Chain of a potential electric field

Radi I. Khrapko

Moscow Aviation Institute - Volokolamskoe shosse 4, 125993 Moscow, Russia Email: <u>khrapko_ri@hotmail.com</u>

Abstract

Examples are presented that geometrical images of generated electromagnetic fields are emitted by the geometrical images of the electromagnetic fields, which are the sources

Keywords: electromagnetism, differential forms, tensor densities

PACS: 03.50.De

1. Boundary of a potential

A potential electric field can be obtain as a gradient of an electric potential:

 $\mathbf{E} = -\operatorname{grad} \boldsymbol{\varphi}, \quad E_i = -\boldsymbol{\partial}_i \boldsymbol{\varphi}. \tag{1}$

Gradient is a covector, so this electric field (1) is a covector field. The geometric image of a covector is two parallel plane elements equipped with an outer orientation (see Fig. 1¹).

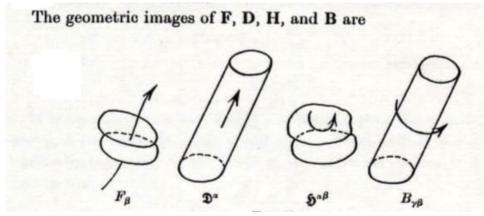


Fig. 1. Here $\mathbf{F} = \mathbf{E}$ is a covector E_i , **D** is a vector density E_{A}^{i} , **H** is a bivector density B_{A}^{ik} , **B** is a bicovector B_{ik} .

So, potential electric covector fields (1) are depicted by bisurfaces, not by field lines.

Meanwhile a scalar field, e.g. φ , may be depicted as a filling, which density is proportional to value of the scalar. Fig. 2c depicts roughly the potential of a charged sphere of radius *R*, $\varphi = 1/r$, r > R, and the corresponding covector field **E** (1). You see, the filling φ fills the closed bisurfaces of covector **E** (1), or the bisurfaces **E** bound the filling φ .

It may be said that the operation "gradient" creates a boundary of a scalar field and the field of gradient is a closed field, in correspondence with "boundary of a boundary is zero":

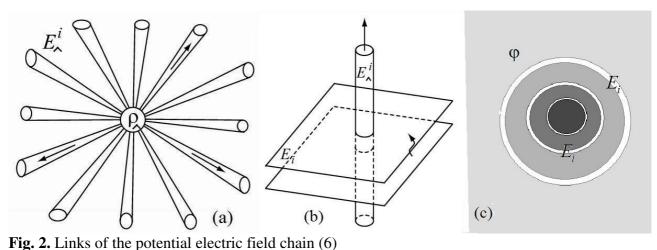
 $\operatorname{curl} \mathbf{E} = -\operatorname{curl} \operatorname{grad} \boldsymbol{\varphi} = 0, \quad \boldsymbol{\partial}_i E_k - \boldsymbol{\partial}_k E_i = (-\boldsymbol{\partial}_i \boldsymbol{\partial}_k + \boldsymbol{\partial}_k \boldsymbol{\partial}_i) \boldsymbol{\varphi} = 0.$ (2) So, potential electric covector field (1) is a closed field and is depicted by closed bisurfaces, Fig. 2c. It may be said that $\boldsymbol{\varphi}$ fills its boundary, which is the covector \mathbf{E} , and even that \mathbf{E} generates

 ϕ , or **E** is a source of ϕ (in the sense that an area is generated by its boundary).

If we interested in the electric force, which exerts on a charge q and which is a vector, we must raise the lower index of the covector E_i by the metric tensor g^{ki} :

$$\mathbf{F} = q\mathbf{E}, \quad F^{k} = qE^{k} = qE_{i}g^{ik}. \tag{3}$$

¹ This is figure 23 from [1].



(a) A charge density ρ_{λ} emits the tubes of electric vector density E_{λ}^{i} . (b) The conjugation. The vector density tube E_{λ}^{i} changes into two parallel plane elements (bielement) of the covector E_{i} . (c) The scalar field φ fills the bispheres of the covector field E_{i} .

