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Abstract

We discuss the gravitational collapse of a photon. It is shown that when the
photon gets Planck energy, it turns into a black hole (as a result of interaction
with the object to be measured). It is shown that three-dimensional space is a
consequence of energy advantage in the formation of the Planck black holes. New
uncertainty relations established on the basis of Einstein’s equations. It is shown
that the curvature of space-time is quantized.

1 The collapse of the photon and the Planck length

The Planck length ℓP is defined as ℓP =
√︁

~𝐺
𝑐3

≈ 1.616 199(97) × 10−35 m, where 𝑐

is the speed of light in a vacuum, 𝐺 is the gravitational constant, and ~ is the reduced
Planck constant.

Simple dimensional analysis shows that the measurement of the position of physical
objects with precision to the Planck length is problematic. Indeed, we will discuss the
following thought experiment. Suppose we want to determine the position of an object
using electromagnetic radiation, i.e., photons. The greater the energy of photons, the
shorter their wavelength and the more accurate the measurement. If the photon has
enough energy to measure objects the size of the Planck length, it would collapse into
a black hole and the measurement would be impossible (as a result of interaction with
the object to be measured). Thus, the Planck length sets the fundamental limits on the
accuracy of length measurement [1].

According to general relativity, any form of energy, including collision energy of a
photon with the target, should generate a gravitational field. The higher the energy of
the photon, the more powerful gravitational field is generated. We know that the photon
has a kinetic energy 𝐸𝑘𝑖𝑛 = 𝑃 𝑐, where 𝑃 is the photon momentum, and 𝑐 its speed.
This energy is positive. But the photon has, according to general relativity, gravitational
(potential) energy. This energy is negative. We find its formula from the analogy with
the potential energy of massive particles. For a homogeneous sphere of radius 𝑟 and mass
𝑀 , its gravitational energy has the form

𝐸𝑝𝑜𝑡 ≈ −𝐺𝑀2/𝑟

where 𝐺 is the gravitational constant, 𝑀 is the mass of the ball, and 𝑟 its radius. But a
photon has no mass 𝑀 . Therefore 𝑀 is replaced by the 𝑀 → 𝑃/𝑐, where 𝑃 is the photon



momentum and 𝑐 is the speed of light in a vacuum. Then the gravitational energy of the
photon has the form

𝐸𝑝𝑜𝑡 ≈ −𝐺𝑃 2/𝑐2𝑟

where 𝑟 is necessary to compare with the photon’s wavelength 𝜆. The total energy of the
interaction of photons with the target is the sum of kinetic and potential energies and has
the following form

𝐸 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 ≈ 𝑃 𝑐− 𝐺𝑃 2

𝑐2 𝜆
= 𝑃 𝑐

(︂
1 − 𝐺𝑃

𝑐3 𝜆

)︂
= 𝑃 𝑐

(︂
1 − 𝜆𝑠

𝜆

)︂
(1.1)

(here photon spin is not considered, but it is not essential), 𝜆𝑠 = (𝐺/𝑐3)𝑃 is an analogue
of the gravitational radius for a massive particle 𝑟𝑠 ≈ (𝐺/𝑐3)𝑚𝑐.

Consider equation (1.1) from the quantum point of view. We assume that 𝑃 𝜆 ≈ ~,
where ~ is the Dirac constant. Using this relation (substituting 𝑃 ≈ ~/𝜆), we find the
function 𝐸(𝜆) from the equation (1.1)

𝐸(𝜆) =
~𝑐
𝜆

(︂
1 − ℓ2𝑃

𝜆2

)︂
(1.2)

where ℓ𝑃 =
√︀
~𝐺/𝑐3 is the fundamental Planck length, which appears here automatically.

Figure 1: Graphs 𝐸(𝜆) of the collapse of the photon

When we construct a graph of the function 𝐸(𝜆), we can see that as the photon
wavelength decreases, its energy increases, see Fig. 1. The maximum total energy 𝐸(𝜆) is
approximately equal to the Planck energy, where the photon wavelength is approximately
equal to the Planck length. However, if the photon momentum continues to increase,
its total energy begins to decrease due to the increase of the gravitational energy of the
photon. When the wavelength of the photon is equal to the Planck length, its total energy
is zero; The photon collapses and turns into a microscopic black hole, the hypothetical
Planck particle (for example, a collision with the target).

