Following on from the self-similarity of the Universe on different size scales, as shown in the 3D Universe Theory, we postulate that:

\[
R_u = \frac{\lambda_e}{\pi \times \alpha_{Gp}}
\]

Where:
\( R_u \) = Radius of the Universe as described by the 3D Universe Theory
\( \lambda_e \) = Electron Compton wavelength
\( \alpha_{Gp} \) = Gravitational coupling constant (proton)

The 3D Universe Theory describes the Universe as a growing sphere of Universal Bits (UB’s). Each UB is a Planck Length in size and the sphere is growing at the speed of light.

We can therefore calculate the age of the Universe as follows:

\[
A_u = \frac{R_u}{c} = \frac{\lambda_e}{\pi \times c \times \alpha_{Gp}} = 4.361 \times 10^{17} \text{ sec} = 13.82 \times 10^9 \text{ years}
\]

Where:
\( A_u \) = Age of the Universe
\( R_u \) = Radius of the Universe as described by the 3D Universe Theory
\( c \) = Speed of light

We have seen from the 3D Universe Theory that:

\[
\lambda_e = \frac{\varphi \times 10^{-20}}{2} \times c \quad \text{and} \quad \alpha_{Gp} = \left( 8 - \frac{1}{\pi} \right) \times 10^{-20}
\]

where \( \varphi \) is the golden ratio and has a dimension of Time in sec.

Therefore, the above formula for the age of the Universe can be simplified as follows:

\[
A_u = \frac{\varphi \times 10^{20}}{2\pi \left( 8 - \frac{1}{\pi} \right)^2} = 4.364 \times 10^{17} \text{ sec} = 13.82 \times 10^9 \text{ years}
\]