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Gauge transformations of type-II spinors are considered in the Majorana–
Ahluwalia construct for self/anti-self charge conjugate states. Some specu-
lations on the relations of this model with the earlier ones are given.
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Recently, new constructs in the (1/2, 0) ⊕ (0, 1/2) representation of the
Lorentz group have been proposed [1–5]. One of their surprising features is
the fact that dynamical equations in these formalisms take eight-component
form. As shown in Refs [1,4,6] the Majorana–McLennan-Case construct for
self/anti-self charge conjugate states leads to the equations

iγµ∂µλS(x)−mρA(x) = 0 , (1a)

iγµ∂µρA(x)−mλS(x) = 0 , (1b)

and

iγµ∂µλA(x) + mρS(x) = 0 , (2a)

iγµ∂µρS(x) + mλA(x) = 0 . (2b)

They can be written in the 8-component form as follows:

[iΓ µ∂µ −m] Ψ(+)(x) = 0 , (3a)

[iΓ µ∂µ + m] Ψ(−)(x) = 0 , (3b)

where

Ψ(+)(x) =

(
ρA(x)
λS(x)

)
, Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, (4)

(619)
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with λS,A(pµ), ρS,A(pµ) being the self/anti-self charge conjugate spinors in
the momentum representation, which are defined in Ref. [1]. The interpre-
tation of λS and ρA corresponding to positive-energy solutions and λA, ρS,
to negative-energy solutions, has been used1. After writing those papers
we became aware of similar problems which have been studied in the old
papers [7–10] from various viewpoints. A group-theoretical basis for such
constructs has been proposed by Bargmann, Wightman and Wigner [11].

Let us consider the question of gauge transformations for this kind of
states. First of all, the possibility of the γ5 phase transformations has been
noted in [6]. The Lagrangian [6, Eq.(24)], which (like in the Dirac construct)
is equal to zero on the solutions of the dynamical equations2,

L =
i

2

[
λSγµ∂µλS

− (∂µλS)γµλS + ρAγµ∂µρA
− (∂µρA)γµρA

+ λAγµ∂µλA
− (∂µλA)γµλA + ρSγµ∂µρS

− (∂µρS)γµρS
]

− m
[
λSρA + ρAλS

− λAρS
− ρSλA

]
(5)

is invariant with respect to the phase transformations:

λ′(x)→ (cos α− iγ5 sinα)λ(x) , (6a)

λ
′
(x)→ λ(x)(cos α− iγ5 sin α) , (6b)

ρ′(x)→ (cos α + iγ5 sinα)ρ(x) , (6c)

ρ ′(x)→ ρ(x)(cos α + iγ5 sin α) . (6d)

Obviously, the 4-spinors λS,A(pµ) and ρS,A(pµ) remain in the space of
self/anti-self charge conjugate states3. In terms of the field functions Ψ(±)(x)

the transformation formulas recast as follows (Ł5 = diag (γ5 − γ5))

Ψ ′
(±)(x)→

(
cos α + iŁ5 sinα

)
Ψ(±)(x) , (7a)

Ψ
′

(±)(x)→ Ψ (±)(x)
(
cos α− iŁ5 sin α

)
. (7b)

It is well known that the Dirac theory for charged spin-1/2 particles does not

admit conventional chiral transformations. In the meantime, as mentioned

1 Let me remind that the sign of the phase in the field operator is considered to be
invariant if we restrict ourselves by the proper orthochronous Poincaré group. This
fact has also been used at the stage of writing the dynamical equations (1a, 1b, 2a,
2b).