To be more accurate, we must proceed from Hamilton-Jacobi equation [2]

𝑔𝑖𝑘𝜕2𝑆/𝜕𝑥𝑖𝜕𝑥𝑘 = 𝑚2 𝑐2 (1.3)
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with metric coefficients 𝑔𝑖𝑘, taken from Schwarzschild solution, where 𝑆 is the action
and 𝑚 is the particle mass. It is a generalization of the equation between energy and
momentum in special relativity 𝐸2 − p2𝑐2 = 𝑚2𝑐4. Equation (1.3) is generally covariant
(physical content of equations does not depend on the choice of coordinate system). This
Hamilton-Jacobi equation has the form(︁

1 − 𝑟𝑠
𝑟

)︁−1
(︂
𝜕𝑆

𝑐𝜕𝑡

)︂2

−
(︁

1 − 𝑟𝑠
𝑟

)︁(︂
𝜕𝑆

𝜕𝑟

)︂2

− 1

𝑟2

(︂
𝜕𝑆

𝜕𝜙

)︂2

−𝑚2𝑐2 = 0 (1.4)

It can be rewritten as follows

𝐸2 =
(︁

1 − 𝑟𝑠
𝑟

)︁2

𝑃 2𝑐2 +
(︁

1 − 𝑟𝑠
𝑟

)︁ 𝑁2𝑐2

𝑟2
+
(︁

1 − 𝑟𝑠
𝑟

)︁
𝑚2𝑐4 (1.5)

where 𝑁 is the angular momentum of a particle and 𝑟𝑠 is the gravitational radius of the
central attracting body. The following assumptions are necessary for the approach above:

Figure 2: Graphs of the collapse of a photon with angular momentum

1) the mass of the particle 𝑚 is zero, 2) angular momentum (spin of the photon) 𝑁 can
be neglected, 3) the Heisenberg uncertainty principle is simplified to 𝑃 𝑟 ≈ ~. We then
obtain an approximate equation for the total energy

𝐸 ≈
(︁

1 − 𝑟𝑠
𝑟

)︁
𝑃 𝑐 =

(︂
1 − 2𝐺𝑀

𝑐2𝑟

)︂
𝑃 𝑐 ≈

(︂
1 − 2ℓ2𝑃

𝜆2

)︂
~𝑐
𝜆

(1.6)

where 𝑟 = 𝜆 is the wavelength of a photon and 𝑟𝑠 = 2𝐺𝑀/𝑐2 is the gravitational radius.
Mass 𝑀 should be replaced by 𝑃/𝑐; 𝑃 = 𝑃 ≈ ~/𝜆 is the momentum of a photon. The
resulting equation (1.6) agrees with the equation (1.2) for the total energy to within a
factor of 2.

To account for the angular momentum of the photon in the above equation (1.5) it
is necessary to substitute 𝑁2 with ~2𝑙(𝑙 + 1), where 𝑙 is the quantum number of the total
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angular momentum of the photon (see Fig. 2). The angular momentum of a photon leads
to the formation of internal event horizon in Planck black hole (𝑙 = 1, point 2).

Analysis of the Hamilton-Jacobi equation for the photon in spaces of different dimen-
sions 𝑛 indicates a preference (energy gain) for three-dimensional space for the emergence
of the Planck black holes - both real and virtual (quantum foam).

