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Quantum electrodynamics is the well-accepted theory. However, we feel it is useful 
to look at formalisms that provide alternative ways to describe light, because in the 
recent years the development of quantum field theories based primarily on the gauge 
principle has encountered considerable difficulties. There is a wide variety of gener-
alized theories, and they are characterized mainly by the introduction of additional 
parameters and/or longitudinal modes of electromagnetism. The Majorana-
Oppenheimer form of electrodynamics, the Sachs theory of Elementary Matter, the 
analysis of the action-at-a-distance concept, presented recently by Chubykalo and 
Smirnov-Rueda, and the analysis of the claimed ‘longitudinality’ of the antisymmet-
ric tensor field after quantization are reviewed in this essay. We also list recent ad-
vances in the Weinberg 2(2J + 1) formalism (which is built on First Principles) and 
in the Majorana theory of neutral particles. These may serve as starting points for 
constructing a quantum theory of light.  

Maxwell’s electromagnetic theory perfectly describes many observed phenomena. The accu-
racy of the predictions of quantum electrodynamics is without precedent [1]. These are widely 
accepted as the only tools for dealing with electromagnetic phenomena. Other modern field theo-
ries have been built on the basis of similar principles to treat weak, strong and gravitational interac-
tions. Nevertheless, many scientists have felt a certain dissatisfaction with both of these theories, 
almost since their inception, see, e.g., refs. [2] and refs. [4-6]. In the preface to the Dover edition of 
his book [7] A. Barut writes (1979): “Electrodynamics and the classical theory of fields remain 
very much alive and continue to be the source of inspiration for much of the modern research work 
in new physical theories.” And in the preface to the first edition he speaks of the shortcomings of 
modern quantum field theory. These are well known. Furthermore, in spite of great expectations in 
the sixties and seventies after the proposal of the Glashow-Salam-Weinberg model and quantum 
chromodynamics, attempts to formulate a unified field theory based on the gauge principle have 
run into serious difficulties. 

At the end of the nineties, we now have considerable experimental data at our disposal which 
are not satisfactorily explained on the basis of the standard model. First of all, we may single out 
the following: the LANL neutrino oscillation experiment; the atmospheric neutrino anomaly, the 
solar neutrino puzzle (all of the above-mentioned imply existence of the neutrino mass); the tensor 
coupling in decays of π–– and K+ mesons; the dark matter problem; the observed periodicity of the 
number distribution of galaxies, and the ‘spin crisis’ in QCD. Added to this are experiments and 



Page 70 APEIRON Vol. 5 Nr. 1-2, January-April 1998  

observations involving superluminal phenomena: negative mass-square neutrinos, tunnelling pho-
tons, X-shaped waves and superluminal expansion in quasars and galactic objects. 

In the meantime, since the time the Lorentz-Poincaré-Einstein Theory of Relativity [8] was 
proposed and the mathematical formalism of the Poincaré group [9] was introduced, many physi-
cists (including A. Einstein, W. Pauli and M. Sachs) have felt that in order to build a reliable theory 
(which would be based on relativistic ideas) one must utilize the irreducible representations of the 
underlying symmetry group—the Poincaré group of special relativity—and the Principle of Cau-
sality, i.e. it must be built from first principles. Considerable effort has been made recently in this 
direction [10-17]. Since the prediction and discovery of an additional phase-free variable, spin, 
which all observed fundamental particles have, finding its classical analogue and relating it to 
known fields and/or space-time structures (perhaps in higher dimensions) has been one of the chief 
tasks of physicists. Understanding the nature of mass, the parity violation effect on the kinematical 
level and the reasons for the different scales of different interactions has been on the list as well. 
We can now say that some progress has been achieved. At the end of this introductory part we note 
that although the Ultimate Theory has not yet been proposed, the recent papers of D. V. Ahluwalia, 
M. W. Evans*, E. Recami and several other works provide a sufficiently clear way to this goal. 

We deal first with the historical development and ideas that may prove useful in making further 
progress. 

E = 0 solutions. First of all, I would like to mention the problem of existence of ‘acausal’ solutions 
of relativistic wave equations of the first order. In ref. [10] and then in [11] the author, D. V. 
Ahluwalia, found that massless equations of the form† 
 J p p⋅ − =p o R1b g b gφ 0 , (1a) 

 J p p⋅ + =p o L1b g b gφ 0  (1b) 

have acausal dispersion relations, see Table 2 in [10]. In the case of the spin j = 1 this manifests in 
existence of the solution with the energy E = 0. Some time ago we learned that the same problem 
has been discussed by J. R. Oppenheimer [18], S. Weinberg [19b] and E. Gianetto [20c]. For in-
stance, Weinberg has indicated that 

“for j = 1
2  [the equations (1a,1b)] are the Weyl equations for the left− and 

right−handed neutrino fields, while for j = 1 they are just Maxwell’s free−space 
equations for left− and right−circularly polarized radiation:  

 ∇ × − + − =E B E Bi i
t

i
∂

∂
0 , (2a) 

 ∇ × + − + =E B E Bi i
t

i
∂
∂

0  (2b) 

The fact that these field equations are of first order for any spin seems to me to be 
of no great significance, since in the case of massive particles we can get along 

                                                                 
* Although I frequently disagree with Dr. M.W. Evans, his main idea is reasonable. 
† Here and below in this historical essay we try to keep the notation and the metric of original papers. 
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perfectly well with (2j+1)–component fields which satisfy only the Klein−Gordon 
equation.” 

