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Abstract

The calculations of Oppenheimer and Snyder showed that quasi-Newtonian cycloidal metric and energy
density singularities in the behavior of an initially stationary uniform dust ball in “comoving” coordinates
fail to carry over to “standard” coordinates, where that contracting dust ball at no finite time attains a
radius (quite) as small as its Schwarzschild radius. This physical behavior disparity reflects the singular
nature of the “comoving” to “standard” transformation, whose cause is that “comoving time” requires the
clocks of an infinite number of different observers, making that “time” inherently physically unobservable.
Notwithstanding the warning implicit in the Oppenheimer-Snyder example, checking other “comoving”
dust ball results by transforming them to physically reliable coordinates is seldom emulated. We here
consider the analytically simplest case of a dust ball whose energy density always decreases; its “comoving”
result has a well-known singularity at a sufficiently early time. But after transformation to “standard”
coordinates, that singularity no longer occurs at any finite time, nor is this expanding dust ball at any
finite time (quite) as small as its Schwarzschild radius. But this dust ball’s expansion rate peaks at a
substantial fraction of the speed of light when its radius equals a few times the Schwarzchild value, and
the “standard” time when this inflationary expansion peak occurs is roughly equal to the “comoving”
time of the “occurrence” of the unphysical “comoving” singularity.

Introduction

In “comoving coordinates” the definition of “time” requires the clocks of an infinite number of different
observers [1], which obviously renders “comoving time” physically unobservable.

The salient consequence of physically unobservable “comoving time” for “comoving-coordinate” metric
tensors, such as, for example, the spherically-symmetric general form [2],

ds2 = (cdt)2 − U(r, t)dr2 − V (r, t)((dθ)2 + (sin θdφ)2), (1)

is that they all conform to the condition [3],
g00 = 1,

which is inconsistent with two general physical properties of g00, namely that in the static weak-field limit
(g00 − 1)/2 is the Newtonian gravitational potential φ [4], and that in the static limit (g00)−

1
2 is the gravi-

tational time-dilation factor [5].
It is clear from the foregoing discussion that “results” presented exclusively in terms of “comoving coordi-

nates” cannot be assumed to be physically interpretable. For example, an Oppenheimer-Snyder finite-radius
ball of dust with a stationary initial uniform finite energy density that is treated in “comoving coordinates”
will cycloidally transit through a state whose metric tensor is singular and whose energy density is infi-
nite [6], but that dust-ball system at no finite time manifests metric or energy-density singularities after
Oppenheimer and Snyder’s transformation of its “comoving coordinate” metric solution to “standard” coor-
dinates [7]. The mechanism which causes this disparity is that the O-S transformation maps an infinite-length
interval of physically unobservable “comoving time” to infinite “standard” time.

Similarly, a finite-radius ball of dust with a decreasing initial uniform finite energy density that is treated
in “comoving coordinates” will invariably transit at a sufficiently early time through a state whose metric
tensor is singular and whose energy density is infinite [8]. But despite the caveat of the preceding paragraph
that “results” presented exclusively in terms of “comoving coordinates” cannot be assumed to be physically
interpretable, precautionary transformation of the “comoving-coordinate” results for dust balls with decreas-
ing initial uniform finite energy density to another coordinate system which doesn’t have g00 fixed to unity
is seldom carried out . In conjunction with this incautious omission the early singularity in the “comoving”
result for dust with decreasing initial uniform finite energy density is typically assumed to be physical [8];
for example, Steven Weinberg declares that [9], “. . . the time elapsed since this singularity . . . may justly be
called the age of the universe.”

Such a bold pronouncement of course inattentively ignores the physically unobservable character of “co-
moving time”. Furthermore, it wouldn’t be expected that mathematical singularities could play a role in
classical theoretical physics; indeed a physical metric tensor in the context of GR that is singular would be
inconsistent with the combination of the Principle of Equivalence and the tensor contraction theorem [10].
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To show this we note that the proof of the tensor contraction theorem for a given space-time transfor-
mation x̄α(xµ) (and its inverse transformation xν(x̄α)) hinges on the validity of the relationship [11],

(∂x̄α/∂xµ)(∂xν/∂x̄α) = δνµ, (2)

which, if each component of the Jacobian matrix ∂x̄α/∂xµ is well-defined in terms of the finite real numbers
at a given space-time point xµ, and also each component of its inverse matrix is thus well-defined in terms
of the finite real numbers, follows at that space-time point from the chain rule of the calculus. However,
because the right-hand side δνµ of Eq. (2) is always well-defined in terms of the finite real numbers, Eq. (2)
becomes self-inconsistent at any space-time point xµ where any component of the Jacobian matrix ∂x̄α/∂xµ

or any component of its inverse matrix fails to be a well-defined finite real number . Because the tensor
contraction theorem is indispensable to GR (e.g., the Einstein tensor is constructed from contractions of the
Riemann curvature tensor), a space-time transformation can be considered physical in the context of GR
only at space-time points where each component of its Jacobian matrix is a well-defined finite real number
and the same is true of each component of the inverse of that Jacobian matrix.

