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Abstract

The commonly accepted No-Hair Conjecture states that black holes can be
completely characterized by three and only three externally observable classical
parameters: mass, electrical charge, and angular momentum. The Kerr-Newman
metric describes the geometry of space-time in the vicinity of a rotating mass M with
charge Q. These three parameters are also the basic parameters of many subatomic
particles. In light of the similarities between black holes and subatomic particles,
this paper applies the Kerr-Newman solutions to a one half Planck mass spinning

with an angular momentum of ; just like a spin % particle. The results exhibit a

group of particles with properties similar to all the stable subatomic particles,
including the neutrino, electron, position, proton, and anti-proton. The composite
state of two or more of these spinning Planck masses exhibits other unstable
particles such as the pion, neutron, and kaon, with decay products matching the
composite components.

For example, this model leads to a composite of two spin %; particles with a
composite mass of (2 - 1) m,, where a is the fine structure constant, and m,, is the

mass of an electron. The spin of this composite particle is zero. The ultimate decay
product can be either, neutrinos and an electron, or positron, similar to a pion

(n~or n*). The numerical value of (é - 1) m, is 139.54 MeV/c? which is very

close to the reported mass (9 of a spin zero pion, 139.57 MeV/c2.

Background and Introduction:
One hundred years ago, in November of 1915, Einstein presented what are now

known as the Einstein field equations.
81tG

Gyv + g;wA = C—4Tuv €8]
These equations specify how the geometry of space and time is influenced by
whatever matter and radiation are present, and form the core of Einstein’s general
theory of relativity () (2 (3) . The Einstein field equations are nonlinear and very
difficult to solve. Einstein used approximation methods in working out initial
predictions of the theory. But before the end of 1915, the astrophysicist Karl
Schwarzschild found the first non-trivial exact solution to the Einstein field

equations, the so-called Schwarzschild metric (4
-1
c?dr? = (1 - %) cdt? — (1 - %) dr? —r2(d6? + sin*6d¢) (2)
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where r;=



This solution laid the groundwork for the description of the final stages of
gravitational collapse, and the objects known today as black holes. In the following
years, the first steps towards generalizing Schwarzschild’s solution to electrically
charged objects were taken. This eventually resulted in the Reissner-Nordstrom
solution (3)

ds? = (1 -5 + ﬁ) cidt? — (1 — r_5+ @)_1 dr? — r2dQ0?
r r? r o r2
2
where 1§ = Q—G&,and dQ? = d6? + sin%d¢? (3)
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which is now associated with electrically charged black holes.In 1917, Einstein
applied his theory to the universe as a whole, initiating the field of relativistic
cosmology. In 1965, Ezra “Ted” Newman found the axisymmetric solution of
Einstein’s field equation for a black hole which is both rotating and electrically
charged. This formula for the metric tensor g, is called the Kerr-Newman metric.

It is a generalization of the Kerr metric for an uncharged spinning point-mass,
which had been discovered by Roy Kerr two years earlier. The Kerr-Newman
metric ) describes the geometry of space-time in the vicinity of a rotating mass M
with charge Q. The formula for this metric depends upon what coordinates or
coordinate conditions are selected. One way to express this metric is by writing
down its line element in a particular set of spherical coordinates,[*] also called
Boyer-Lindquist coordinates:

c2dr? = — (U= + d92) p* + (cdt — asin*9dep)? 2 - ((r* +a?)dg -

acdt)? Si::# (4)

where the coordinates (r, 9, ¢) are standard spherical coordinate system, and the length-
scales:
a= L
Mc
pP=r*+a*+ 15

=r’—nr+ a?+ 1}
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have been introduced for brevity. Here r, is the Schwarzschild radius (in meters)

of the massive body, which is related to its mass M by
26M
= CZ
where G is the gravitational constant, and 7, is a length-scale corresponding to the electric

Ts

charge Q of the mass
2 _ @* G
To = 4TTEy C*
where 1/4me, is Coulomb’s force constant.




An alternative metric form of the Kerr Newman Metric can also be written as:

—~a2cin
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(a?Asin?9 — r* — 2r2q? — a‘*)M —(A—71%—qa?) asin“dcdtde (5)
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All these equations and metrics are widely used for describing massive astronomical
scale objects from the size of the earth, the sun, neutron stars, quasars, and black holes.

