binned points from Tables F.1 and F.2 of [14] (diagonal elements of the cor-
relation matrix in Table F.2 are dispersions of distance moduli). We have for
this compilation by b = 2.137: < k > ±σk = 43.174 ± 0.049 with χ2 = 51.66.
By 30 degrees of freedom of this data set, it means that the hypothesis that
k(z) = const cannot be rejected only with 0.83% C.L. Varying the value of b,
we find the best fitting value of this parameter: b = 2.365 with χ2 = 30.71.
It means that the hypothesis that k(z) = const cannot be rejected now with
43.03% C.L. This value of b is 1.107 times greater than the theoretical one. For
the Hubble constant we have in this case:

< H0 > ±σ0 = (2.254 ± 0.051) · 10−18 s−1 = (69.54 ± 1.58)
km

s · Mpc
.

Results of the best fitting are shown in Figs. 6,7.
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Figure 8: The theoretical Hubble diagram μ0(z) of this model (solid); long
GRBs observational data (109 points) are taken from Tables 1,2 of [17] and
corrected for no time dilation.

If observations of long Gamma-Ray Bursts (GRBs) for small z are calibrated
using SNe 1a, observational points are fitted with this theoretical Hubble dia-
gram, too [4]. But for hard radiation of GRBs, the factor b may be smaller,
and the real diagram for them may differ from the one for SNe 1a. With this
limitation, the long GRBs observational data (109 points) are taken from Tables
1,2 of [17] and fitted in the same manner with b = 2.137. In this case we have:
< k > ±σk = 43.262 ± 8.447 with χ2 = 70.39. By 108 degrees of freedom of
this data set, it means that the hypothesis that k(z) = const cannot be rejected
with 99.81% C.L. For the Hubble constant we have in this case:

< H0 > ±σ0 = (2.162 ± 0.274) · 10−18 s−1 = (66.71 ± 8.45)
km

s · Mpc
.

Results of the fitting are shown in Figs. 8,9.
Very recently, a new data set of 44 long Gamma-Ray Bursts was compiled

with the redshift range of [0.347; 9.4] [18], in which two empirical luminosity
correlations (the Amati relation and Yonetoku relation) were used to calibrate
observations. Because the GRB Hubble diagram calibrated using luminosity
correlations is almost independent on the GRB spectra, as it has been shown
by the authors, I use here values of μ(zi)±σi from columns 7 of Tables 2 and 3
of [18], based on the Band function, but with both calibrations. If this data set
is fitted in the same manner with b = 2.137, we have for the Amati calibration:
< k > ±σk = 43.168 ± 1.159 with χ2 = 40.585. By 43 degrees of freedom of
this data set, it means that the hypothesis that k(z) = const cannot be rejected
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Figure 9: Values of k(z) (109 points) and < k(z) >, < k(z) > +σk, < k(z) >
−σk (lines) for long GRBs.

with 57.66% C.L. For the Hubble constant we have in this case:

< H0 > ±σ0 = (2.26 ± 1.206) · 10−18 s−1 = (69.732 ± 37.226)
km

s · Mpc
.

By b = 2.137, we have for the Yonetoku calibration: < k > ±σk = 43.148±1.197
with χ2 = 43.148. It means that the hypothesis that k(z) = const cannot be
rejected with 46.5% C.L. For the Hubble constant we have in this case:

< H0 > ±σ0 = (2.281 ± 1.257) · 10−18 s−1 = (70.386 ± 38.793)
km

s · Mpc
.

But best fitting values of b are less than 2.137 in both cases: b = 1.885 for the
Amati calibration (< k > ±σk = 43.484 ± 1.15, χ2 = 39.92, with 60.57% C.L.
and < H0 > ±σ0 = (1.954±1.035) ·10−18 s−1 = (60.309±31.932)km/s/Mpc.),
and b = 1.11 for the Yonetoku one (< k > ±σk = 44.439 ± 1.037, χ2 =
32.58, with 87.62% C.L. and < H0 > ±σ0 = (1.259 ± 0.601) · 10−18 s−1 =
(38.841 ± 18.546)km/s/Mpc.). Namely smaller values of this parameter for
bigger photon energies are expected in the model. For best fitting values of b,
values of distance moduli are overestimated in both calibrations: on ∼ 0.225
for the Amati calibration, and on ∼ 1.18 for the Yonetoku calibration, if we
compare values of < k > with its theoretical value of 43.259. It leads to the
corresponding underestimation of the Hubble constant. Results of the best
fitting for the Yonetoku calibration are shown in Fig. 10.

