
An efficient method for computing Ulam numbers

Philip Gibbs

The Ulam numbers form an increasing sequence beginning 1,2 such that each subsequent

number can be uniquely represented as the sum of two smaller Ulam numbers. An

algorithm is described and implemented in Java to compute the first billion Ulam numbers.

Introduction

At first sight the Ulam numbers appear to be pseudo-random. If this were the

case their asymptotic density would be expected to fade towards zero at high

numbers as the number of possibilities for forming sums from previous

numbers increases. In actuality the density decreases at first but settles around

a distribution where about one in 13.5 numbers are in the sequence.

A closer inspection shows that the numbers fall into dense clumps occurring

about every 22 integers with sparser breaks between. Steinerberger

performed a Fourier analysis on the sequence using the first 10 million

numbers and found a clear signal with an angular frequency given by

𝛼 = 2.5714474995 [1]. This corresponds to a wavelength of 𝜆 =
2𝜋

𝛼
=

2.443443 … which is approximately 22/9 so the clumping apparently repeats

about every nine wavelengths.

When the frequency of Ulam numbers are plotted against their residue

modulo 𝜆 they are found to have a non-uniform distribution concentrated in

two peaks in the middle third of the wavelength. Figure 1 shows the

distribution plotted from the first billion Ulam numbers counted in 1200 bins

and normalised so that the vertical axis shows the probability for a large

positive integer with a given residue to be Ulam. Ulam numbers whose residue

falls outside this middle range are outliers. The outliers are relatively rare.

There are only 1828 outliers in the first billion Ulam numbers and empirically

the number of outliers less than a given Ulam number is less than its cube root

for sufficiently large numbers. However they are important since almost all

Ulam numbers are formed from a sum including one outlier and they control

the shape of the distribution [2].

Figure 1: probability of being Ulam as a function of residue modulo 𝜆.

Computing the Ulam Numbers

The most straight forward way to compute the Ulam numbers 𝑎𝑛 is to build up

the sequence from the start testing each subsequent positive integer 𝑡 to see if

it is the sum of two previous Ulam numbers. This can be done by simply taking

previous Ulam numbers 𝑎𝑛 <
1

2
𝑡 and checking to see if 𝑡 − 𝑎𝑛 is in the list of

Ulam numbers so far constructed. The search for each number 𝑡 can be

stopped once two sums have been found but if 𝑡 is an Ulam number the search

will have to continue until all possible sums have been checked. If we assume

that the density of Ulam numbers has a constant positive density then the

computation time for the first 𝑛 numbers using this method is 𝑂(𝑛2).

To compute the first billion Ulam numbers in a reasonable timeframe a more

efficient method is required. An alternative for testing the number 𝑡 is to sort

the smaller numbers 𝑎𝑛 according to their residue 𝑟𝑛 modulo 𝜆. If 𝑡 itself has a

residue 𝑟 modulo 𝜆 and if 𝑎𝑛 + 𝑎𝑚 = 𝑡 then 𝑟𝑛 + 𝑟𝑚 = 𝑟 or 𝑟 + 𝜆. This means

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

that one of the residues 𝑟𝑛 or 𝑟𝑚 must be in one of the ranges 0 < 𝑟𝑘 <
1

2
𝑟 or

1

2
(𝑟 + 𝜆) < 𝑟𝑘 < 𝜆 Therefore it is only necessary to test smaller Ulam number

𝑎𝑘 whose residue 𝑟𝑘 lies in these ranges to see if it forms a sum.

This search method works for any value of 𝜆 but if the 𝜆 we use is (close to) the

recently discovered natural wavelength of the Ulam sequence then the

number of Ulam numbers with residues in these ranges will be much less than

half the number of previous Ulam numbers. If 𝑟 lies in the central third of the

range as is the case for most Ulam numbers then we only need to test the

subset of the outliers which lie in these ranges to determine if 𝑡 is Ulam. If 𝑟

lies outside the central third there will be a section from the denser portion of

the distribution in the ranges, but in this case we usually find two sums very

quickly and can rule out the possibility that 𝑡 is Ulam. In practice we have

found that only about 5 tests are required on average to determine whether a

number is Ulam using this method.

The efficiency of the algorithm therefore depends on the ability to maintain a

list of the previous Ulam numbers sorted by their residues that can be rapidly

traversed from wither end. When each new Ulam number is found it must be

inserted in the list. To find the correct place to insert it quickly we can use a

binary search or maintain an index and once we have found the correct place

to insert we need to form a linked list structure for rapid insertion avoiding the

need to shift up all the subsequent entries in the list.

This can be done by using built in data structures such as Treemaps in Java but

for simplicity and transparency we have used custom structures based on

ordinary arrays. The Java code used is shown in the Annex below.

With this implementation the running time to compute the first billion Ulam

numbers is less than one hour on an ordinary PC. The limiting factor which

makes is hard to go to higher numbers is memory space rather than

computation speed. With some space optimisations the program ran on a

machine with 16 Gigabytes of RAM and this would need to be extended in

proportion to the number to be calculated.