The Principle of Equivalence implies that a metric tensor is at each space-time point the congruence
transformation of the Minkowski metric tensor with the Jacobian matrix of some space-time transforma-
tion [12]. Therefore in light of the foregoing discussion of physical space-time transformations in the context
of GR, a metric tensor can only be considered physical in the context of GR at those space-time points
where both it and its inverse consist solely of components which are well-defined finite real numbers and its
signature is equal to the {+,−,−,−} signature of the Minkowski metric tensor [13].

Mathematical singularities thus have no place in space-time transformations or metric tensors which are
physical in the context of GR; their occurrence in “comoving” metrics arises from the physically unobservable
character of “comoving time”, which of course renders “comoving” metrics unphysical . Relatedly, the singular
non-bijective (and therefore unphysical) character of the space-time transformation of Oppenheimer and
Snyder is the consequence of its being a purely abstract mathematical bridge between the “standard” and
the manifestly unphysical “comoving” coordinates for the initially stationary finite-radius uniform dust ball
system.

The next section of this article is concerned with carrying out in detail the incautiously neglected analogue
of the transformation of Oppenheimer and Snyder to “standard” coordinates of the “comoving” coordinate
metric result for the analytically simplest case of an initially decreasing energy density finite-radius uniform
dust ball. Just as in the initially stationary energy density case which was transformed to “standard”
coordinates by Oppenheimer and Snyder, it is found that any metric and energy-density singularities which
are present in unphysical “comoving” coordinates are of course absent at any finite time in “standard”
coordinates.

In “standard” time the “age” of the expanding dust-ball “universe” is in fact infinite, precisely as the
“the time of contraction” of an Oppenheimer-Snyder dust-ball system is infinite [7], and the “size” of the
expanding dust-ball “universe” is at no finite time (quite) as small as its Schwarzschild radius, just as an
Oppenheimer-Snyder dust-ball system never contracts to being (quite) as small as its Schwarzschild radius [7].
Also, just as there exists a particular time interval during which an Oppenheimer-Snyder dust-ball contracts
especially rapidly [14], the expanding dust-ball “universe” correspondingly experiences a peak expansion rate,
which is a substantial fraction of the speed of light, when its radius reaches a few times the Schwarzschild
value, i.e., “inflation” is a natural attribute of an expanding dust ball. The “standard” time when that peak
expansion rate occurs is approximately equal to the “comoving” time of the “occurrence” of the unphysical
“comoving singularity.”

Finally, although dust models don’t per se incorporate any quantum effects, nor will we try to deal
with those in this article, it is worth bearing in mind that a system’s intrinsic uncertainty energy decreases
when its size increases. Therefore an expanding system can be expected to experience a small nonclassical
kinetic-energy “push” from the release of part of its store of uncertainty energy.

Uniform energy-density dust balls in “comoving” and “standard” coordinates

From the “comoving coordinate” Einstein-equation work of Friedmann, Lemâitre (also Tolman), Robertson
and Walker (FLRW), we have that the 0 ≤ r ≤ a interior region of a uniform energy-density dust ball of
finite radius a is described by the spherically-symmetric metric of Eq. (1) with [15, 16],

V (r, t) = R2(t)r2, (3a)
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and,
U(r, t) = R2(t)/(1 + Ω(r2/c2)), (3b)

where the dimensionless function R(t) satisfies the initial condition,

R(t0) = 1, (3c)

and the first-order in time equation of motion,

(Ṙ(t))2 = (ω2/R(t)) + Ω. (3d)

Here the constant ω2 reflects the universal gravitational constant G and the dust ball interior’s initial uniform
energy density ρ(t0), or, alternatively, its effective mass M and radius a,

ω2 def
= (8/3)πGρ(t0)/c2 = 2GM/a3, (3e)

while the constant Ω, which occurs in both of Eqs. (3d) and (3b), is readily evaluated from Eq. (3d) in terms
of ω2 and the initial value of the time derivative of R(t), namely,

Ω = (Ṙ(t0))2 − ω2. (3f)

In addition to the relations given by Eqs. (3a) through (3f), which determine the “comoving” metric of
Eq. (1) in the 0 ≤ r ≤ a interior region of the dust ball, we also have that in “comoving coordinates” the
energy density ρ(r, t) of the dust ball is given everywhere in space-time by,

ρ(r, t) =

{
ρ(t0)/(R(t))3 if 0 ≤ r ≤ a,
0 if r > a.

