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Abstract

We continue to study the "fermion – 4-vector potential"interactions in the framework of the McLennan-Case
construct which is a reformulation of the Majorana theory of the neutrino. This theory is shown after applying
Majorana-like anzatzen to give rise to appearance of unusual terms as σ · [A×A∗], which were recently discussed
in non-linear optics.

As a result of extracting solid data certifying the
existence of the mass of neutrino in the LANL
experiment [1] the interest in the Majorana-like
models has grown considerably. The McLennan-Case
reformulation [2] of the Majorana theory [3] got
further development in the papers of Ahluwalia [4] and
myself [5,6]. In 1996 I received private communications
from D. V. Ahluwalia [7] about unusual interactions of
neutral particles in his model which is closely related
with the Case consideration. Even before I learnt
about the possible importance of phase factors of
corresponding field functions in defining the structure
of the mass term [8]. They gave initial impulse in
writing this work. Further investigations from different
standpoints [10] (compare also with results of non-
linear optics [9]) produced simultaneously with this
work were also very incentive in my attempts to solve
the problem rigorously.1

The main result of the present paper is the
theoretical proof of possible significance of the term
σ · [A×A∗] in the interaction of (1/2, 0) ⊕ (0, 1/2)
fermions. In the process of calculations we use the
notation and the metric of ref. [2b]. The Dirac
equation is written

(γµ∂µ + κ)ψ = 0, (1)

where gµν = diag(−1, 1, 1, 1) and γµ are the Dirac
matrices. Their explicit form can be chosen as follows

1Obviously, the Evans et al. derivation of similar terms
[“The Enigmatic Photon. Vol. 3"(Kluwer Academic, Dordrecht,
1996), pp. 9-16, 187-189] has no any sense in the presented form.
It should be regarded as completely erroneous until that time
when needed clarifications and corrections would be given . But,
the Esposito derivation of the term ∼ σ · [A×A

∗] is correct. I
am grateful to him for sending me the alternative proof before
the publication.

γ0 =

(
0 −i
−i 0

)
,

γi =

(
0 iσi

−iσi 0

)
,

γ5 =

(
1 0
0 −1

)
.

(2)

The Pauli charge-conjugation 4× 4 matrix is then

C =

(
0 Θ
−Θ 0

)
, where Θ =

(
0 −1
1 0

)
. (3)

It has the properties

C = C
T

, C∗ = C−1, (4)

CγµC−1 = γµ
∗

, Cγ5C−1 = −γ5 ∗ . (5)

As opposed to K. M. Case we introduce the
interaction with the 4-vector potential in the
beginning and substitute ∂µ → ∇µ = ∂µ − ieAµ in
the equation (1). For the sake of generality we assume
that the 4-vector potential is a complex field what
is the extension of this concept comparing with the
usual quantum-field consideration. (In the classical
(quantum) field theory the 4-vector potential in the
coordinate representation is usually considered to
be pure real function (functional) unless we touch
the matters of indefinite metrics). After introducing
projections onto subspaces of the chirality quantum
number

ψ± =
1

2
(1± γ5)ψ, γµ± =

1

2
(1± γ5)γµ, (6)
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we re-write the equation (1) and Eq. (3) of ref. [2b]

(γµ∇∗µ + κ)C
−1ψ∗ = 0, (7)

which already describe the interactions of (anti)
fermion with the complex 4-vector potential, to the
following set

γµ+∇µψ− + κψ+ = 0, (8)

γµ−∇µψ+ + κψ− = 0, (9)

γµ+∇
∗
µC

−1ψ∗+ + κC
−1ψ∗− = 0, (10)

γµ−∇
∗
µC

−1ψ∗− + κC
−1ψ∗+ = 0. (11)

On using the matrices ηµ = Cγµ− and ηµ
∗

= γµ+C
−1

and ϕ = ψ+ =
1

2
(1 + γ5)ψ, χ = C−1ψ∗− we obtain

ηµ
∗

∇µχ
∗ + κϕ = 0, (12)

ηµ∇µϕ+ κχ
∗ = 0, (13)

ηµ
∗

∇∗µϕ
∗ + κχ = 0, (14)