Recently, a new method to test cosmological models was introduced, based
on the Hubble diagram for quasars [15]. The authors built a data set of 1,138

12



Figure 10: The theoretical Hubble diagram μ0(z) of this model with b = 1.11
(solid); GRB observational data with the Yonetoku calibration (44 points) are
taken from Table 3 of [18] and corrected for no time dilation.

quasars for this purpose. Some later, this method and the data set were used
to compare different models [16]. I have used here the binned quasar data set
(18 binned points) of the paper [16] to verify my model in the described above
manner. This data set contains the sum of observed distance modulus and an
arbitrary constant A. To find this unknown constant for the calibration of QSO
observations, I have computed < k′(z) >=< k(z) > +A and replaced < k(z) >
by its value for the JLA compilation; it gave: A = 50.248. This linking means
that the average values of the Hubble constant should be identical for the two
data sets. Subtracting this value of A, we get from the fitting of the quasar data
by b = 2.137: < k > ±σk = 43.175 ± 0.340 with χ2 = 23.378. By 17 degrees of
freedom of this data set, it means that the hypothesis that k(z) = const cannot
be rejected now with 13.73% C.L. For the Hubble constant we have:

< H0 > ±σ0 = (2.253 ± 0.340) · 10−18 s−1 = (69.534 ± 10.873)
km

s · Mpc
.

Results of the fitting are shown in Fig. 11.

5.2 Comparison with the LCDM cosmological model

To compare the above results of fitting with results for the LCDM cosmology,
let us replace f1(z) → f2(z) (see Eq. 4) and repeat the calculations. Of course,
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all data sets should remain now corrected for time dilation. The results of fitting
are presented in Table 1; for convenience, the main above results for the model
of low-energy quantum gravity are collected in the table, too. It is obvious, that
confidence levels for both models do not allow to reject any of them.

the model of low-energy quantum gravity
Data set b χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [13] 2.137 239.635 100 68.22 ± 6.10
JLA [14] 2.365 30.71 43.03 69.54 ± 1.58
109 long GRBs [17] 2.137 70.39 99.81 66.71 ± 8.45
44 long GRBs [18], 2.137 40.585 57.66 69.73 ± 37.23
the Amati calibration 1.885 39.92 60.57 60.31 ± 31.93
44 long GRBs [18], 2.137 43.148 46.5 70.39 ± 38.79
the Yonetoku calibration 1.11 32.58 87.62 38.84 ± 18.55
quasars [16] 2.137 23.378 13.73 69.53 ± 10.87

the LCDM cosmological model
Data set ΩM χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [13] 0.30 217.954 100 69.68 ± 5.94
JLA [14] 0.30 29.548 48.90 70.08 ± 1.56
109 long GRBs [17] 0.30 66.457 99.94 70.04 ± 8.62
44 long GRBs [18], 0.30 40.777 56.81 68.99 ± 36.92
the Amati calibration 0.49 40.596 57.61 60.75 ± 32.44
44 long GRBs [18], 0.30 38.456 66.85 69.59 ± 36.10
the Yonetoku calibration 1.0 34.556 81.72 49.51 ± 24.35
quasars [16] 0.30 21.368 21.03 69.68 ± 10.42

Table 1: Results of fitting the Hubble diagram with the model of low-energy
quantum gravity and the LCDM cosmological model. The best fitting values
of b and ΩM for 44 long GRBs are marked by the bold typeface.

For me, it was a big surprise that the Einstein–de Sitter model (Eq. 4 with
ΩM = 1) cannot be rejected on a base of the full SCP Union 2.1 data set and
the χ2−criterion. We get χ2 = 428.579 and 99.9999% C.L. The cause is in a big
number of small-z supernovae 1a in this set; it leads to a big number of degrees
of freedom, but to small differences of χ2 for models with similar values of DL(z)
in this range of z. But if one splits the data set in two subsets, for example with
z ≤ 0.5 and z > 0.5, and uses the first subset to evaluate < H0 >, then using
this < H0 > and the second subset to compute χ2 by much smaller number
of degrees of freedom, one can reject this model with high probability (when
z > 0.5, we get χ2 = 247.551 by 166 observations and 0.004% C.L.). Results for
the model of low-energy quantum gravity and the LCDM cosmological model
are not essentially changed by the splitting. But the Einstein–de Sitter model
with ΩM = 1 bests the LCDM cosmological model with any amount of dark
energy for the 44 long GRBs data set with the Yonetoku calibration.
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Figure 11: The theoretical Hubble diagram μ0(z) of this model (solid); quasar
observational data (18 binned points) [16] are corrected for no time dilation.

5.3 The Hubble parameter H(z) of this model

If the geometrical distance is described by Eq. 1, for a remote region of the
universe we may introduce the Hubble parameter H(z) in the following manner:

dz = H(z) · dr

c
, (10)

to imitate the local Hubble law. Taking a derivative dr
dz , we get in this model

for H(z) :
H(z) = H0 · (1 + z). (11)

It means that in the model:
H(z)

(1 + z)
= H0. (12)

The last formula gives us a possibility to evaluate the Hubble constant using
observed values of the Hubble parameter H(z). To do it, I use here 28 points of
H(z) from [19] and one point for z < 0.1 from [20]. The last point is the result
of HST measurement of the Hubble constant obtained from observations of 256
low-z supernovae 1a. Here I refer this point to the average redshift z = 0.05.
Observed values of the ratio H(z)/(1 + z) with ±σ error bars are shown in Fig.
12 (points). The weighted average value of the Hubble constant is calculated
by the formula:

< H0 >=

∑ H(zi)
1+zi

/σ2
i∑

1/σ2
i

. (13)
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Figure 12: The ratio H(z)/(1 + z) ± σ and the weighted value of the Hubble
constant < H0 > ±σ0 (horizontal lines). Observed values of the Hubble param-
eter H(z) are taken from Table 1 of [19] and one point for z < 0.1 is taken from
[20].