(3g)

The fact that the region r > a is empty space permits us to make use of the Birkhoff theorem on that region’s
r = a boundary to aid us in working out the space-time transformation of the “comoving-coordinate” metric
of Eqs. (1) and (3) to “standard” coordinates [17, 16].

It is notable that multiplying Eq. (3d) by the factor ma2/2, where m is a test mass, formally makes it the
Newtonian gravitational equation of that test mass’ purely radial motion in its radius variable r(t) = aR(t)
due to the point mass M , namely, m(ṙ(t))2/2−GmM/r(t) = m(ṙ(t0))2/2−GmM/a with r(t0) = a. This
formal equivalence of “comoving” coordinate FLRW “GR physics” to the entirely Newtonian gravitational
physics of a test mass which is unconstrained from coming arbitrarily close to a point mass again spotlights
the profoundly unphysical character of “comoving” coordinates.

In the Oppenheimer-Snyder case, we have that the energy density ρ(r, t) is initially stationary , i.e.,

ρ̇(r, t0) = 0, (4a)

From Eq. (3g) we see that Eq. (4a) is assured if,

Ṙ(t0) = 0. (4b)

Eqs. (4b) and (3f) imply that,
Ω = −ω2, (4c)

which specializes Eq. (3d) to the following time-cycloidal form [18],

(Ṙ(t))2 = ω2[(1/R(t))− 1]. (4d)

The nonnegative continuous (although not continuously differentiable) time-cycloidal R(t) which satisfies
Eq. (4d) and Eq. (3c) (namely R(t0) = 1) is periodic with period π/ω, and vanishes at t = t0+(n+1/2)(π/ω),
n = 0,±1,±2, . . . [16], with the consequence that the “comoving” metric described by Eqs. (1), (3a), (3b),
(3c), (3e), (4c) and (4d) is periodically singular at those times, as is the energy density ρ(r, t) of Eq. (3g).

In light of the inherent character of General Relativity (or even in light of the inherent character of
classical theoretical physics in general) these periodic singularities are artifacts of the unphysical “comoving
coordinate system” (specifically of physically unobservable “comoving time”) in which the metric described
by Eqs. (1), (3a), (3b), (3c), (3e), (4c) and (4d) is expressed; indeed these singularities are completely absent
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after Oppenheimer and Snyder’s (singular) space-time transformation of that metric from “comoving” to
“standard” coordinates [16].

Instead of the initially stationary energy density of Oppenheimer and Snyder, we here are interested in
initially decreasing energy density ρ(r, t). We see from Eq. (3g) that such initial decrease in ρ(r, t) is assured
if R(t) increases at the initial time t0. The analytically simplest and most convenient way to ensure such
increase in R(t) at t = t0 is to set Ṙ(t0) equal to ω, which causes Eq. (3f) to become simply,

Ω = 0, (5a)

and which furthermore, in conjunction with the initial condition R(t0) = 1 of Eq. (3c), specializes Eq. (3d)
to,

Ṙ(t) = ω/(R(t))
1
2 . (5b)

The solution of Eq. (5b) which satisfies the R(t0) = 1 initial condition is,

R(t) = (1 + 3
2ω(t− t0))

2
3 , (5c)

which strictly increases from the initial time t0 onward.
The R(t) of Eq. (5c), however, vanishes at one particular time ts, and ts is earlier than the initial time

t0 for which Ṙ(t0) = ω, namely,
ts = t0 − 2

3ω
−1. (5d)

Therefore the “comoving” metric of Eqs. (1), (3a), (3b), (3e), (5a) and (5c) is singular at that earlier time
ts, as is the energy density ρ(r, t) of Eq. (3g).

In light of the inherent character of General Relativity (or even in light of the inherent character of
classical theoretical physics in general) this metric singularity at the earlier time ts must be an artifact of
the unphysical “comoving” coordinates in which the metric is expressed. To check that expectation, we now
launch into the intricate and lengthy procedure needed to work out the space-time transformation of the
metric of Eqs. (1), (3a), (3b), (3e), (5a) and (5c) from “comoving” to “standard” coordinates.

We need to transform the “comoving coordinates” (t, r, θ, φ), in terms of which the invariant line element
ds2 is given by Eq. (1), into “standard coordinates” [19] (t̄, r̄, θ̄, φ̄), in terms of which the same invariant line
element ds2 is also given by,

ds2 = B(r̄, t̄)(cdt̄)2 −A(r̄, t̄)(dr̄)2 − r̄2((dθ̄)2 + (sin θ̄dφ̄)2)
= (cdt)2 − U(r, t)(dr)2 − V (r, t)((dθ)2 + (sin θdφ)2).

