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Abstract

It has long been claimed that the antisymmetric tensor field of the second rank is longitudinal after quantization.
In my opinion, such a situation produces speculations about the violation of the Correspondence Principle. On
the basis of the Lagrangian formalism I calculate the Pauli-Lubanski vector of relativistic spin for this field. Even
at the classical level it can be equal to zero after applications of well-known constraints. The correct quantization
procedure permits us to propose a solution of this puzzle in the modern field theory. Obtained results develop the
previous consideration Physica A 214 (1995) 605-618.

Quantum electrodynamics (QED) is a
construct which found overwhelming experimental
confirmations (for recent reviews see, e.g., refs. [1,2]).
Nevertheless, a number of theoretical aspects of this
theory deserve more attention. First of all, they
are: the problem of “fictious photons of helicity
other than ±j, as well as the indefinite metric that
must accompany them”; the renormalization idea,
which “would be sensible only if it was applied
with finite renormalization factors, not infinite ones
(one is not allowed to neglect [and to subtract]
infinitely large quantities)”; contradictions with the
Weinberg theorem “that no symmetric tensor field
of rank j can be constructed from the creation and
annihilation operators of massless particles of spin
j”, etc. They were shown by Dirac [3, 4] and by
Weinberg [5]. Moreover, it appears now that we
do not yet understand many specific features of
classical electromagnetism, first of all, the problems
of longitudinal modes, of the gauge and of the
Coulomb action-at-a-distance, refs. [6–13]. Secondly,
the standard model, which has been constructed on
the basis of ideas, which are similar to QED, appears
to be unable to explain many puzzles in neutrino
physics.

In my opinion, all these shortcomings can be
the consequence of ignoring several important
questions. “In the classical electrodynamics of charged
particles, a knowledge of Fµν completely determines
the properties of the system. A knowledge of
Aµ is redundant there, because it is determined

only up to gauge transformations, which do not
affect Fµν . . . Such is not the case in quantum
theory. . . ” [14]. We learnt, indeed, about this fact
from the Aharonov-Bohm [15] and the Aharonov-
Casher effects [16]. However, recently several attempts
have been undertaken to explain the Aharonov-
Bohm effect classically [17]. These attempts have,
in my opinion, logical basis. In the mean time,
quantizing the antisymmetric tensor field led us to
a new puzzle, which until now had not received
much attention. It was claimed that the antisymmetric
tensor field of the second rank is longitudinal after
quantization [18–22]. We know that the antisymmetric
tensor field (electric and magnetic fields, indeed) is
transverse in Maxwellian classical electrodynamics. It
is doubtful that physically longitudinal components
can be transformed into the physically transverse ones
in the ~ → 0 limit.1 How should we manage the
Correspondence Principle in this case? It is often
concluded: one is not allowed to use the antisymmetric
tensor field to represent the quantized electromagnetic
field in relativistic quantum mechanics. Nevertheless,
we are convinced that a reliable theory should be
constructed on the basis of a minimal number of
ingredients (“Occam’s Razor”) and should have well-
defined classical limit. Therefore, in this paper I

1It is interesting to compare this question with the group-
theoretical consideration in ref. [23] which deals with the
reduction of rotational degrees of freedom to gauge degrees
of freedom in infinite-momentum/zero-mass limit. The only
mentions of the transversality of the quantized antisymmetric
tensor field see in refs. [24,25].
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undertake a detailed analysis of rotational properties
of the antisymmetric tensor field, I calculate the Pauli-
Lubanski operator of relativistic spin (which must
define whether the quantum is in the left- or right-
polarized states or in the unpolarized state) and then
conclude, if it is possible to obtain the conventional
electromagnetic theory with photon helicities h = ±1
provided that strengths (not potentials) are chosen to
be physical variables. The particular case also exists
when the Pauli-Lubanski vector for the antisymmetric
tensor field of the second rank is equal to zero, which
corresponds to the claimed ‘longitudinality’ (helicity
h = 0 ?) of this field.

Research in this area from a viewpoint of
the Weinberg’s 2(2j + 1) component theory has
been started in refs. [9–12, 26–30]. I would also
like to point out that the problem at hand is
directly connected with our understanding of the
nature of neutral particles, including neutrinos [31–
38]. >From a mathematical viewpoint, theoretical
content provided by the space-time structure and
corresponding symmetries should not depend on
what representation space, upon which field operators
transform, is chosen.