Application of Space Time Metrics to Planck scale particles:

The Planck constant h is one of the fundamental quantities of nature. The energy of
electromagnetic wave, light, is E = hv, or hw, where v is the frequency and # is the

reduced Planck constant A = % and w = 2mv is the angular frequency. Together with
velocity of light c, the gravitational constant G, there are three fundamental units that are

’h .
naturally composed from these constants: —Cg = L, is the Planck length (1.61619926 x 10

meters); Ji—rg- = T, is the Planck Time (~5.39106x10~** sec), and \/%7 = m, is the

Planck Mass (2.17651(13)x10® kg). When these fundamental units are used in the space-
time solutions of the Einstein’s Equations, some interesting results have followed. An

object with the mass of one half Planck Mass, M = % m,= % \/% has a Schwarzschild

. Gh
radius of one Planck Length \[; =1,

c hc
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The curvature term of Schwarzschild Equation (2), (1 — %) becomes zero and (1 — :—S)"l

term become infinite for a half Planck Mass object at the Schwarzschild radius of 2l,. At
distances approaching this [, radius, space-time is highly curved just like an astronomical
black hole. It has all the properties just like a “micro-black hole”. The local time
element, dt, at a distance r away from the object is slowed down in comparison to the
far-away time dt. The local line element in the radial direction is lengthened in
comparison to the far away dr according to the following relationship:

1
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)2dt, and dr(local) = (1 - 2) *ar. ©6)

dr(local) = (1 -

rc?

Also, a “probe” particle of mass m, interacting in this field has a constant energy to mass
ratio, E/m © of

I O T (7)

mc? rc2 /) dr




ZMG). For a particle with mass equal to

i.e. with a space-time curvature of g = (1 — =

one half Planck mass % \/h;c, o becomes zero at the Schwarzschild radius of one Planck

length /TZ—S and the reciprocal of this space-time curvature term is infinite at [,, (a
singularity).

Particle with angular moment:

For an object spinning with an angular momentum of J and carrying a charge Q, we can
use the Alternative form of Kerr-Newman Metric ©"

c2ae? = T80 c2gp2 (2 gr2  p2gg 4

, sin?9d¢? 2adcdtd
(a®Asin?9 —r* — 2r%a% —a )—p—¢ (A —r? a?')—-—(—é
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wherea=#, p? =r*+a*cos*d, A=r?—rr+a*+1¢ ,and 1¢ =

By re-grouping the time dependent terms, ® we have
c?dr? = (i_a:ii—rmczdtz —(A-1%2-a? M +(terms without t) (8)
d¢

dt

cdr? = (A?“:)Szi—nzﬁ) 2qt2 — (A — 12 — g?) 20cosiniode?

By replacing d¢ with wdt where w =

+(terms without t)

2
c2dr? [(A‘IPLM 2—(A—-1%—-a?) m%—ﬂ] dt? + (terms without t)

A small segment of T can then be written as

2 .
T= {[(A apsm (A —r2 az) Zaw%_i] t2 + (terms without t)}E

If a 7 is divided into two sub-segments 7 = 7, + T and the respective r’s from M is
written as r =1, + 13,

(A-a?sin29) 2awsin29 A-a?sin?9) 2awsin?9
dty [T‘(A‘rz‘az)T]t dp (—pz—‘(A‘rz‘az)T]t
Then, —£ = — and — =
dt TA dt B
d‘r
Using the Principle of Extremal Aging and settmg " tA + —dt =0

The constant of motion as the energy for an mteractmg particle of mass m can be written

E _ [(A a?sin?9) —(A-12—a?) 2awsin®9] dt )

as
mc?2 p? p%c dt

2 ,
[1 __Tsrerg (1- Zawimzﬂ)]% (10

r2+a2cos?9



Case I: For Q=0, a = 0, a non-rotating electrically neutral object:

E re] dt 2MG, dt
e = 1= =n-221E
mc? rldr rc2ldr
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The space-time curvature term [1 — ——| becomes zero at r =