2 The overline implies the Dirac conjugation.
3 Usual phase transformations like that applied to the Dirac field will destroy self/anti-

self charge conjugacy. The origin lies in the fact that the charge conjugation operator
is not a linear operator and it includes the operation of complex conjugation.
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by Das and Hott [12] “an interacting fermion theory at high temperature de-
velops a temperature dependent fermion mass where mass grows with tem-
perature; . . . it would appear that a massless, chiral invariant theory would
have its chiral symmetry broken by the temperature dependent mass [13];
. . . [on the other hand,] one conventionally believes that the dynamically
broken chiral symmetry in QCD is restored beyond a critical tempera-
ture.” Furthermore, they investigated this “apparent conflict” and proposed
m-deformed non-local chiral transformations. Nevertheless, they indicated
at the importance of further study of chiral transformations and their rele-
vance to the modern physics. Thus, these matters appear to be of use not
only from a viewpoint of constructing the fundamental theory for neutral
particles, but regarding the constructs which admit the chiral invariance
may also be useful for understanding the processes in QCD and other mod-
ern gauge models.

So, let us proceed further with the local gradient transformations (gauge
transformations) in the Majorana–Ahluwalia construct. When we are in-
terested in them one must introduce the compensating field of the vector
potential

∂µ → ∇µ = ∂µ − igŁ5Aµ , (8a)

A′
µ(x)→ Aµ(x) +

1

g
∂µα . (8b)

Therefore, equations describing interactions of the λS and ρA with 4-vector
potential are the following

iγµ∂µλS(x)− gγµγ5AµλS(x)−mρA(x) = 0 , (9a)

iγµ∂µρA(x) + gγµγ5AµρA(x)−mλS(x) = 0 . (9b)

The second-order equations follow immediately from the set (9a), (9b)

{(
i∂̂ + gÂγ5

) (
i∂̂ − gÂγ5

)
−m2

}
λS(x) = 0 , (10a)

{(
i∂̂ − gÂγ5

)(
i∂̂ + gÂγ5

)
−m2

}
ρA(x) = 0 , (10b)

with the notation being used: â ≡ γµaµ = γ0a0 − (γ · a). After algebraic
transformations in the spirit of [14, 15] one obtains

{
Π+

µ Πµ +
−m2

−
g

2
γ5ΣµνFµν

}
λS(x) = 0 , (11a)

{
Π−

µ Πµ−
−m2 +

g

2
γ5ΣµνFµν

}
ρA(x) = 0 , (11b)
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where the “covariant derivative” operators acting in the (1/2, 0) ⊕ (0, 1/2)
representation are defined as

Π±
µ =

1

i
∂µ ± gγ5Aµ , (12)

and

Σµν =
i

2
[γµ , γν ]− . (13)

The case of λA and ρS is very similar and we shall give below the final result
only:

{
Π+

µ Πµ +
−m2

−
g

2
γ5ΣµνFµν

}
λA(x) = 0 , (14a)

{
Π−

µ Πµ−
−m2 +

g

2
γ5ΣµνFµν

}
ρS(x) = 0 . (14b)

Thus, the equations for the particles described by the field operator (Eq. (46)
in [1c])

ν
DL

(x) ≡

∫
d3p

(2π)3
1

2p0

∑

η

[
λS

η(pµ)aη(p
µ) exp(−ip · x)

+λA
η (pµ)b†η(p

µ) exp(+ip · x)
]
, (15)

which interact with the 4-vector potential, have the same form for positive-
and negative-energy parts. The same is true in the case of the use of the
field operator composed from ρA and ρS. One can see the difference with
the Dirac case, namely, the presence of γ5 matrix in the “Pauli term” and
in the lengthening derivatives. Next, we are able to decouple the set (11a),
(11b), (14a), (14b) for the up- and down-components of the bispinors in the
coordinate representation. For instance, the up- and the down-parts of the

ν
DL

(x) = column(χ φ) interact with the vector potential in the following
manner:

