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Parallel line segments are the basic graphical foundation for geometrical field theories such as General Rel-
ativity. Although the concept of parallel and curved lines have been well researched for over a century as a
description of gravity, certain controversial issues have persisted, namely point singularities (Black Holes) and
the physical interpretation of a scalar multiple of the metric Λgµν , commonly known as a Cosmological Con-
stant. We introduce a graphical and notational analysis system which we will refer to as Integral Geometry.
Through variational analysis of perpendicular line segments we derive equations that ultimately result from the
changes in the area bounded by them. Based upon changing area bounded by relative and absolute line segments
we attempt to prove the following hypothesis: General Relativity cannot be derived from Integral Geometry. We
submit that examination of the notational differences between GR and IG in order to accept the hypothesis could
lead to evidence that the inability to merge General Relativity and Quantum Physics may be due to notational
and conceptual flaws concerning area inherent in the equations describing them.

I. INTRODUCTION

In this work, we introduce the concept of Integral Geometry
(IG). This concept is an examination of relative and absolute
areas, the resulting equations from their summations and dif-
ferences and finally, physical modeling of differential absolute
and relative areas based on perfect fluids and spatial and tem-
poral probabilities. We have found that absolute areas seem to
be suitable for building absolute coordinate systems for which
we can track particles and that relative areas are suitable for
tracking relative waves through a perfect fluid.

In order to facilitate appreciation of some of the possibil-
ities of IG, it is necessary to understand the similarities and
differences with current physical laws and equations. So as
to keep this as simple and compact as possible, we focus on
understanding the similarities of the Cosmological Constant
(CC or Λ) problem and that of constant relative area within
Integral Geometry.

The CC from General Relativity (GR) has several differ-
ent names: a Cosmological Constant, a scalar multiple of the
metric, an Einstein manifold and a postulated energy density
of the vacuum. The “problem” [1] stems from the fact that
although this constant seems to be present both in quantum
mechanics (QM) and GR, the estimated value within QM is
over 100 orders of magnitude different than what would seem
to work within GR from examination of the actual empirical
evidence.

This problem is also illustrated by a central equation within
metric field theories where the effect that a metric gµν has on
space-time dxµdxν is described by [2]

ds2 = gµνdxµdxν . (1)

The view within these field theories is that a metric changing
from point to point can describe a non-Euclidean ”curvature”
of space-time. The Einstein field equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2)
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would then be a description of how energy ρ and momentum
p (within Tµν) effect gµν . If there is no momentum or energy
present, then the equation

Rµν = 0 (3)

would describe zero curvature and a summation of the un-
changed components of gµν would each have a magnitude of
|1| and be written as

R = 4. (4)

There has been, however, the conceptual discrepancy of the
CC which would would have summed components of

R = 4Λ. (5)

This is normally just added into the Einstein field equation as

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν (6)

but we stress that there is no known way to calculate a the-
oretical value for Λ that would match any proposed physical
explanation. As an example, what would ds2 = Λgµνdxµdxν
mean?

For comparison purposes, we derive here a conceptual
framework within IG which we have named Line Segment
Space (LSS). During our preliminary research we have devel-
oped the equation in LSS of

Sv
dSv

dSvdSh = SvdSh. (7)

If we investigate defining the first fraction as

Sµ
dSµ

≡ gµν , µ = v, ν = h (8)

we then examine why we can find LSS solutions for which

|S00|+ |S11|+ |S22|+ |S33| = 0 (9)

and

(dSµ)2

(dSν)2
= 0 (10)
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but no metric solutions for

R = 0 (11)

and

Rµν = 0. (12)

We propose that this investigation may unveil serious ques-
tions of whether not only metric field theory is conceptually
valid but Euclidean and non-Euclidean geometry itself. For
example, if Sh = f(Sv), can we use this geometric model
also as a physical model where relative changes in X and T
are functions of relative changes in the density ρ and pressure
p of the vacuum when treated as a perfect fluid?

II. DERIVATION

We keep the derivation of this hypothesis simple and non-
robust so as to require consideration of the widest range of in-
terpretations to verify the following hypothesis: General Rel-
ativity cannot be derived from Integral Geometry.

IG contains three separate conceptual regions: Graphical,
Notational and Physical. We demonstrate on how to examine
a single concept as it evolves through all three regions.

A. Graphical

Visual examination of graphical proofs.

FIG. 1. Summation of two areas on left equal single area in middle

B. Notational

Notational descriptions of graphical proofs.