This is obviously a remarkable and bold conclusion by this great physicist. 
Oppenheimer was also concerned with the E = 0 solution [p.729,730,733,735] [18] and he in-

dicated at its connection with the electrostatic solutions of Maxwell’s equations. “In the absence of 
charges there may be no such field.” At first sight this seems contradictory: free-space Maxwell’s 
equations do not contain ρe or ρm terms, the charge densities, but dispersion relations still tell us 
about the solution E = 0. He deals further with the matters of relativistic invariance of the matrix 
equation (p. 733) and suggests that the components of ψ  (φR,L in the notation of [10,11]) transform 
under pure Lorentz transformations like the space components of a covariant 4-vector. This in-
duces him to extend the matrices and the wave functions to include the fourth component. A simi-
lar formulation was developed by Majorana [20]. If so, it would be already difficult to consider φR,L 
as Helmoltz bivectors because they have different laws for pure Lorentz transformations. What 
does the 4-component function (and its space components) correspond to? Finally, he indicated (p. 
728) that cτ, the angular momentum matrices, and the corresponding density-flux vector may 
“play in some respects the part of the velocity”, with eigenvalues 0, ±c. Thus, in my opinion, the 
formula (5) of the paper [18] may have some relations with the discussion of the convection dis-
placement current in [3], see below. 

Finally, M. Moshinsky and A. Del Sol found a solution of similar nature in a two-body relativ-
istic problem [21]. Of course, it is connected with earlier considerations, e.g., with the problem of 
the relative time in the quasipotential approach. In order to try to understand the physical sense of 
the E = 0 solutions and the corresponding field components, let us consider other generalizations of 
the Maxwell formalism. 

The ‘baroque’ formalism. In this formalism, proposed in the fifties by K. Imaeda [22] and T. Oh-
mura [23], who intended to solve the problem of electron stability, additional scalar and pseudo-
scalar fields are introduced in Maxwell’s theory. Monopoles and magnetic currents are also present 
in this theory. The equations become the following:  

 r o t g r a dH
E

i− = −
∂
∂ x

e
o

, (3a) 

 r o t g r a dE
H

i+ = +
∂
∂ x

h
o

, (3b) 

 d i v E = +ρ
∂
∂

e

x o

, (3c) 

 d i v
h

x o

H = − +σ
∂
∂

. (3d) 

“Each of E and H is separated into two parts E(1) + E(2) and H(1) + H(2): one is the solution of 
the equations with j,σ, h zero, and other is the solution of the equations with i, ρ, e zero.” Further-
more, T. Ohmura indicated the existence of longitudinal photons in her model: “It will be interest-
ing to test experimentally whether the γ-ray keeps on its transverse property even in the high en-
ergy region as derived from the Maxwell theory or it does not as predicted from our hypothesis.” 



Page 72 APEIRON Vol. 5 Nr. 1-2, January-April 1998  

In fact, equations (3a)-(3d) can be written in matrix notation, which leads to the known Majorana-
Oppenheimer formalism for the (0,0) ⊕ (1,0) [or (0,0) ⊕ (0,1)] representation of the Poincaré group 
[20,18], see also [24]. In a form with the Majorana-Oppenheimer matrices  

 ρ ρ1 2

0 1 0 0

1 0 0 0

0 0 0

0 0 0

0 0 1 0

0 0 0

1 0 0 0

0 0 0

=

−

−

−

F

H

GGGG

I

K

JJJJ
=

−

−

−

F

H

GGGG

I

K

JJJJ
i

i

i

i

' ,  (4a) 

 ρ ρ3
4 4

0 0 0 1

0 0 0

0 0 0

1 0 0 0

=

−

−

−

F

H

GGGG

I

K

JJJJ
= ×

i

i
o, 1 , (4b) 

and ρ ρo o≡ , ρ ρi i≡ −  the equations without an explicit mass term are written  

 ρ ∂ ψ φµ
µc h a f a f1 1x x= , (5a) 

 ρ ∂ ψ φµ
µc h a f a f2 2x x= . (5b) 

The φi are the “quadrivectors” of the sources 

 φ
ρ σ

φ
ρ σ

1 2=
− +

−
F
HG

I
KJ =

+

− −
F
HG

I
KJ

i

i

i

ij i j i
,  (6) 

The field functions were considered to be 

 ψ ψ ψ ψµ µ µ µ
1 2

1 1

2 2

3 3

2 1

1 1

2 2

3 3

p C p

i E iB

E i

E iB

E iB

p C p

i E iB

E i

E iB

E iB

o o o o

c h c h
c h

c h c h
c h

= =

− +

+

+

+

F

H

GGGG

I

K

JJJJ
= =

− +

−

−

−

F

H

GGGG

I

K

JJJJ
* *,

Β Β
, (7) 

where Ε o h≡ − , B eo ≡  and 

 C C C C= =

−F

H

GGGG

I

K

JJJJ
=− −1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, *α αµ µ . (8) 

When sources are switched off the equations have relativistic dispersion relations E = ±|p| only. In 
ref. [20] zero-components of ψ  have been connected with π ∂ µ

µ
o A= , the zero-component of the 

canonically conjugate momentum to the field Aµ. H. E. Moses developed the Oppenheimer’s idea 
[18] that the longitudinal part of the electromagnetic field is connected somehow with the sources 
which created it [Eq.(5.21)] [25]. Moreover, it was mentioned in this work that even after the 
switchoff of the sources, the localized field can possess the longitudinal component (Example 2). 
Then, he made a convention which, in my opinion, is required to give more rigorous scientific 
basis: “…ψA is not suitable for a final field because it is not purely transverse. Hence we shall sub-
tract the part whose divergence is not zero.” 
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Finally, we should mention ref. [26]. The proposed formalism is connected with the formalism 
of the previously cited works (and with the massive Proca theory). Two of Maxwell’s equations 
remain unchanged, but one has additional terms in two other ones:  

 ∇ × − = −H
D

J A
∂
∂ µt o

1
2l , (9a) 