Figure 3: Graphs 𝐸(𝑛)(𝜆) of the collapse of the photon in the spaces of different dimensions

Indeed, according to Ehrenfest [3], expressions for the potential energy in spaces of
various dimensions are of the form

𝐸
(𝑛≥3)
𝑝𝑜𝑡 ≈ − 𝑘𝑀2

(𝑛− 2)𝑟𝑛−2
; 𝑛 ≥ 3 (1.7)

𝐸
(2)
𝑝𝑜𝑡 ≈ 𝑘𝑀2 ln 𝑟; 𝑛 = 2 (1.8)

𝐸
(1)
𝑝𝑜𝑡 ≈ 𝑘𝑀2 𝑟; 𝑛 = 1 (1.9)

where 𝑘 - the interaction constant in 𝑛-dimensional space. With the usual Newton’s
constant it is linked through cross-linking potentials for 3-dimensional space and the
corresponding 𝑛-dimensional space.

For the potential energy of the photon, equations (1.7), (1.8), (1.9) have the form
(given that 𝑀 → 𝑃/𝑐 ; 𝑃 ≈ ~/𝜆; 𝑟 = 𝜆)

𝐸
(𝑛≥3)
𝑝𝑜𝑡 ≈ − 𝑘 (𝑃/𝑐)2

(𝑛− 2)𝑟𝑛−2
= − 𝑘 (~/𝜆 𝑐)2

(𝑛− 2)𝜆𝑛−2
; 𝑛 ≥ 3 (1.10)

𝐸
(2)
𝑝𝑜𝑡 ≈ 𝑘 (𝑃/𝑐)2 ln 𝑟 = 𝑘 (~/𝜆 𝑐)2 ln𝜆; 𝑛 = 2 (1.11)

𝐸
(1)
𝑝𝑜𝑡 ≈ 𝑘 (𝑃/𝑐)2 𝑟 = 𝑘 (~/𝜆 𝑐)2 𝜆; 𝑛 = 1 (1.12)

Then the total energy of the photon is approximately equal to

𝐸(𝑛)(𝜆) ≈ 𝐸𝑘𝑖𝑛 + 𝐸
(𝑛)
𝑝𝑜𝑡

4



where 𝐸𝑘𝑖𝑛 = 𝑃 𝑐 = ~ 𝑐/𝜆 on the space dimension is independent.
Graphics functions 𝐸(𝑛)(𝜆) are shown in Fig. 3 (here 𝑘 = ~ = 𝑐 = 1 ). Thus gain in

energy, apparently, predetermined three-dimensionality of the observed space, given that
the Planck virtual black holes form the so-called quantum foam, which is the foundation
of the ”fabric” of the Universe.

2 Heisenberg uncertainty principle at the Planck

scale.

There is currently no proven physical significance of the Planck length; it is, however,
a topic of theoretical research. Physical meaning of the Planck length can be determined
as follows:

A particle of mass 𝑚 has a reduced Compton wavelength

𝜆𝐶 =
𝜆𝐶

2𝜋
=

~
𝑚𝑐

Schwarzschild radius of the particle is

𝑟𝑠 =
2𝐺𝑚

𝑐2
=

2𝐺

𝑐3
𝑚𝑐

The product of these values is always constant and equal to

𝑟𝑠𝜆𝐶 =
2𝐺~
𝑐3

= 2ℓ2𝑃

Accordingly, the uncertainty relation between the Schwarzschild radius of the particle and
Compton wavelength of the particle will have the form

∆𝑟𝑠∆𝜆𝐶 ≥ 𝐺~
𝑐3

= ℓ2𝑃

which is another form of Heisenberg’s uncertainty principle at the Planck scale. Indeed,
substituting the expression for the Schwarzschild radius, we obtain

∆

(︂
2𝐺𝑚

𝑐2

)︂
∆𝜆𝐶 ≥ 𝐺~

𝑐3

Reducing the same characters, we come to the Heisenberg uncertainty relation

∆ (𝑚𝑐) ∆𝜆𝐶 ≥ ~
2

Uncertainty relation between the gravitational radius and the Compton wavelength of the
particle is a special case of the general Heisenberg’s uncertainty principle at the Planck
scale

∆𝑅𝜇∆𝑥𝜇 ≥ ℓ2𝑃 (2.1)

where 𝑅𝜇 is the radius of curvature of space-time small domain; 𝑥𝜇 is the coordinate small
domain.
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Indeed, these uncertainty relations can be obtained on the basis of Einstein’s equa-
tions

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (2.2)

where 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − (1/2)𝑔𝜇𝜈 𝑅 is the Einstein tensor, which combines the Ricci tensor,
the scalar curvature and the metric tensor, Λ is the cosmological constant, 𝑇𝜇𝜈 is energy-
momentum tensor of matter, 𝜋 is the number, 𝑐 is the speed of light, 𝐺 is Newton’s
gravitational constant.

