On the Nature of 'Time': And the Predictions of General Relativity

Hasmukh K. Tank

Indian Space Research Organization

22/693 Krishna Dham-2 Ahmedabad-380015 India

E-mail: tank.hasmukh@rediffmail.com; hasmukh.tank1@gmail.com

Abstract:

This letter proposes that 'time' is not an objective physical entity. So there is a difference between the ways how: 'space' is measured; and how 'time' is estimated. A foot-rule can measure a 'distance'; but a clock does not measure 'time'; rather we get an estimate of 'time' with the help of clock. Does an hourglass measure 'time'? According to GR 'time' runs slower in stronger gravitational field. If an hour-glass were 'measuring' 'time', then the flow of sand should slow down. But we know that the flow of sand becomes faster in stronger gravitational field. Similarly, an atomic-clock too does not measure 'time'. Coincidently, the revolutions of electrons in the atoms slow-down in stronger gravity, but it should not be mistaken as an 'experimental-test' of GR. Since 'time' is not a physical entity, the general-relativistic space-time-continuum too is not an objective physical entity; rather it is nothing more than a 'mathematical abstraction'. Consequently, the 'expansion of space', and 'time-dilation' of supernovae 'light-curves' too are mathematical objects. As was shown in ref.1, any mechanism which can cause 'cosmological red-shift' will also cause 'timedilation' of super-novae light-curves'. If the space between the galaxies is expanding; but the space within the galaxy is not expanding, because a galaxy is a 'gravitationally-bound-structure', then what happens at the boundary of the galaxy? Such un-even expansion of glass would break the glass, and should tearoff the space. Therefore, we need to find better alternative to the GR and the 'expanding model of the universe'.

References:

1. Tank, Hasmukh K. Wave-theoretical insight into the relativistic lengthcontraction and time-dilation of super-nova light-curves Adv. Studies Theor. Phys., Vol. 7, 2013, no. 20, 971–976 http://dx.doi.org/10.12988/astp.2013.39102