2. Source of a potential electric field

The boundary of the covector potential field **E** (1) is zero, according to (2). But a potential electric field has a source. A charge density ρ_{λ} is a source of the potential electric field, i.e. a charge density ρ_{λ} generates the potential electric field, according to

$$\rho_{\mathbf{A}} = \operatorname{div} \mathbf{E}, \quad \rho_{\mathbf{A}} = \partial_{i} E_{\mathbf{A}}^{i}. \tag{4}$$

Therefore, the electric field has no boundary, but it has a source. How can this be?

Here we must recognize that the electromagnetism involves geometrical quantities of two types [1]. These are: covariant (antisymmetric) tensors, e.g. $\mathbf{E} = E_i$, $\mathbf{B} = B_{ik}$, which are named exterior differential forms or simply forms, and contravariant (antisymmetric) tensor *densities*, e.g. ρ_{Λ} , $\mathbf{E} = E_{\Lambda}^{i}$, $\mathbf{B} = B_{\Lambda}^{ik}$ (the geometric images of E_i , E_{Λ}^{i} , B_{Λ}^{ik} , B_{ik} , see in Fig. 1). Mathematics and physicists often use Gothic fonts while writing densities. We do not use a gothic font; instead, we mark densities with the symbol "wedge" Λ . For example, we name Schouten's displacement vector density $\mathfrak{D}^{\alpha} E_{\Lambda}^{i}$. This notation was used by Kunin in his Russian translation [2] of the monograph [1]. The square root of the metric tensor determinant, which is a scalar density of the weight +1, is denoted by \sqrt{g}_{Λ} .

As you see, the potential electric field E_{Λ}^{i} , which is generated by a charge density ρ_{Λ} according to (4), is a contravariant vector density. The geometric image of a vector density is a cylinder with an inner orientation. So this electric field is depicted by tubes emitted by the charge density ρ_{Λ} (Fig. 1a). Thus there are two different forms of the potential electric field. Covector potential electric field E_{i} (1) has no boundary, according to (2), but vector density potential electric field E_{Λ}^{i} , according to (4), has charge density ρ_{Λ} as its source and its boundary.

3. The conjugation

The transition between covector E_i and vector density E_{\wedge}^i is performed by the metric tensor density $g_{\wedge}^{ik} = g^{ik} \sqrt{g}_{\wedge}$, or $g_{ik}^{\wedge} = g_{ik} / \sqrt{g}_{\wedge}$. The transition is referred to as *the conjugation* [3,4] and is designated by the five-pointed asterisk * (in contrast to the Hodge star operation *), namely

$$\star E_i = g^{ik}_{\wedge} E_i = E^k_{\wedge}, \quad \star E^k_{\wedge} = g^{\wedge}_{ik} E^k_{\wedge} = E_i$$
(5)

The conjugation changes the geometric image of an electric field as it is shown in Fig. 1b.

4. Conclusion

So, we have the chain of the fields:

 $\rho_{\wedge} \partial E_{\wedge}^{i} \star E_{i} \partial \varphi \qquad (6)$

Our symbol ∂ designates differential operations: grad, or div, or curl. These operators create boundaries. In particular, grad creates a boundary of a scalar, div creates a boundary of a tensor density, curl creates a boundary of a differential form.

In chain (6), charge density ρ_{λ} generates the vector density E_{λ}^{i} . The conjugation ***** transforms the vector density E_{λ}^{i} into the closed covector E_{i} , which, in turn, generates potential φ .

References

- [1] Schouten J A 1951 Tensor Analysis for Physicists (Oxford: Clarendon).
- [2] Schouten J A 1965 Tensor Analysis for Physicists. Тензорный анализ для физиков (Nauka, Moscow).
- [3] Khrapko R I 2011 Visible representation of exterior differential forms and pseudo forms. Electromagnetism in terms of sources and generation of fields. Наглядное представление дифференциальных форм и псевдоформ. Электромагнетизм в терминах источников и порождений полей. (Saarbrucken: Lambert). http://khrapkori.wmsite.ru/ftpgetfile.php?id=105&module=files
- [4] Khrapko R I 2001 Violation of the gauge equivalence arXiv:physics/0105031