{[
π−

µ πµ− −m2 −
g
2σµνFµν

]
χ(x) = 0 ,[

π+
µ πµ + −m2 + g

2 σ̃µνFµν

]
φ(x) = 0 ,

(16)

where already one has π±
µ = i∂µ±gAµ, σ0i = −σ̃0i = iσi, σij = σ̃ij = εijkσ

k.
Of course, introducing the operator composed of the ρ states one can write
corresponding equations for its up- and down- components and, hence, re-
store the Feynman–Gell–Mann equation [16, Eq.(3)] and its charge conjugate
(g = −e; Aµ and Fµν are assumed to be real fields). In fact, this way would
lead us to the consideration which is identical to the recent papers [3]. It
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was based on the linearization procedure for 2-spinors, which is similar to
that used by Feshbach and Villars [17] in order to deduce the Hamiltonian
form of the Klein–Gordon equation. Some insights in the interaction issues
with the 4-vector potential in the eight-component equation have been made
there: for instance, while explicit form of the wave functions slightly differ
from the Dirac case, the hydrogen atom spectrum is the same to that in
the usual Dirac theory [14, p.66, 74-75]. Next, like in the paper [18] the
equations of [3] presume a non-CP-violating4 electric dipole moment of the
corresponding states.

We are also interested in finding other forms of gauge interactions for
spinors of the (1/2, 0) ⊕ (0, 1/2) representation. Indeed, one can propose
other kinds of phase transformations and, hence, other compensating fields
for fermion functions composed of λS,A(pµ) and ρS,A(pµ) spinors. First of
all, one may wish to introduce the 2× 2 matrix Ξ, which is defined

Ξ =

(
eiφ 0
0 e−iφ

)
, (17)

where φ is the azimuthal angle associated with p→ 0. This matrix has been
used in the generalized Ryder–Burgard relation connecting 2-spinor and its
complex conjugate in the zero-momentum frame (Eq. (26), (27) of [1c]).

Using the relation ΞΛ
R,L

(
◦
p µ ← pµ)Ξ−1 = Λ∗

R,L
(
◦
p µ ← pµ) it is easy to check

that under the phase transformations

λ′
S(pµ) =

(
Ξ 0
0 Ξ

)
λS(pµ) ≡ λ∗

A(pµ) , (18a)

λ′′
S(pµ) =

(
0 iΞ
iΞ 0

)
λS(pµ) ≡ iγ0λ∗

A(pµ) , (18b)

λ
′′′

S (pµ) =

(
0 Ξ
−Ξ 0

)
λS(pµ) ≡ γ0λ∗

S(pµ) , (18c)

λ
IV

S (pµ) =

(
iΞ 0
0 −iΞ

)
λS(pµ) ≡ −iλ∗

S(pµ) (18d)

bispinors remain in the self charge conjugate space. Analogous relations for
λA:

λ′
A(pµ) =

(
Ξ 0
0 Ξ

)
λA(pµ) ≡ λ∗

S(pµ) , (19a)

λ′′
A(pµ) =

(
0 iΞ
iΞ 0

)
λA(pµ) ≡ iγ0λ∗

S(pµ) , (19b)

4 This is possible due to the Wigner “doubling” of the components of the wave function.
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λ
′′′

A(pµ) =

(
0 Ξ
−Ξ 0

)
λA(pµ) ≡ γ0λ∗

A(pµ) , (19c)

λ
IV

A (pµ) =

(
iΞ 0
0 −iΞ

)
λA(pµ) ≡ −iλ∗

A(pµ) , (19d)

ensure that the latter retain their property to be in the anti-self charge con-
jugate space under this kind of transformations5. Thus, the Majorana-like
field operator (b† ≡ a†) admits additional phase (and, in general, normaliza-
tion) transformations, namely

ν
ML ′

(x) = [c0 + i(τ · c)]ν
ML †

(x) , (20)

where cα are arbitrary parameters in the superpositions of the self/anti-
self charge conjugate states; the τ matrices are defined over the field of
2 × 2 matrices6; and the Hermitian conjugation operation is implied over
the field of the q-numbers, i.e. it acts on the c-numbers as the complex
conjugation. If we want to keep the normalization of the wave functions one
can make parametrization of the cα factors in (20) as follows: c0 = cos φ
and c = n sin φ leaving only three parameters independent. This induces
speculations that the SU(2)× U(1) theory can be constructed on the basis
of the Weyl 2-spinors. This is not surprising, because these groups are
the subgroups of the extended Poincaré group. But, of course, in order to
ensure this purpose one should consider the question of invariance of some
Lagrangian, which involves λ and ρ fields (e.g., Eq. (24) in Ref. [6]), with
respect to these transformations.