S1
vS

1
h + S2

vS
2
h = Stotal (13)

Stotal − S1
vS

1
h + S2

vS
2
h = 0 (14)

In IG, there are two basic notational forms, line segment
notation and point notation. S is a single descriptor of a line
segment. A1−A2 is a point descriptor of a line segment, such
that S = A1 − A2. This distinction will become important
in the later discussion of the notation within various historical
metric field theories.
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FIG. 2. Summation of two areas on left equal single area in middle

C. Physical

Let us consider the issue of equating notational descriptions
to physical models. Current physics cannot find a workable
relationship between the Poisson equation describing energy
and the Cosmological Constant as the energy density of the
vacuum. Through attempts at falsifying our hypothesis, we
propose to examine whether this difficulty is due to a nota-
tional system within GR that inherently accounts only for par-
allel and curved lines instead of a more appropriate view of
changing relative area.

∇2φ = ρ (15)

Λgµν
?
= ρvac (16)

III. GEOMETRIC SUMMATION OF AREA

A. Quantities of Area Can Be Summed

”Chunks” of area can be summed.∑
Snv S

n
h = S1

vS
1
h + S2

vS
2
h + Smv S

m
h (17)

B. Defining Integration as Summation of Infinitesimal areas
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v
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Sv

S
h

Sv

S
h

Sv

dS
h

FIG. 3. Rectangle of Area Becomes an Infinitesimal Slice of Area

Summation of blocks of area becomes integration of in-
finitesimal slices. We specifically point out that no functional
relationship between the line segments is required for either
summation or integration of area. We call the horizontal line
segment of zero width dSh a point derivative.∑

Snv S
n
h −→

∫
Snv dS

n
h (18)
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Snv 6= f(Snh ) (19)

Snh 6= f(Snv ) (20)

Sv

dS
h+n

Sv

dS
h

Sv

dS
h+1

Sv

dS
h+2

=+ + + S
total

FIG. 4. Integration of Infinitesimal Slices of Area

IV. DIFFERENCES OF INFINITESIMAL SLICES OF
AREA ARE NOTATIONALLY DEFINABLE

Differences of area are definable therefore differences of
infinitesimal slices of area are definable.

S1
vS

1
h − S2

vS
2
h 6= 0 (21)

S1
vdS

1
h − S2

vdS
2
h = (S1

v − S2
v)dSh 6= 0 (22)

S1
v − S2

v 6= 0 (23)

V. INFINITESIMAL DIFFERENCES OF INFINITESIMAL
SLICES OF AREA ARE DEFINABLE

We can define an infinitesimal limit of when the differences
between the lengths of the vertical line segments go to zero.
We call the infinitesimal comparison of the vertical line seg-
ments dSv a line derivative. It is important to note that neither
line segment is required to have, but could have a magnitude
of 0.

|S1
v | 6= 0 (24)

|S2
v | 6= 0 (25)

(S1
v − S2

v)dSh lim
∆betweenS1

vandS
2
v→0

= dSvdSh (26)

The special case

dSvdSh = 0 (27)

exists when

|S1
v | = |S2

v |. (28)

VI. THE RELATIVE RATE OF CHANGE OF AREA CAN
BE DEFINED THROUGH NORMALIZATION

We can consider values of ratios of line derivatives and
point derivatives or consider solutions when we consider these
ratios to be constant.

dSvdSh
dShdSh

=
dSv
dSh

6= 0 (29)

dSvdSv
dShdSh

=
(dSv)

2

(dSh)2
6= 0 (30)

VII. INTRODUCTION OF LINE SEGMENT SPACE

We define Line Segment Space (LSS) as a row of an infinite
number of points. We can think of each point having a vertical
line segment Sv (see Fig.5).

Sv Sv

A
B

FIG. 5. Infinite Number of Points in a Row Each With Its Own Ver-
tical S

For Sh however, there are two paradigms, absoluteness and
relativity.

A. Absolute Line Segment in LSS

Any magnitude or section of Sh is made up of multiple
points on the row of points, not necessarily of the same mag-
nitudes. The area bounded by these line segments cannot con-
ceptually overlap (see Figs. 6 and 7).

Sv Sv

A
B

Sh Sh

FIG. 6. Any Sh is made up of points in the row.

B. Relative Line Segment in LSS

Each point in the row of points has a separate magnitude
or section of Sh, not necessarily of the same magnitudes (see
Figs. 8 and 9).
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Sv
Sv

A
B

Sh Sh

FIG. 7. Areas cannot conceptually overlap.

Sv Sv

A B ShSh

Relative line segment Sh at every point. Sh offset

from row of points for clarity.

FIG. 8. Every point contains a line segment Sh.