I begin with the antisymmetric tensor field operator
(in general, complex-valued):

Fµν(x) =
∑

η

∫
d3p

(2π)3
1

2Ep

[
Fµν

η +(p) aη(p) e−ip·x+

Fµν

η (−)(p) b†η(p) e+ip·x

]
(1)

and with the Lagrangian, in general including mass
term:

2

L =
1

4
(∂µFνα)(∂µF να) −

1

2
(∂µFµα)(∂νFνα)−

1

2
(∂µFνα)(∂νFµα) +

1

4
m2FµνFµν . (3)

The Lagrangian leads to the equation of motion in
the following form (provided that the appropriate
antisymmetrization procedure has been taken into

2The massless limit (m → 0) of the Lagrangian is connected
with the Lagrangians used in the conformal field theory and in
the conformal supergravity by adding the total derivative:

LCFT = L +
1

2
∂µ (Fνα∂νF µα

− F µα∂νFνα) . (2)

The gauge-invariant form (Fµν → Fµν +∂νΛµ−∂µΛν), ref. [18],
is obtained only if one uses the Fermi procedure mutatis

mutandis by removing the additional ”phase” field λ(∂µF µν)2,
with the appropriate coefficient λ, from the Lagrangian. This
has certain analogy with the QED, where the question, whether
the Lagrangian is gauge-invariant or not, is solved depending on
the presence of the term λ(∂µAµ)2. For details see ref. [19] and
what is below.

account):

1

2
( + m2)Fµν + (∂µF ,α

αν − ∂νF ,α
αµ ) = 0, (4)

where = −∂α∂α. It is this equation for
antisymmetric-tensor-field components that follows
from the Proca-Bargmann-Wigner consideration,
which is characterized by the equations:3

∂αFαµ +
m

2
Aµ = 0, (5)

2mFµν = ∂µAν − ∂νAµ, (6)

provided that m 6= 0 and in the final expression
one takes into account the Klein-Gordon equation
( − m2)Fµν = 0. The latter expresses relativistic
dispersion relations E2 −p2 = m2 and it follows from
the coordinate Lorentz transformation laws [39, §2.3].

Following the variation procedure given, e.g., in
refs. [40–42] one can obtain that for rotations xµ′

=
xµ + ωµνxν the corresponding variation of the wave
function is found from the formula:

δFαβ =
1

2
ωκτT αβ,µν

κτ Fµν . (7)

The generators of infinitesimal transformations are
then defined as

T αβ,µν
κτ =

1

2
gαµ(δβ

κ δν
τ − δβ

τ δν
κ) +

1

2
gβµ(δν

κδα
τ −

δν
τ δα

κ ) +
1

2
gαν(δµ

κ δβ
τ − δµ

τ δβ
κ)+

1

2
gβν(δα

κ δµ
τ − δα

τ δµ
κ). (8)

It is T αβ,µν
κτ , the generators of infinitesimal

transformations, that enter in the formula for
the relativistic spin tensor:

Jκτ =

∫
d3x

[
∂L

∂(∂Fαβ/∂t)
T αβ,µν

κτ Fµν

]
. (9)

As a result one obtains:

Jκτ =

∫
d3x

[
(∂µFµν)(g0κFντ − g0τFνκ)−

(∂µFµ
κ)F0τ + (∂µFµ

τ )F0κ + Fµ
κ(∂0Fτµ + ∂µF0τ+

∂τFµ0) − Fµ
τ (∂0Fκµ + ∂µF0κ + ∂κFµ0)

]
. (10)

If one agrees that the orbital part of the angular
momentum

Lκτ = xκΘ0 τ − xτΘ0 κ, (11)

3In the textbooks the equations with the “renormalized”
potentials Aµ → 2mAµ are usually used. This “renormalization”
can change the asymptotic m → 0 behavior of classical
potentials. Therefore, until the investigation of this question is
completed one should use the form (5,6) which follows from the
Dirac equations satisfied by the symmetric spinor of the second
rank.
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with Θτλ being the energy-momentum tensor, does
not contribute to the Pauli-Lubanski operator when
acting on the one-particle free states (as in the Dirac
j = 1/2 case), then the Pauli-Lubanski 4-vector is
constructed as follows [43, Eq.(2-21)]

Wµ = −
1

2
εµκτνJκτP ν , (12)

with Jκτ defined by Eqs. (9,10). The 4-momentum
operator P ν can be replaced by its eigenvalue when
acting on the plane-wave eigenstates. One should
choose space-like normalized vector nµnµ = −1, for
example n0 = 0, n = p̂ = p/|p|.