In the derivation of his equations, Einstein suggested that physical spacetime is
Riemannian, ie curved. A small domain of it is approximately flat spacetime.

For any tensor field 𝑁𝜇𝜈... value 𝑁𝜇𝜈...

√
−𝑔 we may call a tensor density, where 𝑔 is

the determinant of the metric tensor 𝑔𝜇𝜈 . The integral
∫︀
𝑁𝜇𝜈...

√
−𝑔 𝑑4𝑥 is a tensor if the

domain of integration is small. It is not a tensor if the domain of integration is not small,
because it then consists of a sum of tensors located at different points and it does not
transform in any simple way under a transformation of coordinates [4]. Here we consider
only small domains. This is also true for the integration over the three-dimensional
hypersurface 𝑆𝜈 .

Thus, Einstein’s equations (2.2) for small spacetime domain can be integrated by the
three-dimensional hypersurface 𝑆𝜈 . Have

1

4𝜋

∫︁
(𝐺𝜇𝜈 + Λ𝑔𝜇𝜈)

√
−𝑔 𝑑𝑆𝜈 =

2𝐺

𝑐4

∫︁
𝑇𝜇𝜈

√
−𝑔 𝑑𝑆𝜈 (2.3)

Since integrable spacetime ”domain” is small, we obtain the tensor equation

𝑅𝜇 =
2𝐺

𝑐3
𝑃𝜇 (2.4)

where 𝑃𝜇 = 1
𝑐

∫︀
𝑇𝜇𝜈

√
−𝑔 𝑑𝑆𝜈 is the 4-momentum of matter, 𝑅𝜇 = 1

4𝜋

∫︀
(𝐺𝜇𝜈 + Λ𝑔𝜇𝜈)

√
−𝑔 𝑑𝑆𝜈

is the radius of curvature domain.
The resulting tensor equation can be rewritten in another form. Since 𝑃𝜇 = 𝑚𝑐𝑈𝜇

then

𝑅𝜇 =
2𝐺

𝑐3
𝑚𝑐𝑈𝜇 = 𝑟𝑠 𝑈𝜇 (2.5)

where 𝑟𝑠 is the Schwarzschild radius, 𝑈𝜇 is the 4-speed, 𝑚 is the gravitational mass. This
record reveals the physical meaning of 𝑅𝜇. There is a similarity between the obtained ten-
sor equation and the expression for the gravitational radius of the body (the Schwarzschild
radius). Indeed, for static spherically symmetric field and static distribution of matter
have 𝑈0 = 1, 𝑈𝑖 = 0 (𝑖 = 1, 2, 3). In this case we obtain

𝑅0 =
2𝐺

𝑐3
𝑚𝑐𝑈0 =

2𝐺𝑚

𝑐2
= 𝑟𝑠 (2.6)

In a small area of spacetime is almost flat and this equation can be written in the operator
form

�̂�𝜇 =
2𝐺

𝑐3
𝑃𝜇 =

2𝐺

𝑐3
(−𝑖~)

𝑑

𝑑𝑥𝜇
= −2𝑖 ℓ2𝑃

𝑑

𝑑𝑥𝜇
(2.7)

where ~ is the Dirac constant. Then commutator operators �̂�𝜇 and �̂�𝜇 is

[�̂�𝜇, �̂�𝜇] = −2𝑖ℓ2𝑃 (2.8)
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From here follow the specified uncertainty relations (2.1)

∆𝑅𝜇∆𝑥𝜇 ≥ ℓ2𝑃

Substituting the values of 𝑅𝜇 = 2𝐺
𝑐3
𝑚𝑐𝑈𝜇 and ℓ2𝑃 = ~𝐺

𝑐3
and cutting right and left of

the same symbols, we obtain the Heisenberg uncertainty principle

∆𝑃𝜇∆𝑥𝜇 = ∆(𝑚𝑐𝑈𝜇)∆𝑥𝜇 ≥ ~
2

(2.9)