2MG
rc?
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For M = My =3 ’FC , the space-time curvature term [1 — —-] becomes zero at

Planck length, [, and the reciprocal of this term becomes infinite and it is similar
to a “micro black hole”. This result is the same as using Schwarzschild Metric of
Equation (2) above. :

Case II: For Q=0,(r¢ =0), a # 0,
An electrically neutral object with an angular momentum,

2
From Equation (10): £ [1 — 57 1- 2a0sin 19)] &

mc? r2+a2cos29 c dt

(ITA) On the equatorial plane, 9 = g ie.cos9 =0, sind=1

E _[q 7T q _2004]4at
me2 [1 r2 1 c )]dr (11)
_ E &
when 2aw =, mcz_[l]d‘r VM andVr (12)

This is to say: This spinning object, independent of its mass, is not causing any
space-time curvature on the equatorial plane, just the same as an object of “zero
gravitational mass”, i.e. equivalent to M = 0. Nevertheless, this object carries a

non-zero angular moment of J (a = MLC).
Furthermore, the condition of 2aw = ¢ can be written as 2 MLCw = .
1

If]=5h-, and w = P
14

ho|c5
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thenM ==— = 2= = - |[= = -m
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This angular frequency w,, will be called the Planck Frequency (a)p = Ti) in this
4
article. A particle with mass equal to one Planck Mass, m,,, spinning at the

. ho
Planck Frequency, and carrying an angular momentum of . satisfies the

condition of (1 - ZaTw) = 0. Also, particle with mass equal to one half Planck

Mass m,,, spinning at one half the Planck Frequency, and carrying an angular



. oo .
momentum of > satisfies the condition of (1 - ZaTw) = 0. The space time

curvature term of such a particle, even though its mass is equal to one half the
Planck Mass will be “seen” as a zero mass M = 0 particle on its equatorial plane.
Any force acting on this particle can cause it to travel with the velocity of light
along its equatorial plane.  Unlike the particle of equation (6) and (7) above,
this particle having the mass of one Planck Mass, and spinning with an angular

h . . . . .
momentum of > does not contain any singularity of curvature in space-time, and
it behaves just like an electrically neutral particle of zero rest mass with spin .
With the equivalent of zero mass, this particle nevertheless can carry energy

and/or transfer an angular momentum of g with other interacting particles. All the

properties of this particle are very much like that of a neutrino. Could this be a
neutrino?

(IIB) Along the polar axis: 9 =0, cosd9 =1, sind =0

. E _[4_ st _ 2awsin®y ]ﬂ .
Equation (10) — = [ rate0sis (1 — ) o, can be written as
E — ___Trsr Jadt . 2 [ __IsT ]
mc2 [ r2+a2l dt witha® # 0, |1 r2+a? *0

. . h
Since a = L, for a particle of J=—and M = lm,[,,
Mc 2 2

h hc
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l
U:[l—r;i22]=[1___p_]=1_n27:1 forr=nlp.(seef0°m°te) (14)
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The space-time curvature term [1 -

r2+a2] is equal to% for n=1 in the polar
directions. The space-time curvature term does not cause any singularity for all
n =1 (Vn = 1) both in the differential space and time coefficients of the Kerr
Newman Equation. The space-time curvature is flat, or equal to 1,V r > [, in
the polar direction. Since the space-time curvature is not equal to 1 in the polar
direction, this is indeed an object with mass and not a “non-object”. With the
property of M = 0 in the equatorial direction, this particle can move along the

equatorial plane with the velocity of light just like as a massless particle.



CaseIIl: Q#0, (r; #0), am >0
Charge Particle with an Angular Momentum:

E rsT-74 a 2awsin219) dt
mez rZ2+aZcos??9 c dr

From Equation (10),

(IIA) On the equatorial plane,d =~ ie.cos¥ = 0; sind = 1

E _ [, _rr-rd . 20w ]at
me? [1 r2 @ c )] dt (142)
. _ E _ rq7dt
Again, when 2aw = c, — = [1] ” VM and Vr

. . h . .
If this particle has an angular momentum J of > and if the w is equal to %wp, then

1 h cS 1 |Gh 1 .
2aw= 2Lt =" |C = c , therefore, M == |—=-m, The particle
Mc 27y 2Mc \ hG 24 ¢ 2

mass is equal to one half Planck Mass. Nevertheless, the space-time curvature in

the equatorial plane remains flat because of the angular momentum of Z just like
the Case II(A) above.