C. Functional Relationships Between Sh and Sv and Physical
Interpretations

We consider these questions of the two simplest functional
relationships between Sh and Sv:

For absolute line segments, can the Poisson equation

∇2φ = ρ (31)

be derived from

dSvdSv
dShdSh

=
(dSv)

2

(dSh)2
6= 0 (32)

and

φ ≡ Sv (33)

via

Sv = f(Sh)? (34)

For relative line segments can

ds2 = gµνdxµdxν (35)

be derived from

Sv
dSv

dSvdSh = SvdSh (36)

and

Sµ
dSµ

≡ gµν (37)

via

Sµ = f(Sν)? (38)

Sv
Sv

A
B

Sh Sh

FIG. 9. Areas can conceptually overlap

VIII. MOTIVATION

1. Is an Einstein Manifold the Same as Constant Nonzero
Relative Area in LSS? In LSS using relative Sh, for any
Sv that is the same at point A and point B in the row,

(
Sv
dSv

dSvdSh)A − (
Sv
dSv

dSvdSh)B = 0. (39)

We currently can find no way to falsify this equation
from being derived through

Sµ
dSµ

≡ Λgµν (40)

into either

Rgµν = 0 (41)

or

RΛgµν = 0 (42)

with the exception that solutions for

|gµν | = 0 (43)

with

Rgµν = 0 (44)

do not conceptually exist in metric field theory. Is al-
lowing the diagonal arguments to be

|gµν | = (1, 1, 1, 1) (45)

a specific understanding of relativity rather than a gen-
eral one considering that any constant satisfies the equa-
tion RΛgµν = 0.

As examples, constants |gµν | = (5, 5, 5, 5) or even
|gµν | = ( 143521

23412244 ,
143521

23412244 ,
143521

23412244 ,
143521

23412244 ) satisfy
the equation. Why is the notation accepted if the solu-
tions are not unique?

2. Is a Point Singularity in GR Conceptually Equivalent to
Running Out of Relative Area in LSS?

3. Is a second set of four time-space components within
ds2 = gµνdxµdxν (dxµ first set, dxµ second set) a
demonstration of incorrect notation for a vertical line
segment that has its own point derivative included?
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4. Is the understanding that length squared is the unit for
the Cosmological Constant a demonstration that the
concepts of Euclidean and non-Euclidean geometry are
a conflation of geometry and physical theory?

5. Is parallel transport of a vector on a manifold equiva-
lent to all solutions of a constant magnitude for a partial
geometric derivative in LSS?

6. In 1998 [3, 4] it was discovered that there is unpredicted
late inflection point in the expansion (decelerating to
accelerating) of the universe. How is this possible at the
same moment across the entire universe if nothing can
travel faster than light? Would the hypothesis that this is
just a property of energy and matter, in that gravitation
has a wavelength, be less conceptually offensive?

7. Can we interpret a quantized geometrical wave in LSS
(Fig.10) as having a wavelength with regions of rela-
tive line segments for which (dSv)2

(dSh)2 6= 0 separated by

regions for which (dSv)2

(dSh)2 = 0 ?

FIG. 10. Proposed quantized waves in LSS. Relative area overlap not
shown for clarity.

8. Can Gunnar Nordström’s first metric theory [5] be de-
rived from absolute line segments in Line Segment
Space?

d2φ

dx2
1

+
d2φ

dx2
2

+
d2φ

dx2
3

+
d2φ

dx2
4

= µ (46)

9. Can Gunnar Nordström’s second metric theory [5] with
variable mass be derived from either absolute or relative
line segments in Line Segment Space?

d2φ

dx2
1

+
d2φ

dx2
2

+
d2φ

dx2
3

+
d2φ

dx2
4

= eµm (47)

10. Can bi-metric gravity theory be derived from using
point notation for relative line segments in Line Seg-
ment Space where the end points for Sv = A1−A2 are
conceptually separated into their own line segments so
that one can be considered constant while the other is
dynamic?

ds2 = gµνdxµdxν (48)

ds2 = hµνdxµdxν (49)

A1 − 0 −→ A1 − 0

dA1
= gµν (50)

0−A2 −→
0−A2

dA2
= hµν (51)

11. Physical Modeling: Interpretation of the Cosmological
Constant

What we find most troubling is that bringing in the con-
cept of the CC as the energy density of the vacuum into
Line Segment Space would seem to make more physical
and equational sense than in GR. Infinitesimal slices of
area in IG can be called Geometric One-Forms. For the
relative functional relationship Sh = f(Sv), it would
seem that relative changes in dSv can be interpreted as
dt and dx which are functions of relative changes of Sh
(dSh) which would physically correspond to the relative
changes of density and pressure of the vacuum treated
as a perfect fluid. Moreover, the one form ShdSv would
seem to correspond to the integral definition of proba-
bility at a point, a foundational assumption of QM.

We consider refuting Integral Geometry worthwhile con-
sidering these possible coincidences and the intractableness
of the CC problem.
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