(6a)

Inspection in Eq. (6a) of the rightmost two terms of the line element ds2 in both its “standard” and its
“comoving” form immediately reveals three very convenient transformation choices,

θ̄ = θ, φ̄ = φ and r̄ = (V (r, t))
1
2 = r(1 + 3

2ω(t− t0))
2
3 , (6b)

where we have evaluated (V (r, t))
1
2 by using Eqs. (3a) and (5c).

Next we would like to obtain t̄ as a function of r and t, as has been done in Eq. (6b) for r̄. Inspection
of Eq. (6a), however, shows that that task is completely enmeshed with the determination of B and A as
functions of r and t; moreover t̄(r, t) itself cannot be extracted from Eq. (6a), only certain combinations
of its partial derivatives (c(∂t̄/∂r)) and (∂t̄/∂t) can. We thus must solve both simultaneous algebraic and
first-order partial differential equations to obtain t̄(r, t).

We now present in greater detail that part of Eq. (6a) which isn’t rendered redundant by the three
transformation choices of Eq. (6b), namely,

B[(∂t̄/∂t)(cdt) + c(∂t̄/∂r)dr]2 −A[(1/c)(∂r̄/∂t)(cdt) + (∂r̄/∂r)dr]2 = (cdt)2 − U(r, t)(dr)2. (6c)

Since the three bilinear differential forms (cdt)2, (2c dt dr) and (dr)2 are linearly independent, Eq. (6c)
produces the three simultaneous equations,

B(∂t̄/∂t)2 −A((1/c)(∂r̄/∂t))2 = 1, (7a)

B(∂t̄/∂t)(c(∂t̄/∂r))−A((1/c)(∂r̄/∂t))(∂r̄/∂r) = 0, (7b)

B(c(∂t̄/∂r))2 −A(∂r̄/∂r)2 = −U. (7c)
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We now eliminate A and B from Eqs. (7) in order to obtain the partial differential equation for t̄. Solving
Eq. (7b) for A yields,

A = B(∂t̄/∂t)(c(∂t̄/∂r))
((1/c)(∂r̄/∂t))(∂r̄/∂r) . (8a)

We now insert this value of A into each one of Eqs. (7a) and (7c), and follow that by solving each one for
(1/B),

(1/B) = ((1/c)(∂r̄/∂t))(∂t̄/∂t)[(∂r̄/∂r)(∂t̄/∂t)−((1/c)(∂r̄/∂t))(c(∂t̄/∂r))]
((1/c)(∂r̄/∂t))(∂r̄/∂r) , (8b)

(1/B) = (1/U)(∂r̄/∂r)(c(∂t̄/∂r))[(∂r̄/∂r)(∂t̄/∂t)−((1/c)(∂r̄/∂t))(c(∂t̄/∂r))]
((1/c)(∂r̄/∂t))(∂r̄/∂r) . (8c)

If the factor in square brackets which occurs in the numerators of the right-hand sides of both Eq. (8b) and
Eq. (8c) were equal to zero, then (1/B) = 0. But since we do not want the metric function B to be singular ,
we must assume that this common factor is nonzero. With that assumption, equating the right-hand side
of Eq. (8b) to that of Eq. (8c) produces the relation,

((1/c)(∂r̄/∂t))(∂t̄/∂t) = (1/U)(∂r̄/∂r)(c(∂t̄/∂r)). (9a)

From Eqs. (3b), (5a) and (5c), we obtain that,

U(r, t) = (1 + 3
2ω(t− t0))

4
3 , (9b)

and from Eq. (6b) we obtain both that,

(∂r̄/∂r) = (1 + 3
2ω(t− t0))

2
3 , (9c)

and that,
((1/c)(∂r̄/∂t)) = (ωr/c)/(1 + 3

2ω(t− t0))
1
3 . (9d)

Putting Eqs. (9b), (9c) and (9d) into Eq. (9a) yields the following first-order linear partial differential
equation for t̄(r, t),

(1 + 3
2ω(t− t0))

1
3 (∂t̄/∂t) = (c2/(ωr))(∂t̄/∂r), (9e)

which is separable in r and t. Putting,

t̄(r, t) = ω−1α(r)β(t), (10a)

into Eq. (9e) yields,

(1 + 3
2ω(t− t0))

1
3 (β̇(t)/β(t)) = (c2/(ωr))(α′(r)/α(r)) = −ωp, (10b)

where p is an arbitrary dimensionless constant. Eq. (10b) is satisfied by,

β(t) = b0(p) exp(−p[(1 + 3
2ω(t− t0))