(IITA ;) Negative modulation frequency

s 1 e . h
Now, if this M = S Mp particle is spinning with an angular momentum J = S but
. 1 1 2 .
with a frequency of w = 7 Wp — 5 We , where w, = m, % , m, being the rest

mass of an electron, and if with the charge Q is equal to e of an electron,

1
then (1 —ZaTw) = [1 - Zh(lwp we)] = e _Te (15)

= 2 2
zmp c mpc my

and equation (14) will become
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where m,’ = (- 4n£0rcz).

Equation (15a) can be written as



mpG
B _ [y mrona(me e _ | g _ 2Rl (me )|t
mc? r2 my )] dt r2 mp /| dt

[1— 2(Gmp-me' )G (ﬁ) 14 (16)

rc? my dt
the term G m, — me') is equal to a gravitating mass of one half Planck Mass

minus the equivalent mass of the “self energy” divided by c¢?, with a spherical
radiusr. Since m,’ < m, Vr > L, ,Equation (16) can be written as

E _ Zemp_me’)c me \,dt _ meG] dt
_[1—_(E)]E~[1— ]E (16a)

mc? rc? rc2

The space-time curvature from the gravitating mass as seen by a “probe” mass m
(or test mass) m, is like the rest mass of an electron, with an equivalent charge
radius of the deBroglie wavelength of an electron. The interaction between two
of such particles is like two electrons with charge e in each.

(IIIAp) Positive modulation frequency

e en 1 S . h
Now, if this M = > My particle is spinning with an angular momentum J = S but
. 1 1 2
with a frequency of w = SWp T, where w, = m, % ,

1
Zh e

then(1—2—““i)=[1—2(f”’+w) = e __Me a7

c Empcz mpcz mp
This is the same as Equation (15) above with m, replaced by - m,.
Equation (16) can also be written as
E __ 2(%mp—me’)6 -mg \q dt _ (—-mg)G] dt
mcz_[l-— rc? ( my )]E—— [1_ rc? ]E (18)

The space-time curvature from a mass of - m,.

The interaction between a particle in Case III(A ) with a particle in Case III(Ap)

2
will be a repulsive force of F; = K eT However, since the mass of the particle in
Case III(Ap) is negative, the acceleration from this “repulsive force” is in the
reversed direction, i.e. the interaction between these two particle is “attractive”.

This is also equivalent to treating the particle in Case III(Ap) as a charge of +e
with a positive mass of m,, just like a positron.



(IIIB) Along the polar axis: 9 =0, cosd =1, sind =0

E _ [1 _rsrrglat (19)

mc? r2+a? | dt

1 h
ForQ=e, M=;mp, and]=;,

¢ [re
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where a = ~ —— s the fine structure constant

4meghc 137

Let r be equal to an integer n times [,,, i.e. r=nl,

Then Equation (19) can be written as

mc?

E [ _ Ter=Tg ﬂ—[ _nht-aly? alp]__[ _ (n-a) (20)

= r2+a? |dr (n2+1)L;, (n2+1) ] dt
where n is the number of Planck lengths away from the pole of the spinning

. . 1+ ..
object. For n=1, the space-time curvature term g = [1- % + %] = Ta. This is

very similar to that of the Case II B except with the addition of a/2 from the
electrical charge. Forn > 1,0 = 1 of a flat space-time.

CaselV: Q #0, (ré * 0), aw < 0, Charge Particle with Angular
Momentum and negative angular velocity:

From Equation (10), E__ [1 _ rsr—14 - 2awsin 19)]_

mc? r2+a2cos29

(IVA) On the equatorial plane, 9 = g ie.cosd =0, sind=1

= [1-20 - ey & @1)

mc2

Ifaw <0, and if —2aw =c¢

I P PN 1
= [1 = (2)] o VM and Vr (22)

mc?2

E
mc?

5] at
r2|dr

=[1—2r—$+2
T



For a particle of M = imp, the Schwarzschild radius 7y = L,.