Several forms of field operators were defined in Ref. [1]; one may be
interested in the one composed of λS,A spinors, and in the second one, of
ρS,A spinors. Due to the identities (see Eqs. (6a), (6b) in Ref. [19] and [1])

ρS
↑(p

µ) = −iλA
↓ (pµ) , ρS

↓(p
µ) = +iλA

↑ (pµ) , (21a)

ρA
↑ (pµ) = +iλS

↓(p
µ) , ρA

↓ (pµ) = −iλS
↑(p

µ) , (21b)

which permits one to keep the parity invariance of the theory, we can express
the ρ operator in the form:

ρ(xµ) ≡

∫
d3p

(2π)3
1

2p0

∑

η

[ρA
η (pµ)cη(p

µ) exp(−ip · x)

+ρS
η(p

µ)d†η(p
µ) exp(+ip · x)] = γ0ν

DL

(xµ ′) . (22)

5 One should still note that in the meaning presented here, the γ5 transformations
(λS(pµ) ↔ ±iλA(pµ), see above) are also transformations with a unitary matrix and
also can be regarded as phase transformations of left- (right-) spinors with respect to
right- (left-) spinors.

6 It is implied that γ0
≡ τ 1 ⊗ 1l, γi

≡ −iτ 2 ⊗ σi in the Weyl representation of the γ

matrices.
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The following notation is used: xµ′
≡ (x0,−x), and cη(p

µ) ≡ aη(p
µ′

),

dη(p
µ) ≡ bη(p

µ′
). Therefore, the Lagrangian density (24) of Ref. [6] can

recast

L =
i

4

[
ν(x)γµ∂µν(x)−∂µν(x)γµν(x)+νc(x)γµ∂µνc(x)−∂µνc(x)γµνc(x)

]

+
m

2

[
ν(x)γ5γ0νc(x′) + νc(x)γ5γ0ν(x′)

]
+ (x→ −x) . (23)

The terms with x → −x would contribute to the action S in the same
way as the first part of Eq. (23). Therefore, they can be disregarded. In
subsequent works we shall present the properties of this Lagrangian density
treated as a c-number with respect to the transformations (20). At the
moment one can speculate for the q-number theory that, since Eq. (20) are
indeed transformations of the inversion group, which transform to the q-
Hermitian conjugate field, and the Lagrangian density usually is a scalar
with respect to both q- and c- numbers, any CPT invariant theory, which
accounts for two types of fields, would be intrinsically a theory admitting
non-Abelian phase transformations of the components of the field operator.

In the connection with the present work one would wish to pay atten-
tion to the old papers [20]. Surprisingly, remarkable insights in the general
structure of the (1/2, 0) ⊕ (0, 1/2) representation space and corresponding
interactions have been made as long as thirty years ago but, unfortunately,
this paper also (like several other important works which I cite here and
in my previous papers) remained unnoticed. Finally, one can find proba-
ble relations between this construct and that which was used recently by
Moshinsky and Smirnov [21]. The latter is based on the concept of the sign

spin of Wigner (the generators τ , which correspond to this concept, were
applied in many works until the present).

The main conclusion of the paper is: the constructs are permitted, which
are based only on the 4-spinors of the Lorentz group and which admit the
non-Abelian type of phase transformations and, hence, may admit interac-
tions of corresponding fields with non-Abelian fields. If so, this assertion
can serve as a basis for explanation of physical nature of isospin and weak
isospin. Another non-Abelian construct has been found recently by Evans
and Vigier in another representation of the group, and from very different
positions [22]7.

7 Rigorous development of the Evans–Vigier B(3) construct is still required because it
contains several errors and notational misunderstandings. Nevertheless, I note some
interesting ideas there and think that one can work rigorously in this framework.
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