Results

For the purposes of comparison we provide a table of example Ulam numbers

𝑛 𝑎𝑛
100,000 1,351,223

1,000,000 13,509,072

10,000,000 135,160,791

100,000,000 1,351,856,726

158,311,381 2,140,095,565
200,000,000 2,703,579,147

317,670,407 4,294,217,754

500,000,000 6,758,780,604

1,000,000,000 13,517,631,473

It should be mentioned that the Ulam number for 𝑛 = 100,000,000 agrees

with an independently calculated value noted in the Online Encyclopaedia of

Interger Sequences computed by Jud McCranie (sequence A002858). However

the values for 𝑛 = 158,311,381 and 𝑛 = 317,670,407 are in disagreement.

Therefore these numbers should not be relied on until a third independent

implementation has verified the numbers.

The value for the wavelength is computed to be 𝜆 = 2.44344296778474 with

the corresponding frequency 𝛼 = 2.57144749847630. The largest gap in the

first billion Ulam numbers was found to be 966291200 - 966290117 = 1083.

References

[1] S Steinerberger, A Hidden signal in the Ulam sequence. arXiv:1507.00267

[math.CO]

[2] P Gibbs, A conjecture for Ulam Sequences. viXra:1508.0045

Annex: Java Code

public class Ulam {

 static int maxn = 1000000000;

 static int a[] = new int[maxn+1]; // list of ulam numbers

 static int nx[] = new int[maxn+1]; // next when ordered by residue

 static int pv[] = new int[maxn+1]; // previous when ordered by residue

 static int k[] = new int[maxn/2]; // true for ulam numbers (packed bits)

 static int nindex = maxn/100;

 static int index[] = new int[nindex];

 static int nbin = 12000; // bin Ulam numbers by residue

 static int bins[] = new int[nbin]; // should be mulyiple of 3 to separate outliers

 static long kk1=0;

 static long kk2=0;

 static long kk3=0;

 static long kk4=0;

 static long kk5=0;

 static double lamda = 2.44344296778474;

 static double step = 13.517831473;

 public static void main(String[] args) {

 double alpha = 2.0*Math.PI/lamda;

 double lamdarun = lamda;

 System.out.println("lamda = "+lamda);

 System.out.println("alpha = "+alpha);

 initUlam();

 // initialise index

 for(int i=0; i<nindex; i++) {

 index[i] = 0;

 }

 pv[0] = 0; // index to number with largest residue

 nx[0] = 0; // index to number with smallest residue

 setUlam(0,0); // not really an ulam number

 setUlam(1,1);

 setlinks(1);

 setUlam(2,2);

 setlinks(2);

 int n = 2;

 int nol = 1;

 int nor = 0;

 long bestgap = 0;

 for(long a0 = 3; n < maxn; a0++) {

 // search for a sum in residue order from both ends

 double rd0 = mod(a0,lamda)/lamda;

 boolean more = true;

 int kount2 = 0;

 boolean ulam = false;

 if(rd0 < 0.24 || rd0 > 0.80) { // to mind the gap use the brute search

 int j = n; // better to start from larger end

 long aj = getUlam(j);

 while(more && 2*aj > a0) {

 kount2++;

 long a1 = aj;

 long a2 = a0-a1;

 kk3++;

 if(isUlam(a2)) {

 if(ulam) { // found more than one sum

 ulam = false;

 more = false;

 } else {

 ulam = true;

 }

 }

 j--;

 aj = getUlam(j);

 }

 more = false;

 }

 long a1x = 0;

 int kount0 = 0;

 int i = nx[0]; // start with smallest residue

 long ai = getUlam(i);

 double rdi = mod(ai,lamda)/lamda;

 while(2*rdi <= rd0+0.00000002 && more && i != 0) {

 kount0++;

 long a2 = a0-ai;

 kk1++;

 if(isUlam(a2) && ai != a2 && a2 != a1x) { // pair adds up

 if(ulam) { // already had a sum

 more = false; // found two so can stop

 ulam = false;

 } else { // otherwise note first sum

 ulam = true;

 a1x = ai; // note this to check against double counting

 }

 }

 i = nx[i]; // jump to next smallest residue

 ai = getUlam(i);

 rdi = mod(ai,lamda)/lamda;

 }

 int kount1 = 0;

 i = pv[0]; // now work back from the largest residue

 ai = getUlam(i);

 rdi = mod(ai,lamda)/lamda;

 while(2*(1.0-rdi) <= (1.0 - rd0)+0.00000002 && more && i != 0) {

 kount1++;

 long a2 = a0-ai;

 kk2++;

 if(isUlam(a2) && ai != a2 && a2 != a1x) { // pair adds up

 if(ulam) { // already had a sum

 more = false; // found two so can stop

 ulam = false;

 } else { // otherwise note first sum

 ulam = true;

 a1x = ai; // note this to check against double counting

 }

 }

 i = pv[i]; // jump to next largest residue

 ai = getUlam(i);

 rdi = mod(ai,lamda)/lamda;

 }

 if(ulam) {

 n++;

 setUlam(a0,n);

 double z = mod(a0, lamda)/lamda;

 setlinks(n);

 long d = (long)(a0/lamda);

 double p = 0.0;

 if(z < 1.0/3.0) {

 nor++;

 p = a0/(d+1.0/3.0);