At two times the Schwarzschild radius r = 2r; = 21,
g =[2 g ar _1ab’ _1, (22a)

mc? 4lp2 dt 2 lp2 2

Could a composite of this with a neutrino be a m°?

Could t* be (wme - %wp )and n~ be (—wm, — %wp) ?
There is no space-time singularity for all = 21,,

(IVAp) Positive modulation frequency

If the particle is spinning at an angular frequency of
W= Wy, — %wp (23)
c? Ao c

A : .
where w,, =m, —, and —= = —— RXois the deBroglie
0 h 21 Wmg moC

wavelength of the particle m,,
and  ifQ=e,M=2myand J =",

_aw) _ 5 _2mo
then (1 . ) -
_TST_ rQ _2mo)jdt
and mc2 [1 (2 )] — (24)
- 2myG  2myG. dt 2(mp-mo)G- dt
= [1-—L+— 5] == (24a)
using 1§ < 757
_ . E Z(mp—mo)G dt
For r = nr,, Equation 24 becomes mcz_[l- — ] =
E mg | dt
AtT':le, m=[—o—
i.e. the space time curvature at 21, is 0 = To (25)
P mp

The mass/energy of this object as seen (or measured) from a far away

distance 7 > 2L, will be E = (m, —m,) [%9] c? = myc?, just like a
P

. .. . h .
particle of mass m,, spinning with an angular moment of /] = -, carrying

: 2 G
a charge of e. At short distances, the curvature term [1 — ——(m” “mo)

MG

]is

in the Schwarzschild

the same as the space-time curvature term

Metric from an object with mass M = m,, — mo. The “gravitational

. . . G(mp—mo)z
interaction” between two of these masses will be P;, =7



L . . Ke?
The “electrical interaction” from the charge e will be F; = 'reT ,where K =

ame,’
The ratio between these two interactions will be
he
Fi—_— G(mp—mo)2 - Gmp2 _ G—G— _ hc — l ~ 137 (26)
Fq Ke? ~  Ke?2 Ke? Ke? a

using my, <« m,. Recalling that this particle is spinning at an angular

frequency of w = wp,, — %wp, (Equation 23), where w, = m, % If
;—:t = wfno = mloc is the deBroglie wavelength of a hadron, such as a
proton, then the F; (at short range) that is 137 times stronger than the
electrical force Fy, is very much like the short range “nuclear strong

interaction” of a hadron with a deBroglie wavelength

Ro=20=_¢ -1 Kof m,.

2 Wmg mocC

At short range, whenr =21,,,0 = [%] At this space-time curvature,
D

relativistic distance is lengthened by 6~ = [;:—2] (for extreme-spin Kerr
0

black hole). The energy from the electrical force between two particles at
this distance can be written as

2 2

e e em em emC
quKra—1=Krmp_ rmo_ o_ 2
14 Pmo p™p r—cs\r
= ket myc? = am,c?
ke - o

where « is the fine structure constant (~1/137).
If m, is the mass of a proton, (~938 Mev/c?), €, = 6.85 Mev is
approximately equal to the (per nucleon) Binding Energy of nucleus.

For r > 21, the o changes from an extremely small number of ;nTO to
P

~(1 - %) for r = nl, and eventually become 1 (flat space-time) for n>> 2.

(IVA ) Negative modulation frequency
If the particle is spinning at an angular frequency of

1
W= =W, = S Wy (25)
where w,, =m, % d 2= =" % is the deBrogli
me = Mo 7, AN 2 omg e is the deBroglie
wavelength of the particle m,,
and ifQ=e, Mzimpand]=g,
then (1—2‘1—(‘))=2+Zﬂ
c mp
_TsTrg dt
and mc2 [1 —(2+ )] T
~ 2myG  2myG 2(mp+my )G, dt
= [ - 20 _Zmaty &ty 2mpt o)y & 26)



using 7§ < 7,7
. B .
Together with the angular momentum of | = 5 the space-time curvature

of this M = lmp object is like an object of mass M = mp +m, for
2

E -m
reo, Atr=2, == °] [ &

mc2
i.e. the space time curvature at 21, is 0 = [m—] with —drt,
(4
i.e., local time of the particle is in reversed direction: Anti-particle.