2
3 ]), (10c)

and,
α(r) = a0(p) exp(−p[ 1

2 (ωr/c)2]), (10d)

where b0(p) and a0(p) are arbitrary dimensionless constants that can vary with p.
Because the Eq. (9e) partial differential equation is linear , any linear combination of its solutions will be

a solution as well. Combining this linear superposition property of the solutions of Eq. (9e) with Eqs. (10a),
(10c) and (10d), we see that the general solution of Eq. (9e) will be of the form,

t̄(r, t) = ω−1
∫
dp a0(p)b0(p) exp(−p[ 1

2 (ωr/c)2 + (1 + 3
2ω(t− t0))

2
3 ]). (10e)

Eq. (10e) tells us that t̄(r, t) is equal to ω−1 times the Laplace representation of a general dimensionless
function of the dimensionless variable ( 1

2 (ωr/c)2 + (1 + 3
2ω(t− t0))

2
3 ).

Therefore, given any differentiable dimensionless function φ(u) of the dimensionless variable u, the func-
tion t̄(r, t) which is given by,

t̄(r, t) = ω−1φ( 1
2 (ωr/c)2 + (1 + 3

2ω(t− t0))
2
3 ), (10f)
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satisfies the Eq. (9e) partial differential equation, and also has the dimensions of time. Note that it is
straightforward to verify by direct substitution that the general form of t̄(r, t) which is specifically described
by Eq. (10f) satisfies the Eq. (9e) partial differential equation.

With the Eq. (10f) form of t̄(r, t) in hand, we are now almost in a position to obtain the two “standard”
metric functions B and A in terms of r and t from Eqs. (8), but first we need to calculate the two partial
derivatives (∂t̄/∂t) and (c(∂t̄/∂r)) from Eq. (10f),

(∂t̄/∂t) = φ′( 1
2 (ωr/c)2 + (1 + 3

2ω(t− t0))
2
3 )/(1 + 3

2ω(t− t0))
1
3 , (11a)

(c(∂t̄/∂r)) = (ωr/c)φ′( 1
2 (ωr/c)2 + (1 + 3

2ω(t− t0))
2
3 ). (11b)

We can now substitute Eqs. (11a) and (11b), along with Eqs. (9c) and (9d), into Eq. (8a), with the result,

A(r, t) =
B(r,t)[φ′( 1

2
(ωr/c)2+(1+ 3

2
ω(t−t0))

2
3 )]2

(1+ 3
2
ω(t−t0))

2
3

. (12a)

We can make the same four substitutions into Eq. (8b) (or, with exactly the same effect, make those same
four substitutions together with the substitution of Eq. (9b), into Eq. (8c)), with the result,

B(r, t) =
(1+ 3

2
ω(t−t0))

2
3

[φ′( 1
2

(ωr/c)2+(1+ 3
2
ω(t−t0))

2
3 )]2[1−(ωr/c)2/(1+ 3

2
ω(t−t0))

2
3 ]
. (12b)

The substitution of Eq. (12b) into Eq. (12a) then yields the “standard” metric function A(r, t),

A(r, t) = 1

1−(ωr/c)2/(1+ 3
2
ω(t−t0))

2
3
. (12c)

We note that while in Eq. (12b) B(r, t) is expressed in terms of a function φ′( 1
2 (ωr/c)2 +(1+ 3

2ω(t−t0))
2
3 )

which has not yet been determined, the expression in Eq. (12c) for A(r, t) is the finished product. This
expression is valid only for 0 ≤ r ≤ a, where dust of uniform energy density ρ(t) = ρ(t0)/(R(t))3 is present
(and where, of course, R(t) = (1 + 3

2ω(t − t0))
2
3 ). However, we also know that the region r > a is empty

space, so we in addition expect the Birkhoff theorem to apply on the r = a boundary of that empty-space
region. In order to check whether that is in fact the case for the A(r, t) of Eq. (12c), we first eliminate the
“comoving time coordinate” t from A(r, t) in favor of the “standard radial coordinate” r̄ = r(1+ 3

2ω(t− t0))
2
3

(see Eq. (6b)), then we fix r to its boundary value a, and then we compare A as a function of r̄ with the static
Schwarzschild “standard form” of this metric component for a system of effective massM = (4/3)πa3ρ(t0)/c2.
For the A(r, t) of Eq. (12c), this prescription yields,