4

After lengthy calculations in a spirit of [43, p.58,147]
one can find the explicit form of the relativistic spin:

(Wµ · nµ) = −(W · n) = −
1

2
εijknkJ ijp0, (13)

Jk =
1

2
εijkJ ij = εijk

∫
d3x

[
F 0i(∂µFµj) +

F j
µ (∂0Fµi + ∂µF i0 + ∂iF 0µ)

]
. (14)

Now it becomes obvious that the application of the
generalized Lorentz conditions (which are formally
quantum versions of free-space dual Maxwell’s
equations) leads in such a formulation to the absence
of electromagnetism in a conventional sense. The
resulting Kalb-Ramond field is longitudinal (helicity
h = 0). All the components of the angular momentum
tensor for this case are identically equated to zero. The
discussion of this fact can also be found in ref. [10,19].
This situation can occur in the particular choice of the
normalization of the operators Jµν and gµ ≡ JµνP ν

only.
One of the possible ways of obtaining helicities

h = ±1 is a modification of the electromagnetic field
tensor like ref. [6q], i.e., introducing the non-Abelian
electrodynamics [7]:

Fµν ⇒ Ga
µν = ∂µA(a) ∗

ν − ∂νA(a) ∗
µ −

i
e

~
[A(b)

µ , A(c)
ν ], (15)

where (a), (b), (c) are the vector components in the
(1), (2), (3) circular basis [6, 7]. In other words,
one can add some ghost field (the B(3) field) to
the antisymmetric tensor Fµν . As a matter of fact
this induces hypotheses on a massive photon and/or
an additional displacement current. I can agree
with the possibility of the B(3) field concept (while

4One must remember that the helicity operator is connected
with the Pauli-Lubanski vector in the following manner (J ·

p̂) = (W · p̂)/Ep, see ref. [44]. The choice of ref. [43, p.147],

nµ =
(
tµ − pµ p·t

m2

)
m
|p|

, with t ≡ (1, 0, 0, 0) being a time-like

vector, is also possible but it leads to some obscurities in the
procedure of taking the massless limit. These obscurities will be
clarified in a separate paper.

rigorous elaboration is required in the terminology
of the modern quantum field theory), but, at the
moment, I prefer to avoid any auxiliary constructions
(even they are valuable in intuitive explanations and
generalizations). If these non-Abelian constructions
exist, they should be deduced from a more general
theory on the basis of some fundamental postulates,
e.g., in a spirit of refs. [27, 35, 45]. In the procedure
of the quantization one can reveal the important
case, when the transversality (in the meaning of
existence of h = ±1) of the antisymmetric tensor
field is preserved. This conclusion is related to the
existence of the dual tensor F̃µν , with the possibility of
the Bargmann-Wightman-Wigner-type quantum field
theory revealed in ref. [27]5 and with normalization
questions.

I choose the field operator, Eq. (1), such that:

F i0
(+)(p) = Ei(p);

F jk

(+)(p) = −εjklBl(p);

F i0
(−)(p) = F̃ i0(p) = Bi(p);

F jk

(−)(p) = F̃ jk(p) = εjklEl(p);

(16)

where F̃µν = 1
2εµνρσFρσ is the tensor dual to Fµν ;

and εµνρσ = −εµνρσ , ε0123 = 1 is the totally
antisymmetric Levi-Civita tensor. After lengthy but
standard calculations which use the Fourier expansion
of the field operator (1), one achieves:6

Jk =
∑

ηη′

∫
d3p

(2π)32Ep

{
iεijkEi

η(p)Bj
η′(p)

2
×

[
aη(p)b†η′(p) + aη′(p)b†η(p) + b†η′(p)aη(p)+

b†η(p)aη′(p)

]
−

(
ipk(Eη(p) · Eη′(p) + Bη(p) · Bη′(p))

2Ep

+
−iEk

η′(p)(p · Eη(p)) − iBk
η′(p)(p · Bη(p))

2Ep

)
×

[
aη(p)b†η′(p) + b†η(p)aη′(p)

]}

One should choose normalization conditions. For
instance, one can use the analogy with the (dual)

5The remarkable feature of the Ahluwalia et al. consideration
is: boson and its antiboson can possess opposite relative parities.