The mass/energy of this object as seen (or measured) from a far away

distance 7 > 2L, will be E = (m,, } 2 = —myc?, just like

i
an anti-particle of mass mg, spinning with an angular moment of | = 7

carrying a charge of e. At short distances, the curvature term [1 —

2(my+m 2MG
%] is the same as the space-time curvature term

Schwarzschild Metric from an object with mass M = m,, + mo. The
“gravitational interaction” between two of these masses will be

in the

G(mp+mg)?
rz
2

be F ,where K = !
r2 4

TE

E = , and the “electrical interaction” from the charge e will

. F G(mptmo)® _ Gmp® G hc 1
will be £ = —2 = —Tl=_E= == 137

Fgq Ke? Ke2 Ke?2 Ke?
using m, < my,.

(IVB) Along the polar axis: 9 =0, cosd9 =1, sind =0

E rsr-13] dt
1 -=2—"20|&
r2+a? | dt

1 h
FOI'Q—G, M———'Z'mp, ]_E’
hc
_6m, 67 R
Ts cz2 2 C_3 P>
] E ZG G
=Ll =_2 ] 2 _ _¢€ — 2
= = 5 = = ah—= al
Mc “mpc p> Q7 ameyct c3 p
e? 1
where a = ~ —— (s the fine structure constant.
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Ifr=nl,, then

E _ rsr—ré dt nlpz—etlp2 dt (n—-a)]dt
B PO 0 PO T PR @n
mc r2+a? | dt n2lp" +l,% | dv (m2+1)l dv

The ratio between these two interactions



Summery and extension:

Based on the similarity of the basic mass, charge, and angular momentum properties of
black holes and fundamental particles, the Kerr-Newman solution to the Einstein Field

equation that used to characterize a black hole can be applied to some spin % particles.

Interesting properties are seen when one half Planck mass is used for the mass, one half
of Planck constant is used for the angular momentum and electronic charge e is used as
the charge. Table I summarizes the various conditions and the resulting properties that
parallel some of the stable particles in nature.

_1 m Q |J w = d¢ 9 gatr oat nlp A (size) thl)aSS ; object
= = 1 DeBroglie | observe
2 p dt (U =1= ﬂat) Wavelegngth from
infinity
a1- l) ;N:xicm hil
Case | 010 0 2 2MG -0 L my d
[1- 2 ] 9= 2 Black hole”
rc @n=1
Stable particles
Case I1A n 1Vr 1
0 |h Wp 2 L, 0 Neutrino
Case 1IB 2 2 0 1"
— n2+1
Case IlIA i Lvr 1
= n e |h| Wp e |2 ( ; h m, Electron
ase [1IB 51 2 o |0 n—a m, =
2 2 z - n2+1) mec electron mass
Case I1IA, te|h) Dp e T Lvr 1 R Me .
2 2 2 m,C dt < 0 | Positron
n 2(m, —m,)G [m ]
Case IVA — _ ATy = Mo) Mo -
p te |[h| Wm, Wp |2 . rc? ] my @ n=2 h m, Proton
Case IVB 9 0 T — 18 (n—a) m, =
2 2 2 [1 > ag] - mZ+ 1) myc proton mass
Case IVA =€ E —( ;”° %) T 1 _M] [—mo] h m, Anti-
2 2 rc? my m,c dr < 0 Proton
@ n=2
Unstable particles Composite @
0 |0 _%q4H “p 0
Case IV A, 269(2) a2 T
2
Case IV A +e | 0 _2 , ah ~C-vm, | qrt
W, w, a/ 2m,c
@ (7 + 7)
) 2 —
CaseIVA,, |[©|0] -=2 ] ah [ C)m | g
w,” w, af 2myc | dr<o
7 (-2— - 7)