 ∇ ⋅ = −D ρ
ε o

Vl 2
, (9b) 

where l is of the dimensions length and is suggested by Lyttleton and Bondi to be of the order of 

the radius of the Universe. A and V are the vector and scalar potentials, which put back into two 
Maxwell’s equations for strengths. So, these additional terms contain information about possible 
effects of the photon mass. This was applied to explain the expansion of the Universe. The Watson 
generalization, also discussed in [26b], is based on the introduction of the additional gradient cur-
rent [as in Eqs. (3a, 3c)] and, in fact, repeats in essence the Majorana-Oppenheimer and Imaeda-
Ohmura formulations. On a scale much smaller than a radius of the Universe, both formulations 
were shown by Chambers to be equivalent. The difference obtained is of order l–2 at the most. In 

fact, both formulations were noted by Chambers to be able to describe local creation of the charge. 
The question of the integral conservation of the charge over the volume still deserves elaboration, 
the question of possibility to observe such a type of non-conservation as well. These questions may 
be connected with the boundary conditions on the sphere of the radius l. 

The theory of Elementary Matter. The formalism proposed by M. Sachs [27,28] is on the basis of 
the consideration of “spinorial” functions composed of 3-vector comp onents: 

 φ φ1
3

1 2
2

1 2

3

=
+

F
HG

I
KJ

−

−
F
HG

I
KJ

G

G iG

G iG

G
, , (10) 

where Gk = Hk + iEk (k = 1,2,3). 2-component functions of the currents are constructed in the fol-
lowing way: 

 ϒ = −
+

+
F
HG

I
KJ ϒ = −

−

−
F
HG

I
KJ1

3

1 2
2

1 2

3

4 4π
ρ

π
ρ

i
j

j i j
i

j i j

j
, . (11) 

The dynamical equation in this formalism reads 
 σ ∂ φµ

µ α α=ϒ . (12) 

… Eq. (12) is not equivalent to the less general form of Maxwell’s equations. That 
is to say the spinor equations (12) are not merely a rewriting of the vector form of 
the field equations, they are a true generalization in the sense of transcending the 
predictions of the older form while also agreeing with all of the correct predictions 
of the latter …Eq. (12) may be rewritten in the form of four conservation equations 
∂ φ σ φ φ φµ α

µ
β α β α β

† † †d i = ϒ +ϒ  [which] entails eight real conservation laws. 

For instance, these equations could serve as a basis for describing parity-violating interactions 
[27a], and can account for the spin-spin interaction as well from the beginning [27d,p.934]. The 
formalism was applied to explain several puzzles in neutrino physics. The connection with the 
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Pauli Exclusion Principle was revealed. The theory, when the interaction (‘matter field labeling’) is 
included, is essentially bi-local.‡ 

“What was discovered in this research program, applied to the particle-
antiparticle pair, was that an exact solution for the coupled field equations for the 
pair, in its rest frame, gives rise (from Noether’s theorem) to a prediction of null 
energy, momentum and angular momentum, when it is in this particular bound 
state.” [28] 

Later [28] this type of equations was written in the quaternion form with the continuous func-
tion µ λ= h c  identified with the inertial mass. Thus, an extension of the model to the general 

relativity case was proposed. Physical consequences of the theory are: a) the formalism predicts 
while small but non-zero masses and the infinite spectrum of neutrinos; b) the Planck spectral dis-
tribution of black body radiation follows; c) the hydrogen spectrum (including the Lamb shift) was 
deduced; d) bases for the charge quantization are proposed; e) the lifetime of the muon state was 
predicted; f) the electron-muon mass splitting was discussed, 

“…the difference in the mass eigenvalues of a doublet depends on the alteration of 
the geometry of space-time in the vicinity of excited pairs of the ‘physical vacuum’ 
[‘a degenerate gas of spin-zero objects,’ longitudinal and scalar photons, in fact! 
V. V. D.]—leading, in turn, to a dependence of the ratio of mass eigenvalues on 
the fine-structure constant”. 

That was impressive work and these are impressive results! 

Quantum mechanics of phase. A. Staruszkiewicz [29,30] considers the Lagrangian and the action 
of a potential formulation for the electromagnetic field, which include a longitudinal part: 

 S x F F A
e

S= − + + ∂ ∂F
HG

I
KJ

RS|
T|

UV|
W|z1

1 6
2

1
2

π
γ ∂µν

µν µ
µ µ

µd 4 . (13) 

S is a scalar field called the phase. As a matter of fact, this formulation was shown to be a devel-
opment of the Dirac-Fock-Podol’sky model in which the current is a gradient of some scalar field 
[31]: 
 4π ∂ν νj F= − . (14) 

The modified Maxwell’s equations are written:  
 ∂ ∂ ∂λ µν µ νλ ν λµF F F+ + = 0 , (15a) 

 ∂ ∂µ
µν νF F+ = 0 . (15b) 

Again we see a gradient current and, therefore, the Dirac-Fock-Podol’sky model is a simplified 
version (apparently without monopoles) of the more general Majorana-Oppenheimer theory. St a-
ruszkiewicz posed the following questions [30], see also [23b] and [32]: “Is it possible to have a 
system, whose motion is determined completely by the charge conservation law alone? Is it possi-
ble to have a pure charge not attached to a nonelectromagnetic piece of matter?” and answering 
came to the conclusion “that the Maxwell electrodynamics of a gradient current is a closed dy-

                                                                 
‡ The hypothesis of the non-local nature of charge seems to have been first proposed by J. Frenkel. 
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namical system.” The interpretation of a scalar field as a phase of the expansion motion of a charge 
under repulsive electromagnetic forces was proposed. “They [the Dirac-Fock-Podol’sky equations] 
describe a charge let loose by removal of the Poincaré stresses.” The phase was then related with 
the vector potential by means of [30e,p.902] 
 S x e A x y j y y j y ya f b g b g b g b ga f= − − ∂ = ∂z µ

µ
µ

µd 4 , 4 . (16) 

Formula (16) is reminiscent to the Barut self-field electrodynamics [33]. This should be investi-
gated by taking the 4-divergence of Barut’s anzatz. 