6Of course, the question of the behavior of vectors Eη and
Bη and/or of creation and annihilation operators with respect
to the parity operation in this particular case deserves detailed
elaboration.
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classical electrodynamics:7

(Eη(p) · Eη′(p) + Bη(p) · Bη′) = 2Epδηη′ ,(17)

Eη × Bη′ = pδηη′ − pδη,−η′ . (18)

These conditions still imply that E ⊥ B ⊥ p. Finally,
one obtains

Jk = −i
∑

η

∫
d3p

(2π)3
pk

2Ep

[
aη(p)b†−η(p)+

b†η(p)a−η(p)

]
. (19)

If we want to describe states with the definite helicity
quantum number (photons) we should assume that
b†η(p) = ia†

η(p) which is reminiscent of the Majorana-
like theories [34, 35, 46].8 One can take into account
the prescription of the normal ordering and set up the
commutation relations in the form:

[
aη(p), a†

η′(k)
]

−
= (2π)3δ(p − k)δη,−η′ . (20)

After acting the operator (19) on the physical

states, i.e., a†
h(p)|0 > , we are convinced that the

antisymmetric tensor field can describe particles with
helicities to be equal to ±1). One can see that
the origins of this conclusion are the possibilities
of different definitions of the field operator (and
its normalization), the existence of the ‘antiparticle’
for the particle described by antisymmetric tensor
field. The latter statement is related to the Weinberg
discussion of the connection between helicity and
representations of the Lorentz group [5a]. Next, I
would like to point out that the Proca-like equations
for antisymmetric tensor field with mass, e.g., Eq. (4)
can possess tachyonic solutions, see for the discussion
in ref. [9]. Therefore, in a massive case the states
can be “partly” tachyonic states mathematically. We
then deal always with the problem of the choice of
normalization conditions which could permit us to
describe both transverse and longitudinal physical
modes of the j = 1 field.

In conclusion, I calculated the Pauli-Lubanski
vector of relativistic spin on the basis of the N’́otherian
symmetry method [40–42]. Let us not forget that it
is a part of the angular momentum vector, which
is conserved as a consequence of the rotational
invariance. After explicit [19] (or implicit [21])
applications of the constraints (the generalized
Lorentz condition) in the Minkowski space, the
antisymmetric tensor field becomes ‘longitudinal’ in
the meaning that the angular momentum operator

7Different choices of the normalization could still lead to
equating the spin operator to zero or even to the other values
of helicity, which differ from ±1. The question is: what cases
are realized in Nature and what processes correspond in each
case?

8Of course, the imaginary unit can be absorbed by the
corresponding re-definition of negative-frequency solutions.

is equated to zero (the sense which was attached
by the authors of the works [18, 19, 21, 22]). I
proposed one of the possible ways of resolving this
contradiction with the Correspondence Principle in
refs. [9–12]. Another hypothesis has been proposed
by Evans [6, 7, 47], in which the component of the
Pauli-Lubanski vector generalized to the isovector
space (1), (2), (3) has been identified with the new
B(3) field of electromagnetism.9 The present article
continues this research. The achieved conclusion is:
the antisymmetric tensor field can describe both
the Maxwellian j = 1 field and the Kalb-Ramond
j = 0 field. Nevertheless, I still think that the
physical nature of the E = 0 solution re-discovered
in refs. [26, 48], its connections with the Evans-Vigier
B(3) field, ref. [6, 7], with Avdeev-Chizhov δ′- type
transverse solutions [21b], which cannot be interpreted
as relativistic particles, as well as with my concept
of χ boundary functions, ref. [12] are not completely
explained until now. Finally, while I do not have
any intention of doubting theoretical results of the
ordinary quantum electrodynamics, I am sure that the
questions put forth in this note (as well as in previous
papers both of mine and of other groups) should be
explained properly.
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