CaselllA e [h| Wp @y 1vr 1 h m, u
2 2 2 ——m# c
CaselllA,,, te | Bl Yo W 1Vr 1 h m, T
2 2 2 m,c dt <0
(l)mo w. _ —
CaselV Apy 0 | R ( 5 - 7”) (- 2(m, zma)G] [ ] @n=2 | h m, +
2 o _ e re myc
( 2 )
3
Unstable particles of Composite D
m= mp
M=m Q |/ _d¢ ) ocatr oatnl, K (size) Mass object
p W= E (O' =] = ﬂat) DeBroglie observed
Wavelength from
infinity
Case IV A, te | 0 —w, + Pe [ 2h my/2 K+
w, & Zmp m,c +6
D (= +-)
2 2
Case IV A, € | 0]~w, [ ] 2h m,/2 K~
®(2-2 2myp m,c +6
2 n=2
Case IV A, 01010 & [2 mo @ 2h m,/2 | KO
2 mp m,c +0
n=2

Other than the non-spinning Planck mass of case I, the space-time curvature of all the
spinning particles in the equatorial plane is different from the curvature in the polar
directions. For Case II and Case III, the space-time curvature on the equatorial plane is
equal to one or just slightly different from one because of the mass equivalent from the
energy of the electrical charge of the particle. The properties of the particles in case II
and IIT are very much like those of leptons. However, equatorial plane curvature ( g ) for
particles in Case IV is very small but not zero. At Planck length, the gravitational
interaction of two such particles is very much like the “strong interaction” (Gm,m,).
When the particles are separated by a large distance, (n >>1), the mass is o times the
Planck Mass, that is the observed mass m of particle as measured in the lab. The
gravitational interaction will simply be proportional to (Gmymgy. Along the polar
direction, all particles from Case II, III, and IV have similar curvature terms of
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Planck length (n=1), the curvature is practically equal to 4. A mass of m, at infinity
will have a relativistic mass of 2m,, at Plank length (n=1) from the interacting mass of
Y4m,, along the polar direction. The gravitational interaction between these two masses
will simply be proportional to (Gmym,). The interaction of two particles from the polar
to polar direction will be equivalent to the gravitational interaction between a Planck
mass and the rest mass of the particle at infinity (Gmom,,). The magnitude is similar to
that of “weak interaction”. Furthermore, the ré term in Equation 10, mass arises from
energy of the charge of the particle with a magnitude of a times the angular energy of the
particle. Since the polarity of the charge is related to the sign of the modulation
frequency, electrical charge carried by the particle could be equivalent to the direction of
the spin modulation. So, electrical charge could be explained by the spin-spin interaction
of the space-time curvature vortex. Should this be the case, then, all four interactions in
nature could just be the interactions of space-time geometries.

n_al) or (1-—

7y ) when there is no electrical charge. At the distance of one

The properties of the spinning %4m,, entities resemble many of the basic and stable
subatomic particles:

(1) Neutrino (Case II above): This particle carries an angular moment of g

Spinning at one half Planck frequency (-0-23. It is electrically neutral; it may carry

energy and has a zero rest mass. It travels with the speed of light along the
equatorial plane. It can interact with other particle with a “weak force” along the
polar direction. Since it can only travel along the equatorial plane, only 1/3 of
them can be detected from any isotropic emitter. This may account for the
“missing neutrinos” from the sun or from any neutrino source on Earth.

(2) Electron (Case IIIA, above): This particle carries an angular moment of g Itis

spinning with a frequency — 9’2—“’ less than one half of Planck frequency where

2
Te®_is the deBroglie frequency of an electron. The size of this particle is in

We =
the order of the deBroglie wavelength of an electron. It carries a unit charge of -¢
Ke?

and interact with other charge particles with the coupling constant of k where —

is the fine structure constant. In the polar direction, it also interacts with other
particles with “weak interaction” in additional to the interaction from electrical
charge.

(3) Positron (Case IIIA, above): With spinning frequency+ % more than %, this
particle carries a positive charge of +e or —e with -m,, just like an anti-particle of

electron.
(4) Proton (Case IVAp above): With spinning frequency w;n" - —wz—p where Wy, is the
2
deBroglie frequency w, = m‘;lc of a proton, this spin ¥ particle carries a positive

charge of +e. At 2 Planck length (21,), the gravitational force (Gm,m,) between



(5) Anti-proton (Case IVA, above): With spinning frequency —

. . . he . .
two of these particles is 137 times stronger , (;(—:3 tims), than the electrical force
(Ke?) just like the “nuclear strong force”. The space-time curvature ¢ at 21, is