Next, the operator of a number of zero-frequency photons was studied. The total charge of the 
system, found on the basis of the Noether theorem, was connected with the change of the phase 
between the positive and the negative time-like infinity: Q S Se= − +∞ − −∞4π a f a f . It was shown 

that eiS, having a Bose-Einstein statistics, can serve itself as a creation operator: 
Q e Q e e eiS iS iS0 0 0= = −, . Questions of fixing the factor γ by appropriate physical condi-

tions were also answered. Finally, the Coulomb field was decomposed into irreducible unitary 
representations of the proper orthochronous Lorentz group [34]. Both representations of the main 
series and the supplementary series were regarded. In my opinion, this research can help to under-
stand the nature of the charge and of the fine structure constant. 

Invariant evolution parameter. The theory of electromagnetic field with an invariant evolution 
parameter (τ , the Newtonian time) has been worked out by L. P. Horwitz [35-37]. It is a develop-
ment of the Stueckelberg formalism [38] and I consider this theory as an important step to under-
standing the nature of our space-time. The Stueckelberg equation 

 i
x

K x
∂

∂
=

ψ
τ

ψτ
τ

a f a f  (17) 

is deduced on the basis of his worldline classical relativistic mechanics with following setting up 
the covariant commutation relations x p igµ ν µν, = . Remarkably, he proposed a classical ana-

logue of antiparticle (which, in fact, has been later used by R. Feynman) and of annihilation proc-
esses. As noted by Horwitz if one insists on the U(1) gauge invariance of the theory based on the 
Stueckelberg-Schrödinger equation (17) one arrives at the 5-potential electrodynamics 
( i i e o∂ → ∂ +τ τ α 5 ) where the equations, which are deduced by means of the variational principle, 

read 
 ∂ =β

αβ αf j , (18) 

(α, β = 1… 5), with an additional fifth component of the conserved current ρ = |ψτ (x)|2. The un-
derlying symmetry of the theory can be O(3,2) or O(4,1) “depending on the choice of metric for 
the raising and lowering of the fifth (τ) index [35]”. For Minkowski-space components the equa-
tion (18) is reduced to ∂ + ∂ =ν

µν
τ

µ µf f j5 . The Maxwell theory is recovered after integrating 

over τ from –∞ to ∞, with appropriate asymptotic conditions. The formalism has been applied 
mainly in the study of the many-body problem and in the measurement theory, namely, bound 
states (the hydrogen atom), the scattering problem, the calculation of the selection rules and ampli-
tudes for radiative decays, a covariant Zeeman effect, the Landau-Peierls inequality. Two crucial 
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experiments which may check validity and may distinguish the theory from ordinary approaches 
have also been proposed [p.15] [37]. 

Furthermore, one should mention that in the framework of the special relativity version of the 
Feynman-Dyson proof of the Maxwell’s equations [39] S. Tanimura came to rather unexpected 
conclusions [40] which are related with the formulation defended by L. Horwitz. Trying to prove 
the Maxwell’s formalism S. Tanimura arrived at the conclusion about a theoretical possibility of its 
generalization. According to his consideration the 4-force acting on the particle in the electromag-
netic field must be expressed in terms of 
 F x x G x F x xµ µ µ

ν
ν, & &a f a f a f= + , (19) 

where the symbol <…> refers to the Weyl-ordering prescription. The fields G xµ a f , F xµ
ν a f  

satisfy§ 
 ∂ − ∂ =µ ν ν µG G 0 , (20a) 

 ∂ + ∂ + ∂ =µ νρ ν ρµ ρ µνF F F 0 . (20b) 

This implies that apart from the 4-vector potential F A Aµν µ µ ν µ= ∂ − ∂  there exists a scalar field 

φ(x) such that Gµ = ∂µφ. One may try to compare this result with the fact of existence of additional 
scalar field components in the Majorana-Oppenheimer formulation of electrodynamics and with 
the Stueckelberg-Horwitz theory. The latter has been done by Prof. Horwitz himself [35c] by the 
identification Fµ5 = –F5µ = Gµ and the explicit demonstration that for the off-shell theory the Tani-
mura’s equations reduce to  
 ∂ + ∂ + ∂ =µ νρ ν ρσ ρ µνF F F 0 , (21a) 

 ∂ − ∂ +
∂

∂
=µ ν ν µ

µν

τ
G G

F
0 , (21b) 

 m x G x F x x&& , , &µ µ µν
ντ τ= +a f a f . (21c) 

Finally, among theories with additional parameters one should mention the quantum field 
model built in the de Sitter momentum space p p p p p M5

2
4
2

3
2

2
2

1
2 2− − − − = , ref. [41]. The pa-

rameter M is considered as a new physical constant, the fundamental mass. In a configurational 
space defined on the basis of the Shapiro transformations the equations become the finite-
difference equations thus leading to the lattice structure of the space. In the low-energy limit 
( M → ∞ ) the theory is equivalent to the standard one. 