The weighted dispersion of the Hubble constant is found with the same
weights:

σ2
0 =

∑
(H(zi)

1+zi
− < H0 >)2/σ2

i∑
1/σ2

i

. (14)

Calculations give for these quantities:

< H0 > ±σ0 = (64.40 ± 5.95) km s−1 Mpc−1. (15)

The weighted average value of the Hubble constant with ±σ0 error bars are
shown in Fig. 12 as horizontal lines.

Calculating the χ2 value as:

χ2 =
∑ (H(zi)

1+zi
− < H0 >)2

σ2
i

, (16)

we get χ2 = 16.491. By 28 degrees of freedom of our data set, it means that the
hypothesis described by Eq. 11 cannot be rejected with 95% C.L.

If we use another set of 21 cosmological model-independent measurements
of H(z) based on the differential age method [21], we get (see Fig. 13):

< H0 > ±σ0 = (63.37 ± 4.56) km s−1 Mpc−1. (17)
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The value of χ2 in this case is smaller and equal to 3.948. By 21 degrees of
freedom of this new data set, it means that the hypothesis described by Eq. 11
cannot be rejected with 99.998% C.L.

Figure 13: The ratio H(z)/(1+z)±σ and the weighted value of the Hubble con-
stant < H0 > ±σ0 (horizontal lines). Observed values of the Hubble parameter
H(z) are taken from [21].

Some authors try in a frame of models of expanding universe to find deceleration-
acceleration transition redshifts using the same data set (for example, [19]). The
above conclusion that the ratio H(z)/(1 + z) remains statistically constant in
the available range of redshifts is model-independent. For the considered model,
it is an additional fact against dark energy as an admissible alternative to the
graviton background.

5.4 The Alcock-Paczynski test of this model

The Alcock-Paczynski cosmological test consists in an evaluation of the ratio of
observed angular size to radial/redshift size [22]. Recently, this test has been
carried out for a few cosmological models by Fulvio Melia and Martin Lopez-
Corredoira [23]. They used new model-independent data on BAO peak positions
from [24] and [25]. For two mean values of z (< z >= 0.57 and < z >=
2.34), the measured angular-diameter distance dA(z) and Hubble parameter
H(z) give for the observed characteristic ratio yobs(z) of this test the values:
yobs(0.57) = 1.264 ± 0.056 and yobs(2.34) = 1.706 ± 0.076. In this model we
have: dcom(z) = dA(z) = r(z), where dcom(z) is the cosmological comoving
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distance. Because the Universe is static here, the ratio y(z) for this model is
defined as:

y(z) =
r(z)

z · d
dz r(z)

=
r(z) · H(z)

cz
= (1 +

1
z
) · ln(1 + z), (18)

where H(z) is defined by Eq. 10. This function without free parameters charac-
terizes any tired light model (model 6 in [23]). We have only two observational
points to fit them with this function. Calculating the χ2 value as:

χ2 =
∑ (yobs(zi) − y(zi))2

σ2
i

, (19)

we get χ2 = 0.189, that corresponds to the confidence level of 91% for two
degrees of freedom.

6 Conclusion

As it is shown above, the Hubble diagram of supernovae 1a, GRBs and quasars
being corrected for no time dilation, the Hubble parameter H(z) and the ratio
of observed angular size to radial/redshift size are well fitted in this model. The
Hubble diagram for GRBs may differ in the model from the diagram for SNe
1a, and some signs of this difference are seen, perhaps, in the case of the 44
long GRBs data set. In the model, space-time is flat, and the geometrical dis-
tance as a function of the redshift coincides with the angular diameter distance.
Given that a galaxy number density is constant in the no-evolution scenario,
theoretical predictions for galaxy number counts in this model have been found
using only the luminosity and geometrical distances defined by Eqs.1, 2 [26].
The geometrical distance r(z) of this model is very different from the one of
the standard model; for example, GRB 090429B with z = 9.4 [27] took place
24.6 Gyr ago in a frame of this model; the age of the Universe of the standard
model: ∼ 13.5 Gyr corrseponds here to z � 2.6.

At present this model is not a full cosmological one; it is necessary to develop
many open problems to bring it closer to the pursuable completeness. But even
now it has interesting advantages: the model’s parameters H0 and b are com-
putable; there is not any need in dark energy (and in the Bing Bang, inflation,
expansion).

I am grateful to the authors of the paper [16] for the binned quasar data set
which I have received by my request.
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