%, and therefore, when the second particle is moved from 21, to infinity, (s=1),
D

the relativistic become m,, a proton mass.

wmo
2

% particle carries a negative charge of —e, (or +e with a negative mass), and just

like the anti-particle of a proton.

w . .
- 7” , this spin

The properties of one spinning %4m,, with one or more other /4m,, entity also resembles
many of the unstable subatomic particles:

(6) Neutron (composite particle of a proton an electron, and a neutrino): The space-

(n-a)
(n?2+1)
=1 (one Planck length). At this distance, gravitational force between spin one
half, Y4m,, particles can be held by the “weak force” from the polar to polar
direction space time curvature of %2 on both sides. A positive charged proton, a
negative charge electron and a neutrino can than be held by both the electrical
force and the “weak force” from both sides and exhibited as a spin % particle with
neutral electrical charge. The time period of the electron at the space-time

curvature of one half Planck mass Y4m,, will be dilated by % Jie = %"—ere.
p P

time curvature o of a proton polar direction is equal to 1 — or (%2 4—% ) for n

Numerically, T = 607 seconds, matching the half-life of a neutron. This
composite particle is unstable by itself and decays into an electron, a proton and a

neutrinon = p + e + ¥ with a half-life of 22¢7,, where 7, the period of deBroglie
@p

wave length of an electron.

(7) Pion (composite particle of Case IVA, and Case 11, or Case IIIAn or Case I1IAp):

()

()

(™)

The space-time curvature of Case IVA in the equatorial plane at one Planck
length is % A composite of this with an electron or positron will have a space-

time curvature of (2 —1),and have a mass of (2 — 1)m,. This particle is also belong
to the group of “strong interaction” particle as well as “weak interaction” particle.
A composite particle with a Case II (neutrino) held together in the polar direction
will be a spin zero neutral particle that interacts with both “weak interaction” and
“strong interaction” like a Pion Zero 7°.

A composite particle with a Case IIIAp (positron) held together in the polar
direction will be a spin zero positively charged particle like a pion plus. The mass

of the particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c? very

close to the measured value of 139.57018(35) MeV/c? MeV/c*

A composite particle with a Case IIIAn (electron) held together in the polar
direction will be a spin zero positively charged particle like a pion minus. The
mass of the particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c?

very close to the measured value of 139.57018(35) MeV/c* ©




(8) Kaon: Similar to Case IV, M=m,, instead of M=% m,, andif the angular

€)

. _ _ . . my
frequency is @ = wy, — w, ,atr=2 1, the space-time curvature will be P
Together with a neutrino, this will be a spin zero particle with a mass about one

half of a proton mass like a K Forw= —Wp, — Wp ,the composite particle is

likeaK . K° is like a particle of w = — w,.

2
i . : E _|q_ITefy _2mo)|dt =
Higgs boson: From Equation 24, — = [1 = (2 - )] = and forQ =e,
e2G G
4megct - ahc_3

_o1 B _[q_wiebt () 2me)lar_ zlg]_ [m]z e
atr= le > mez [1 4 lp2 (2 myp )] dr [mp mp] 2 + 2 (28)
The third term of the curvature %is due to the self energy of the charge with a

2
= al,”, =1,

2
Yo

charge radius of 21,. The charge from the angular frequency of wy,, — %wp has
a charge radius in the order of the deBroglie wave length of the particle m, and is
many orders of magnitude larger then 21,,. The % term in (Equation 28) should

therefore be neglected. The first term in (Equation 28) is then the mass m, of the

particle as observed in the lab of flat space-time. In high energy P-P scattering,
this term can be cancelled by an appropriate angular momentum between the P-P

. a
system. The second term represents a “resonant” in the order of —m,. For m, of
> Mo 0

a K particle that has an numerical value of about half a proton, this resonant is in
the range of 128 GeV like the “Higgs” peak announced by CERN in July of 2013.
For m, of a Proton, another resonant should occur in the range of 256 GeV and
should be a stronger resonant in the high energy P-P scattering.

Footnote: This model assumes that space is quantized with a minimum length of one

Planck length [,,.
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