Action-at-a-distance. In the paper [42] A. E. Chubykalo and R. Smirnov-Rueda argued on the ba-
sis of the analysis of the Cauchy problem of the D’Alembert and Poisson equations that one should 
revive the concept of the instantaneous action-at-a-distance in classical electrodynamics. The es-
sential feature of the formalism is in introduction of two types of field functions, with the explicit 
and implicit dependencies on time. The energy of longitudinal modes in this formulation cannot be 
stored locally in the space, the spread velocity may be whatever and so, they believe, that one has 
also E = 0. The new convection displacement current was proposed in [3] on the basis of the de-
velopment of this wisdom. It has a form j d i sp = − ⋅∇1

4π v Ea f . This is a resurrection of the Hertz’ 

                                                                 
§ One may wish to repeat the Tanimura proof for dual fields and obtain some additional equations. 
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ideas (later these ideas have been defended by T. E. Phipps, Jr.) to replace the partial derivative by 
the total derivative in the Maxwell’s equations. In my opinion, one can also reveal some connec-
tions with the Majorana-Oppenheimer formulation following to the analysis of ref. [p.728] [18]. 

F. Belinfante [43a] appears to come even earlier to the Sachs’ idea about the “physical vac-
uum” as pairs of some particles from a very different viewpoint. In his formulation of the quan-
tum-electrodynamic perturbation theory zero-order approximation is determined in which scalar 
and longitudinal photons are present in pairs. He also considered [43b] the Coulomb problem in 
the frameworks of the quantum electrodynamics and proved that the signal can be transmitted with 
the velocity greater than c. So, this old work appears to be in accordance with recent experimental 
data (particularly, with the claims of G. Nimtz et al. [44] about a wave packet propagating faster 
than c through a barrier, which was used “to transmit Mozart’s Symphony No. 40 through a tunnel 
of 114 mm length at a speed of 4.7c”). As indicated by E. Recami in a private communication the 
E = 0 solutions can be put in correspondence to a tachyon of the infinite velocity. 
Evans-Vigier B(3) field. In a recent series of remarkable papers (in FPL, FP, Physica A and B, 
Nuovo Cimento B) and books M. Evans and J.-P. Vigier have indicated the possibility of consid-
eration of the longitudinal B(3) field for describing many electromagnetic phenomena and in cos-
mological models as well [12]. It is connected with transverse modes  

 B i j1
0

2

a f
a f

b g= +
B

i e i φ , (22a) 

 B i j2
0

2

a f
a f

b g= − + −B
i e i φ , (22b) 

φ ω= − ⋅t k r , by means of the cyclic relations  

 B B B1 2 0 3a f a f a f a f× = iB * , (23a) 
 B B B2 3 0 1a f a f a f a f× = iB * , (23b) 
 B B B3 1 0 2a f a f a f a f× = iB * . (23c) 

The indices (1), (2), (3) denote vectors connected by the relations of the circular basis and, 
thus, the longitudinal field B(3) presents itself a third component of the 3-vector in some isovector 
space. “The conventional O(2) gauge geometry is replaced by a non-Abelian O(3) gauge geometry 
and the Maxwell equations are thereby generalized” in this approach. Furthermore, some success 
in the problem of the unification of gravitation and electromagnetism has been achieved in recent 
papers by M. Evans [45]. It has been pointed out by several authors, e.g.,[13,46] that this field is 
the simplest and most natural (classical) representation of a particles spin, the additional phase-free 
discrete variable discussed by Wigner [9]. The consideration by Y. S. Kim et al., see ref. 
[47a,formula (14)], ensures that the problem of physical significance of the Evans-Vigier-type 
longitudinal modes is related with the problem of the normalization and of existence of the mass of 
a particle transformed on the (1,0) ⊕ (0,1) representation of the Poincaré group. Considering ex-
plicit forms of the (1,0) ⊕ (0,1) “bispinors” in the light-front formulation [49] of the quantum field 
theory of this representation (the Weinberg-Soper formalism) D. V. Ahluwalia and M. Sawicki 
[15a] showed that in the massless limit one has only two non-vanishing Dirac-like solutions. The 
“bispinor” corresponding to the longitudinal solution is directly proportional to the mass of the 
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particle. So, the massless limit of this theory, the relevance of the E(2) group to describing physical 
phenomena and the problem of what is mass deserve further research. 

The idea of longitudinal modes related with the electromagnetic field is not so new as it ap-
pears at the present time. E. T. Whittaker in the beginning of the century [48] considered the gen-
eral solution of the D’Alembert wave equation and concluded that “the functions which define the 
resulting electrodynamic field … can be expressed in terms of the derivatives of two scalar poten-
tial functions”. The direction of corresponding vectors may be chosen in such a way that they are 
aligned themselves. The physically observable fields are then  

 d f g= c u r l c u r l + c u r l
1

c
& , (24a) 

 h f g= −c u r l
1

c u r l c u r l
c

& , (24b) 

where d and h are the electric and magnetic vectors. The field created by arbitrary moving elec-
trons also can be expressed in the terms of f and g. In modern language, these “longitudinal” func-
tions f and g (with magnitudes |f| = F, |g| = G) may be related to the Hertz potentials Hµν ,** 
 Fµν µ

λ
λν ν

λ
λµ= ∂ ∂ − ∂ ∂H H . (25) 

Reducing the Whittaker’s general solution to the plane wave (which are in overall use) is straight-
forward from his formulation. 