Note that now, according to the equation 𝑅𝜇 = (2𝐺/𝑐3)𝑃𝜇, together with the expres-
sions for the energy-momentum quantum 𝑃𝜇 = ~ 𝑘𝜇 valid expressions for the quantum
space-time curvature 𝑅𝜇 = ℓ2𝑃 𝑘𝜇 (but not quantum space-time), where 𝑘𝜇 - the wave
4-vector. That is, the curvature of space-time is quantized, but the quantization step is
extremely small. This can serve as a basis for building a quantum theory of gravity

In the particular case of a static spherically symmetric field and static distribution
of matter 𝑈0 = 1, 𝑈𝑖 = 0 (𝑖 = 1, 2, 3) and have remained

∆𝑅0∆𝑥0 = ∆𝑟𝑠∆𝑟 ≥ ℓ2𝑃 (2.10)

where 𝑟𝑠 is the Schwarzschild radius, 𝑟 is radial coordinate.
Last uncertainty relation (2.10) allows make us some estimates of the equations of

general relativity at the Planck scale. For example, the equation for the invariant interval
𝑑𝑆 in the Schwarzschild solution has the form

𝑑𝑆2 =
(︁

1 − 𝑟𝑠
𝑟

)︁
𝑐2𝑑𝑡2 − 𝑑𝑟2

1 − 𝑟𝑠/𝑟
− 𝑟2(𝑑Ω2 + sin2 Ω𝑑𝜙2) (2.11)

Substitute according to the uncertainty relations 𝑟𝑠 ≈ ℓ2𝑃/𝑟. We obtain

𝑑𝑆2 ≈
(︂

1 − ℓ2𝑃
𝑟2

)︂
𝑐2𝑑𝑡2 − 𝑑𝑟2

1 − ℓ2𝑃/𝑟
2
− 𝑟2(𝑑Ω2 + sin2 Ω𝑑𝜙2) (2.12)

It is seen that at the Planck scale 𝑟 = ℓ𝑃 spacetime metric is bounded below by the
Planck length, and on this scale, there are real and virtual Planckian black holes [5].

Similar estimates can be made in other equations of general relativity.
It is also seen that the spacetime metric 𝑔00 ≈ 1− ℓ2𝑃/(∆𝑟)2 is always fluctuates even

in the absence of an external gravitational field. This gives rise to the so-called quantum
foam, consisting of virtual Planckian black holes. But these fluctuations ∆𝑔 ≈ ℓ2𝑃/(∆𝑟)2

in the macrocosm and in the world of atoms are very small compared to 1 and become
noticeable only at the Planck scale. Fluctuations need to be considered when using the
Minkowski metric of special relativity for very small regions of space and large momenta.
For example, fluctuations in the speed of light is equal to the Planck scale ∆𝑐 = 𝑐∆𝑔 ≈
𝑐 ℓ2𝑃/(∆𝑟)2.

This implies that the Planck scale is the limit below which the very notions of space
and length cease to exist. Any attempt to investigate the possible existence of shorter
distances (less than 10−35m), by performing higher-energy collisions, would inevitably
result in black hole production. Higher-energy collisions, rather than splitting matter
into finer pieces, would simply produce bigger black holes [6]. Reduction of the Compton
wavelength of the particle increases the Schwarzschild radius. The resulting uncertainty
relation generates at the Planck scale virtual black holes.
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3 Summary

The paper shows that:

1. In the microcosm of the Planck length is the limit of distance.

2. Upon reaching the Planck scale appear Planck black holes.

3. At the Planck level vacuum consists of virtual Planckian black holes.

4. Length measurement is meaningless at the Planck scale

5. Three-dimensional space is a consequence of energy advantage in the formation of
the Planck black holes at the Planck scale.

6. The curvature of space-time is quantized. Space-time is not quantized.
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