A(r = a, r̄) = 1
1−((a3ω2)/(c2r̄)) , (12d)

and from Eq. (3e),
ω2 = (8/3)πGρ(t0)/c2 = 2GM/a3, (12e)

so that Eq. (12d) reads,
A(r = a, r̄) = 1

1−((2GM)/(c2r̄)) , (12f)

which is indeed the Schwarzschild “standard form” of this metric component.
The same approach permits one to pin down the not yet determined function φ′(u) which appears in

the Eq. (12b) expression for the metric component B(r, t). On one hand we of course require B(r = a, r̄) to
have its static Schwarzschild “standard form”, namely,

B(r = a, r̄) = 1− ((2GM)/(c2r̄)) = 1− ((a3ω2)/(c2r̄)) = 1− ((ωa/c)2/(r̄/a)), (13a)

where we have used Eq. (12e). On the other hand, applying the relation,

(1 + 3
2ω(t− t0))

2
3 = r̄/r, (13b)

which follows from Eq. (6b), to the Eq. (12b) expression for B(r, t) permits one to obtain the result that,

B(r = a, r̄) = (r̄/a)
[φ′( 1

2
(ωa/c)2+(r̄/a))]2[1−((ωa/c)2/(r̄/a))] . (13c)
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Equating the right-hand side of Eq. (13c) to the expression which appears after the last equal sign on the
right-hand side of Eq. (13a) then permits one to solve for φ′( 1

2 (ωa/c)2 + (r̄/a)),

φ′( 1
2 (ωa/c)2 + (r̄/a)) = (r̄/a)

3
2

(r̄/a)−(ωa/c)2 .
(13d)

We now obtain φ′(u) by setting (r̄/a) to u− 1
2 (ωa/c)2 in both sides of Eq. (13d),

φ′(u) =
(u− 1

2
(ωa/c)2)

3
2

u− 3
2

(ωa/c)2
(13e)

In order to obtain t̄(r, t) = ω−1φ( 1
2 (ωr/c)2 + (1 + 3

2ω(t − t0))
2
3 ) as per Eq. (10f), we must integrate the

specific φ′(u) which we have obtained in Eq. (13e),

φ(u) = φ(u0) +
∫ u
u0
du′

(u′− 1
2

(ωa/c)2)
3
2

u′− 3
2

(ωa/c)2 = φ(u0) +
∫ u− 1

2
(ωa/c)2

u0− 1
2

(ωa/c)2 ds
s
3
2

s−(ωa/c)2 .
(14)

To conveniently have the lower limit of the integration over the variable s in Eq. (14) be equal to unity, we
choose u0 equal to 1 + 1

2 (ωa/c)2. With that choice of u0 we use the φ(u) of Eq. (14) to implement Eq. (10f)
for t̄(r, t),

t̄(r, t) = ω−1φ( 1
2 (ωr/c)2 + (1 + 3

2ω(t− t0))
2
3 ) = t̄(r = a, t = t0) + ω−1

∫ S(r,t)

1
ds s

3
2

s−(ωa/c)2 , (15)

where S(r, t)
def
= 1

2 (ω/c)2(r2 − a2) + (1 + 3
2ω(t − t0))

2
3 . (Note that ω−1φ(1 + 1

2 (ωa/c)2) = t̄(r = a, t = t0)
because S(r = a, t = t0) = 1.)

The Eq. (15) expression for t̄(r, t) is, of course, only valid for 0 ≤ r ≤ a, i.e., within the dust ball. The
most crucial feature of t̄(r, t) is that it diverges when 0 ≤ r ≤ a and S(r, t) ≤ (ωa/c)2 = (2GM)/(c2a), where
the last equality follows from Eq. (12e).

In particular, when t = ts = t0 − 2
3ω
−1, we see that for 0 ≤ r ≤ a, S(r, ts) = 1

2 (ω/c)2(r2 − a2) ≤ 0, and
therefore t̄(r, ts) diverges for 0 ≤ r ≤ a. The “comoving coordinate singularity” at t = ts = t0 − 2

3ω
−1 is

therefore simply never reached anywhere within the dust ball, as it would require the infinite time t̄(r, ts)
in “standard” coordinates to do so. In terms of the colorful language invoked by Steven Weinberg [9], the
“age of the universe” is infinite; the dust-ball metric singularity at the “comoving time” ts = t0 − 2

3ω
−1

is only an artifact of the use of the unphysical “comoving coordinates”, in exactly the same way that the
Oppenheimer-Snyder periodic dust-ball metric singularities are all likewise only artifacts of the use of the
unphysical “comoving coordinates” [16]. Of course the physical nonexistence of metric singularities is a
readily demonstrated general property of General Relativity, as we have showed in detail in the Introduction.
It would in any case overstretch physical credibility for mathematical singularities to actually play a role in
classical theoretical physics.