Antisymmetric tensor fields. To the best of my knowledge, modern research into antisy mmetric 
tensor fields in the quantum theory began from the paper by V. I. Ogievetskii and I. V. Polubari-
nov [50]. They claimed that the antisymmetric tensor field (notoph in the terminology used, which 
I find quite suitable) can be “longitudinal” in the quantum theory, owing to the new gauge invari-
ance 
 F Fµν µν µ ν ν µ→ + ∂ − ∂Λ Λ  (26) 

and applications of the supplementary conditions. The result by Ogievetskii and Polubarinov has 
been repeated by K. Hayashi [51], M. Kalb and P. Ramond [52] and T. E. Clark et al. [53]. The 
Lagrangian ( F i Fk k jmn jm n= ε , ) 

 LH
k kF F F F F F= = − ∂ ∂ + ∂ ∂

1

8

1

4

1

2
µ να µ να µ να ν µαc hc h c hc h  (27) 

after the application of the Fermi method mutatis mutandis (comparing with the case of the 4-
vector potential field) yields the spin dynamical invariant to be equal to zero. While several authors 
insisted on the “transversality” of the antisymmetric tensor field and the necessity of gauge-
independent consideration [54-56] perpetually this interpretation (‘longitudinality’) has become 
wide-accepted. In refs. [57,58] an antisymmetric tensor matter field was studied and it appears to 
be also “longitudinal”, but to have two degrees of freedom. Unfortunately, the authors of the cited 
work regarded only a massless real field and did not take into account the physical reality of the 
dual field corresponding to an antiparticle. But, what is important, L. Avdeev and M. Chizhov 

                                                                 
** Compare this formula with the dynamical equations of the antisymmetric tensor field, e.g., ref.[46,60]. It induces 

speculations about possible significance of the normalization of the corresponding functions of the momentum 
representation. 
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noted [58] that in such a framework there exist ′δ -type transverse solutions, which cannot be in-
terpreted as relativistic particles. 

If the antisymmetric tensor field would be pure longitudinal, it appears failure to understand, 
why in the classical electromagnetism we are convinced that an antisymmetric tensor field is a 
transverse field. This induces speculations about the incorrectness of the Correspondence Principle. 
Moreover, this result contradicts with the Weinberg theorem B – A = λ, ref. [19b]. This situation 
has been later analyzed in refs. [59,13,60,46,61] and it was found that indeed the “longitudinal 
nature” of antisymmetric tensor fields is connected with the application of the generalized Lorentz 
condition to the quantum states: ∂µFµν|Ψ> = 0. Such a procedure leads also (like in the case of the 
treatment of the 4-vector potential field without proper regarding the phase field) to the problem of 
the indefinite metric which was noted by Gupta and Bleuler. So, it is already obviously from 
methodological viewpoints that the grounds for regarding only particular cases can be doubted by 
the Lorentz symmetry principles. Ignoring the phase field of Dirac-Fock-Podol’sky-Staruszkiewicz 
or ignoring χ functions [62] related with the 4-current and, hence, with the possible non-zero vac-
uum value of ∂µFµν can put obstacles on the way of creation of the unified field theory and embar-
rass understanding the physical content dictated by the Relativity Theory. This is my opinion. 

The Weinberg formalism. In the beginning of the sixties the 2(2j+1)- component approach has 
been proposed in order to construct a Lorentz-invariant interaction S-matrix from the first princi-
ples [63,64,19,65-68]. The authors had thus some hopes on adequate perturbation calculus for 
processes including higher-spin particles which appeared in the disposition of physicists in that 
time. The field theory in that time was in some troubles. 

The Weinberg anzatzen for the (j,0) ⊕€(0,j) field theory are simple and obvious 
[19a,p.B1318]: a) relativistic invariance 
 U a x U a D x an n m m

m

Λ Λ Λ Λ, ,ψ ψa f a f− −= +∑1 1 , (28) 

where D m n Λ  is the corresponding representation of Λ. b) causality 

 ψ ψn mx ya f b g,
±

= 0  (29) 

for (x – y) spacelike, which garantees the commutator of the Hamiltonian density  [H(x), H(y)] = 0, 
provided that  H(x) contains an even number of fermion field factors. The interaction Hamiltonian  
H(x) is constructed out of the creation and annihilation operators for the free particles described by 
some Ho, the free-particle part of the Hamiltonian. The (j,0) ⊕ (0,j) field 

 ψ
ϕ
χ

x
x

x
a f a f

a f=
F
HG

I
KJ  (30) 

transforms according to (28), where 

 D
D

D
D D D Dj

j

j

j j j jb g b g
b g

b g b g b g b gΛ
Λ

Λ
Λ Λ Λ Λ=

F
HG

I
KJ = =− −0

0

1 1, ,
† † β β , (31) 

with 

 β =
F
HG

I
KJ

0

0

1

1
, (32) 
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and, hence, for pure Lorentz transformations (boosts)  

 D Lj jb g b gb g e jp p J= − ⋅e x p $ θ , (33a) 

 D Lj jb g b gb g e jp p J= + ⋅e x p $ θ , (33b) 

with s i n h θ ≡ p m . Dynamical equations, which Weinberg proposed, are (Eqs. (7.17) and (7.18) 

of the first paper [19]):  
 Π − ∂ =i x m xjb g a f a fϕ χ2 , (34a) 

 Π − ∂ =i x m xjb g a f a fχ ϕ2 . (34b) 

These are rewritten into the form (Eq. (7.19) of [19a]) 
 γ ψµ µ µ

µ µ µ
1 2 2

1 2 2

2 0… …j

j
m xj∂ ∂ ∂ + =a f , (35) 

with the Barut-Muzinich-Williams matrices [63] 

 γ µ µ µ
µ µ µ

µ µ µ
1 2 2

1 2 2

1 2 2

2 0

0

…
…

…
j

j

j

i
t

t
j= −
F
HG

I
KJ . (36) 

The following notation was used 

 Π ′ ′≡ −σ σ σ σ
µ µ µ

µ µ µ
j j

q t q qj

j

b g b g a f1
2 1 2 2

1 2 2

… … , (37) 

 Π Π Π′ ′
−≡ − =σ σ σ σ

µ µ µ
µ µ µ

j j j jq t q q q q C Cj

j

b g b g b gb g a f b g1
2 11 2 2

1 2 2

… … , * , (38) 

with C being the matrix of the charge conjugation in the 2j + 1- dimension representation (cf. [14]). 
The tensor t is defined in a following manner: 