 }

 if(z > 2.0/3.0) {

 nol++;

 p = a0/(d+2.0/3.0);

 }

 if(z > 2.0/3.0 || z < 1.0/3.0) {

 lamdarun = (lamdarun*9.0+p)/10.0;

 System.out.println(nor+" "+nol+" "+n+" "+a0+" "+z+" "+p+" "+lamdarun);

 System.err.println(n+" "+a0+" kk: "+(kk1/a0)+" "+(kk2/a0)+" "+

 (kk3/a0)+" "+(kk4/a0)+" "+(kk5/a0));

 }

 if(n==1000 || n==10000 || n==100000 || n==1000000 || n==10000000 ||

 n==50000000 || n%100000000 == 0 || n==158311381 || n==317670407) {

 System.out.println("a["+n+"] = "+a0);

 }

 long a1 = getUlam(n-1);

 long gap = a0-a1;

 if(gap > bestgap) {

 bestgap = gap;

 System.out.println(n+" "+a0+" - "+a1+" = "+gap+" is bigger gap");

 }

 // build distribution by residue in bins

 int ibin = (int)(z*nbin);

 bins[ibin]++;

 }

 }

 System.out.println("a["+n+"] = "+getUlam(n));

 System.out.println("biggest gap was "+bestgap);

 double density = ((double) n)/((double) getUlam(n));

 System.out.println("density = "+density);

 System.out.println("step = "+(1.0/density));

 System.out.println("");

 System.out.println("bin frequencies:");

 for(int ibin=0; ibin<nbin; ibin++) {

 System.out.println(ibin+","+bins[ibin]);

 }

 checklinks(n);

 }

 public static double mod(long x, double m) {

 double dx = x;

 double z = dx/m;

 long iz = (long) z;

 z -= iz;

 z *= m;

 return z;

 }

 public static void setlinks(int n) {

 // set the next and previous links in ordering by residue

 // use an index to find a starting point with a lower residue

 double rdn = mod(getUlam(n),lamda)/lamda;

 int j = (int)(nindex*rdn);

 int pvi = index[j];

 boolean more = true;

 while(more) {

 kk4++;

 int i = nx[pvi];

 long ai = getUlam(i);

 double rdi = mod(ai,lamda)/lamda;

 if(i == 0) {

 more = false;

 } else if(rdi < rdn) {

 pvi = i;

 } else {

 more = false;

 }

 }

 int nxi = nx[pvi];

 pv[n] = pvi;

 nx[pvi] = n;

 nx[n] = nxi;

 pv[nxi] = n;

 // update index

 j++;

 double rdi = 0;

 if(j < nindex) rdi = mod(getUlam(index[j]),lamda)/lamda;

 while(j < nindex && rdi < rdn) {

 kk5++;

 index[j] = n;

 j++;

 if(j < nindex) rdi = mod(getUlam(index[j]),lamda)/lamda;

 }

 }

 static void checklinks(int n) {

 int pvi = 0;

 int m = 0;

 while(nx[pvi] != 0) {

 if(pv[nx[pvi]] != pvi) System.err.println("links are inconsistent at "+

 pvi+" -> "+nx[pvi]+" <- "+pv[nx[pvi]]);

 if(nx[pv[pvi]] != pvi) System.err.println("links are inconsistent at "+

 pvi+" <- "+pv[pvi]+" -> "+nx[pv[pvi]]);

 double rdi = mod(getUlam(pvi),lamda)/lamda;

 double rdn = mod(getUlam(nx[pvi]),lamda)/lamda;

 if(rdi > rdn) System.err.println("links are not ordered at "+

 pvi+","+nx[pvi]+" "+rdi+" > "+rdn);

 m++;

 pvi = nx[pvi];

 }

 if(m != n) System.err.println("link list is wrong length "+m+" != "+n);

 System.err.println("links check complete");

 }

 // booleans flagging the ulam numbers are packed to save space

 static int pow2[] = {1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,

 1<<16,1<<17,1<<18,1<<19,1<<20,1<<21,1<<22,

 1<<23,1<<24,1<<25,1<<26,1<<27,1<<28,1<<29};

 public static boolean isUlam(long a0) {

 long i30 = 30;

 int m30 = (int) (a0%i30);

 int d30 = (int) (a0/i30);

 boolean ulam = ((k[d30] & pow2[m30]) > 0);

 return ulam;

 }

 public static void setUlam(long a0, int n) {

 long i30 = 30;

 int m30 = (int) (a0%i30);

 int d30 = (int) (a0/i30);

 k[d30] |= pow2[m30];

 double dn = (double) n;

 long ground = (long) (dn*step);

 int an = (int) (a0-ground);

 a[n] = an;

 }

 public static long getUlam(int n) {

 double dn = (double) n;

 long ground = (long) (dn*step);

 long a0 = ground+a[n];

 return a0;

 }

 public static void initUlam() {

 for(int i=0; i<k.length; i++) k[i] = 0;

 for(int i=0; i<bins.length; i++) bins[i] = 0;

 }