It is as well of interest to look into what the requirement S(r, t) > (ωa/c)2 = (2GM)/(c2a) implies for
the r = a outer surface of the dust ball in the “standard” coordinate system (in the unphysical “comoving”
coordinate system every dust particle has zero three-velocity [20, 16], so the radius a of the dust ball’s
outer surface never changes in unphysical “comoving” coordinates; only the magnitude of the dust ball’s
uniform energy density can change with “comoving time” in unphysical “comoving coordinates”). If we
express S(r, t) in terms of the “standard” radial coordinate r̄ = r(1+ 3

2ω(t− t0))
2
3 in place of the “comoving”

time t, we obtain S(r, r̄) = 1
2 (ω/c)2(r2 − a2) + r̄/r. Specializing to the dust ball’s outer surface r = a,

we obtain S(r = a, r̄) = r̄/a > (2GM)/(c2a), which implies that r̄ > (2GM)/c2, namely the radius in
“standard” coordinates of the dust ball’s outer surface must always exceed that dust ball’s Schwarzschild
radius (2GM)/c2—the dust ball’s outer surface actually attaining its Schwarzschild radius is impossible in
“standard” coordinates because that would require an infinite “standard” time, namely t̄(r = a, r̄) diverges
when r̄/a = S(r = a, r̄) ≤ (ωa/c)2 = (2GM)/(c2a). The result here that the radius in “standard” coordinates
of the dust ball’s outer surface must always exceed its Schwarzschild radius is identical to what is found in
the Oppenheimer-Snyder case [16, 7], and it is also, of course, merely another instance of the physical
nonexistence of metric singularities in General Relativity, which is proved in detail in the Introduction (not
that it could even be physically credible for mathematical singularities to actually play a role in any branch
of classical theoretical physics). In terms of the colorful language invoked by Steven Weinberg [9], not only
is the “age of the universe” infinite, also the “size of the universe” could never in the past have been as small
as its Schwarzschild radius.
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Finally, just as in the Oppenheimer-Snyder case, analytic evaluation of the integral expression for t̄(r, t)
(given here by Eq. (15)) can be carried out in the region where it doesn’t diverge, namely for S(r, t) >
(ωa/c)2 = (2GM)/(c2a), and it is furthermore only valid when 0 ≤ r ≤ a, i.e., within the dust ball.
One must take care not to inadvertently mentally analytically continue that analytic result into the region
S(r, t) ≤ (ωa/c)2 = (2GM)/(c2a) where t̄(r, t) diverges.

To simplify notation during and after evaluation of the integral, we reexpress Eq. (15) in the streamlined
form,

ω(t̄α(S)− t̄α(S = 1)) =
∫ S

1
ds s

3
2 /(s− α), (16a)

where,

S
def
= S(r, t) = 1

2 (ω/c)2(r2 − a2) + (1 + 3
2ω(t− t0))

2
3 , (16b)

and,

α
def
= (ωa/c)2 = (2GM)/(c2a). (16c)

Note that we consider only the case where S > α; the integral on the right-hand side of Eq. (16a) diverges
when S ≤ α. Also, Eqs. (16a) through (16c) only apply when 0 ≤ r ≤ a, namely within the dust ball. It may
be useful to note that the ω which appears on the left-hand side of Eq. (16a), and in the expression for S(r, t)
in Eq. (16b), is related to α via ω = (c/a)α

1
2 , and it may also be useful to note that S(r = a, t = t0) = 1.

Evaluation of the integral on the right-hand side of Eq. (16a) requires only the simple change of variable
s = v2, followed by some mildly tedious algebra,

∫ S
1
ds s

3
2 /(s− α) = 2

∫ S 1
2

1
dv v4/(v2 − α). (16d)

Next we note that,

2v4/(v2 − α) = 2[(v2 − α) + α]2/(v2 − α) = 2v2 + 2α+ α
3
2 [(1/(v − α 1

2 ))− (1/(v + α
1
2 ))].

We now need only carry out four elementary integrations to obtain the result,

t̄α(S) = t̄α(S = 1) + ω−1
{

2
3 (S

3
2 − 1) + 2α(S

1
2 − 1) + α

3
2 ln
[

(S
1
2−α

1
2 )(1+α

1
2 )

(1−α
1
2 )(S

1
2 +α

1
2 )

]}
, (16e)

and we reiterate that Eq. (16e) is valid only when S > α, and also that t̄α(S) diverges when S ≤ α.