• t j

′σ σ
µ µ µ1 2 2…   is a 2j + 1 matrix with σ, σ' = + − −j j j j, , . ; ,1 1 2 2… …µ µ µ  = 0, 1, 2, 3; 

• t is symmetric in all µ’s; 

• t is traceless in all µ’s, i.e., g t j

µ µ σ σ
µ µ µ

1 2
1 2 2

′
…  and with all permutations of upper indices; 

• t is a tensor under Lorentz transformations,  

 D t D tj jj

j

j jb g b gΛ Λ Λ Λµ µ µ
ν
µ

ν
µ ν ν ν1 2 2

1

1

2

2 1 2 2… ……† = , (39a) 

 D t D tj jj

j

j jb g b gΛ Λ Λ Λµ µ µ
ν
µ

ν
µ ν ν ν1 2 2

1

1

2

2 1 2 2… ……† =  (39b). 

For instance, in the j = 1 case t00 = 1, t0i = ti0 = Ji and tij = {Ji, Jj} – δij, with Ji being the j = 1 
spin matrices and the metric gµν = diag (–1,1,1,1) being used. Furthermore, for this representa-
tion 

 t tj jµ µ µ µ µ µ1 2 2 1 2 2… …= ± , (40) 
the sign being +1 or –1 according to whether the µ’s contain altogether an even or an odd 
number of space-like indices. 
The Feynman diagram technique has been built and some properties with respect to discrete 

symmetry operations have been studied. The propagator used in the Feynman diagram technique is 
found not to be the propagator arising from the Wick theorem because of extra terms proportional 
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to equal-time δ functions and their derivatives appearing if one uses the time-ordering product of 
field operators T x yψ ψα βa f b gn s

0
. The covariant propagator is defined  

 S x y im M i

x y ip x y

y x ip y x

m M i x y

j

j C

αβ αβ

αβ

π ω

θ

θ− = − ∂
− ⋅ − +

+ − ⋅ −

L
N
MM

O
Q
PP

= − − ∂ −

− −

−
zb g a f b g b g

b g b gn s
b g b gn s
b g b g

2 2
3 2

3

2

d p

p

e x p

e x p

∆

, (41) 

where 

 M p
m p

p m

j

jb g b g
b g=

F
HG

I
KJ

2

2

Π

Π
, (42) 

and ∆C(x) is the covariant j = 0 propagator. 
For massless particles the Weinberg theorem about connections between the helicity of a parti-

cle and the representation of the group (A,B) which the corresponding field transforms on has been 
proved. It says: 

“A massless particle operator a(p, λ) of helicity λ can only be used to construct 
fields which transform according to representations (A, B), such that B – A = λ. 
For instance, a left-circularly polarized photon with λ = –1 can be associated with 
(1,0), ( 3

2 ,½), (2,1)… fields, but not with the vector potential, (½,½)… [It is not the 
case of a massive particle.] A field can be constructed out of 2j + 1 operators a(p, 
σ) for any representation (A, B) that “contains” j, such that j = A + B, or A + B –
 1… or |A – B|, [e.g., a j = 1 particle massive] field could be a four-vector 
(½,½)…[i.e., built out of the vector potential ].” 

In subsequent papers Weinberg showed that it is possible to construct fields transformed on 
other representations of the Lorentz group but unlikely can be considered as fundamental ones. 
The prescription for constructing the fields have been given in ref. [19c,p.1895]. 

“Any irreducible field ψ(A,B) for a particle of spin j may be constructed by applying 
a suitable differential operator of order 2B to the field ψ(j,0), provided that A, B, 
and j satisfy the triangle inequality |A – B | � j � A + B.” 

For example, from the self-dual antisymmetric tensor Fµν the (½,½) field ∂µFµν, the (0,1) field 
εµνλρ∂λ∂σFρσ have been constructed. Moreover, various invariant-type interactions have been tabu-
lated [19b,p.B890] and [19c,Section III]. While one can also use fields from different representa-
tions of the Lorentz group to obtain some physical predictions, in my opinion, such a wisdom 
could lead us to certain mathematical inconsistencies (like the indefinite metric problem and the 
subtraction of infinities [4]). The applicability of the procedure mentioned above to massless states 
should still be analyzed in detail. 

Finally, in another paper [66c] Weinberg wrote: 

“Tensor fields cannot by themselves be used to construct the interaction H'(t)… 
The potentials are not tensor fields… It is for this reason that some field theorists 
have been led to introduce fictitious photons and gravitons of helicity other than 
±j, as well as the indefinite metric that must accompany them. Preferring to avoid 
such unphysical monstrosities, we must ask now what sort of coupling we can give 
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our nontensor potentials without losing the Lorentz invariance of the S matrix?… 
Those in which the potential is coupled to a conserved current.” 

Thus, he tried to provide some basis to the gauge models from the Lorentz invariance. In the recent 
book [69] he slightly changed his views:  

“Interactions in such a theory [constructed from fµν and its derivatives] will have a 
rapid fall-off at large distances, faster than the usual inverse-square law. This is 
perfectly possible, but… theories that use vector fields for massless spin one parti-
cles represent a more general class of theories…” 

My opinion is: all reliable theories must have well-defined massless limit and be in accordance 
with the Weinberg theorem. While many recipes were developed to handle with interactions medi-
ated by virtual particles described by the 4-vector potential, the questions, which theories “are ac-
tually realized in nature” and which is the more general theory, remain to be opened. 

We have reached this conclusion on the basis of our development of the Weinberg theory 
[19,66] and its reformulation by A. Sankaranarayanan [70];†† of the Majorana concept of the neu-
trality [71] and its reformulation by J. A. McLennan and K. M. Case [72]; and after reading the 
important work of B. Nigam and L. Foldy [73] and useful suggestions of the referee [11] of the 
work [14b]. Here we are not going to discuss our recent work in detail and only list some impor-
tant results: 

• It was proposed another equation in the (1,0) ⊕ (0,1) representation space [70]: 

 γ ψµν µ νp p
i t

E
m+

∂ ∂L
N
MM

O
Q
PP

=
b g

2 0 . (43) 

 In such a framework a boson and its antiboson have opposite intrinsic parities [14]. The con-
clusion was also reached in the Fock space. The essential feature in deriving the equation (ref. 
[70]) in ref. [14] was the Ryder-Burgard relation in the form φR = ±φL. The presented theory 
[14b] is the first explicit example of the theory of the Bargmann-Wightman-Wigner type [9b]. 

• The concept of the complex (1,0) ⊕ (0,1) fields as parts of the degenerate doublet was proposed 
(ref. [60] and private communication from D. V. Ahluwalia). The representation is spanned by 
the two six-component functions in the coordinate space (e.g., ψ1 and γ5ψ1, or Fµν and ~

F µν ). 
The mapping between the antisymmetric tensor and Weinberg formulations has been found. 
Properties of the field functions with respect to P ≡ γ44 operation have been studied. The dy-
namical invariants for the Weinberg field [60] and for the antisymmetric tensor field [46] have 
been obtained. 

• The boson-boson interaction amplitude appears to be very similar [74] to the fermion-fermion 
amplitude in the second order of the Feynman perturbation theory if one works in the Lo-
bachevsky momentum space. The only difference is that the denominator in the former has to 
be changed: 1 1 22

r
∆ ∆→ −m moa f . The spin structure of the numerator remains to be un-

                                                                 
†† Unfortunately , the author of the cited work did not realized in 1965 himself that his equation describes part icles 

with different physical properties compared with the initial Weinberg formulation. 
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changed. ( ∆ ∆o ,
r

) is the 4-vector of the momentum transfer in the Lobachevsky space, see, 
e.g., ref. [75]. 

• The Majorana-Oppenheimer formulation [see equations (5a,b)] has been generalized to the 
massive field case [76] by using some ideas of the paper [77]. 

• The relativistic covariance of the B- cyclic relations has been proven [78]. 

• In the (½,0) ⊕ (0,½) representation space the self/anti-self charge conjugate spinors λS,A(pµ) 
[and related to them ρS,A(pµ)spinors] have been introduced [16]. One can note interesting fea-
tures of these spinors: they are not eigenspinors of the parity operator; they are not eigenspinors 
of the helicity operator h of the (½,0) ⊕ (0,½) representation (but, the new operator –γ5h of the 
chiral helicity was introduced); for massless particles λA

S A,  identically vanish; they form bi-

orthonormal set in the mathematical sense (see formula (41) in [16]). In the (1,0) ⊕ (0,1) repre-
sentation it is impossible to construct self/anti-self charge conjugate objects in the similar way. 
But, the eigenvectors of the Γ5 1S c  operator have been introduced there [16]. 

• The Majorana representation (MR) and the corresponding unitary matrix ψM = UψW  of the 
transfer to the MR have been defined [79]. In this representation λS and ρA keep to be pure real 
and λA and ρS keep to be pure imaginary for both spin-½ and spin-1 case (cf. [71]). 

• On the basis of the generalization of the Ryder-Burgard relation (see the formula (11) in [17b]) 
the dynamical equations in the covariant form have been derived in both the (½,0) ⊕ (0,½) and 
(1,0) ⊕ (0,1) representation spaces [17]. The explicit form of these “MAD” equations in the 
j = ½ case is  

 i x m x i x m xS A A Sγ λ ρ γ ρ λµ
µ

µ
µ∂ − = ∂ − =a f a f a f a f0 0, , (44a) 

 i x m x i x m xA S S Aγ λ ρ γ ρ λµ
µ

µ
µ∂ + = ∂ + =a f a f a f a f0 0, . (44b) 

 A fermion and its antifermion appear to be able to carry the same intrinsic parities [80] in the 
framework of the similar construction in the Fock space. So, the Bargmann-Wightman-
Wigner-type quantum field theory [9b] can be realized in the (½,0) ⊕ (0,½) representation 
space too. 

• Gauge transformations for the λS,A and ρS,A spinors take the form, ref. [17b]  
 ′ → −λ α γ α λc o s s ini x5c h a f , (45a) 

 ′ → +ρ α γ α ρc o s s ini x5c h a f . (45b) 

Thus, we have automatically parity-violating currents. 

• It is interesting to note that oscillations such as λ λη η−
A S t Eta f b g~ sin 2 h  are possible. This 

induces a lot of speculations on the foundations of quantum mechanics. 

• Constructs presented in refs. [81,82] seem to have similar physical content comparing with the 
Majorana-Ahluwalia construct. The authors of [82] also proposed the doubling of the Fock 
space; investigated field functions which are not the eigenvectors of the parity operator, while 
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are the eigenvectors of the operator of charge conjugation (defined in a different way). They 
also regarded the pseudoscalar charge. At last, they argued that “The usual ‘CP-mirror’ sy m-
metry of the weak interaction should quite generally be re-interpretable as a pure P-mirror one. 
The result is that now the P-mirror image of the actual process n p e→ + + ν  should just be 
identified with the actual antiprocess n p e→ + +ν . 

• Finally, in the papers [83] it was shown that the solutions of the Maxwell equations and the 
Klein-Gordon equation (and presumably other relativistic equations) are not necessarily re-
quired to be plane waves. 
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