Dynamical behavior of the dust ball’s surface in “standard” coordinates

By using Eq. (16e) for t̄(r, t) = t̄α(S(r, t)) one can obtain in closed form the dependence of the local

“standard” time at the surface of the dust ball, namely t̄a(t)
def
= t̄(a, t) = t̄α(S(a, t)), on the dynamically

increasing “standard” radial coordinate of that surface, which is,

r̄a(t)
def
= r̄(a, t) = a(1 + 3

2ω(t− t0))
2
3 , (17a)

where the rightmost equality in Eq. (17a) follows from Eq. (6b). The reason that a closed-form result for
t̄a(r̄a) can be obtained from Eq. (16e) is that Eq. (16b) implies,

S(a, t) = (1 + 3
2ω(t− t0))

2
3 = r̄a(t)/a. (17b)

and therefore,
t̄a(t) = t̄α(r̄a(t)/a). (17c)

From Eq. (16c) we note that the entity α is related to the dust ball’s Schwarzschild radius rs by,

α = rs/a, (17d)

where,

rs
def
= 2GM/c2 = ω2a3/c2. (17e)

We now use Eqs. (16e), (17c) and (17d) to obtain,

t̄a(r̄a)=t̄a(r̄a=a)+ω−1

{
2
3

((r̄a/a)
3
2−1)+2(rs/a)((r̄a/a)

1
2−1)+(rs/a)

3
2 ln

[
((r̄a/a)

1
2−(rs/a)

1
2 )(1+(rs/a)

1
2 )

(1−(rs/a)
1
2 )((r̄a/a)

1
2 +(rs/a)

1
2 )

]}
for r̄a>rs. (17f)
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Note that because the t̄α(S) of Eq. (16e) diverges for S ≤ α, t̄a(r̄a) also diverges for r̄a ≤ rs. That the
t̄α(S = 1) in Eq. (16e) equals the t̄a(r̄a = a) in Eq. (17f) follows from S(a, t0) = 1 (see Eq. (17b)) and
r̄a(t0) = a (see Eq. (17a)).

In the c→∞ nonrelativistic limit , rs → 0 (see Eq. (17e)), so from Eq. (17f), (r̄a(t̄a)/a) = (1 + 3
2ω(t̄a −

t̄a(r̄a = a)))
2
3 when c → ∞; i.e., the unphysical “comoving” Eq. (5c) emerges from Eq. (17f) when c → ∞.

We can’t obtain r̄a(t̄a) in closed form from the full “standard” Eq. (17f), but we can derive key facts about
dr̄a/dt̄a via (mildly tedious) exact calculation of dt̄a/dr̄a from Eq. (17f),

dt̄a/dr̄a = (1/c)(r̄a/rs)
3
2 /((r̄a/rs)− 1) for r̄a > rs, (18a)

where we have used ω = c(rs/a)
1
2 /a (see Eq. (17e)). Note that dt̄a/dr̄a has no physical meaning for r̄a ≤ rs

because t̄a(r̄a) diverges at those values of r̄a. Eq. (18a) implies that the t̄a(r̄a) of Eq. (17f) is strictly
increasing for r̄a > rs, and that dr̄a/dt̄a as a function of r̄a is given by,

dr̄a/dt̄a = c(rs/r̄a)
1
2 (1− (rs/r̄a)) for r̄a > rs. (18b)

Of course dr̄a/dt̄a has no physical meaning for r̄a ≤ rs, where t̄a(r̄a) diverges. As c→∞, Eq. (18b) becomes
d(r̄a/a)/dt̄a = ω/(r̄a/a)

1
2 , the unphysical “comoving” Eq. (5b). The full Eq. (18b) is easily shown to imply

that dr̄a/dt̄a, the dust-ball surface’s radial expansion rate, peaks at r̄a = 3rs, where its value is a substantial
fraction of c,

dr̄a/dt̄a

∣∣∣
r̄a=3rs

= 2c/
√

27 = 0.3849c. (18c)

Putting r̄a = 3rs into the right-hand side of Eq. (17f), we obtain that the local “standard” time when
the dust-ball surface’s radial expansion rate peaks is approximately,

t̄a(r̄a = 3rs) ≈ t̄a(r̄a = a)− 2
3ω
−1, (18d)

with an error of the form (1/ω)O(rs/a). Eq. (18d) formally approximately corresponds to the unphysical
“comoving” time ts = t0 − 2

3ω
−1 of Eq. (5d) for the “occurrence” of the unphysical “comoving” singularity .

In précis, when the analytically simplest FLRW expanding dust-ball solution in unphysical “comoving”
coordinates is transformed à la Oppenheimer and Snyder to “standard” coordinates, its unphysical “co-
moving” singularity doesn’t occur at any finite “standard” time; instead, at approximately the formally
corresponding local “standard” time, an inflationary peak in the dust-ball surface’s radial expansion rate
occurs, at which stage the dust ball’s surface radius is a few times its Schwarzschild radius and is growing
at a substantial fraction of c.
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