ηµ∇∗µχ+ κϕ
∗ = 0, (15)

in the sub-space of the positive chirality quantum
number. And with the matrices ζµ = γµ−C

−1,

ζµ
∗

= Cγµ+ and the notation η = ψ−, ξ = C−1ψ∗+ we
obtain the set

ζµ
∗

∇µη + κξ
∗ = 0, (16)

ζµ∇µξ
∗ + κη = 0, (17)

ζµ
∗

∇∗µξ + κη
∗ = 0, (18)

ζµ∇∗µη
∗ + κξ = 0, (19)

for the negative chirality quantum number. One can
use four equations of these sets to describe the physical
system. If now apply the Majorana condition given by
Case ψ− = C−1ψ∗+ (see Eq. (8) in [2b]) one can arrive
at χ = ϕ and

∇∗µϕ ≡ ∇µϕ, hence, Aµ = −A
∗
µ (20)

as a consequence of the compatibility condition of the
set of equations (12-15). The 4-potential becomes to
be pure imaginary. This model seems to be perfectly
possible after redefining the phase factor between
positive- and negative- energy solutions in the field
operator of the 4-vector potential.

Furthermore, it is difficult to extract the new
physical content from the modification of the
Majorana anzatz such that ψ− = eiα(x)C−1ψ∗+ and,

therefore, χ = e−iα(x)ϕ. We come to

ηµ∇µϕ+ κe
iα(x)ϕ∗ = 0, (21)

ηµ
∗

∇∗µϕ
∗ + κe−iα(x)ϕ = 0, (22)

and ∂µα = e(Aµ +A
∗
µ), (23)

thus recovering (with σµν =
i

2
[γµ, γν ]− )

[
∇µ∇µ − iσ

µν∇µ∇ν − κ
2
]
ϕ = 0, (24)

and its complex conjugate.
From the above consideration it seems that we failed

to derive the needed term. But, we wish to insist on the
general case. In order to proceed let us observe that in
the set (12-15) and (16-19) the second and the third
equations of each set are complex conjugates each
other; the first equation and the fourth equation are
also complex conjugates each other. If we do not want
to introduce such strong restrictions on the 4-vector
potential as above it is logical to introduce different
Majorana-like anzatzen for these subsets. This is
perfectly possible after one reminds that the subspaces
of different CP quantum number are independent ones
for certain states. On this basis, firstly, we re-write the
Dirac equation and its charge conjugate to another set
(ϕ and χ are two-component spinors):

ηµ∇µϕ+ κCϕ = 0, (25)

ηµ
∗

∇∗µϕ
∗ + κC−1ϕ∗ = 0, (26)

ηµ∇∗µχ+ κCχ = 0, (27)

ηµ
∗

∇µχ
∗ + κC−1χ∗ = 0. (28)

Next, we set up the following anzatz

C−1ψ∗± = ∓Pψ± ,

where P is the space inversion operator. Finally,
marking the resulting subsets of equation by some
discrete quantum number (we denote them as “s"and
“a") one obtains2

ηµ∇∗µχs + κχ
∗
s = 0, (30)

ηµ
∗

∇µχ
∗
s + κχs = 0. (31)

and

ηµ∇µϕa − κϕ
∗
a = 0, (32)

ηµ
∗

∇∗µϕ
∗
a − κϕa = 0. (33)

2One could also obtain similar subsets of equations after the
application of the modified Majorana anzatz

ψ− = ℘
S,A

C−1ψ∗+. (29)

Here, ℘
S,A

= ±1; the upper sign being used for the first subset,
Eqs. (13,14) and the down sign being used for the second
subset, Eqs. (16,19). This is possible because the sub-spaces
of different chirality quantum numbers can also be considered
as the independent subspaces and we can choose any two
equations from the both subsets. But, this explanation can be
still considered as obscure by someone due to the discussion
in the first part of the Letter. In my opinion, the proper
consideration of the theory of 4-vector potential is necessary
to clarify this point.
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As a result we obtain second-order equations for χs
and ϕa:

[
∇µ∇∗µ − iσ

µν∇µ∇
∗
ν − κ

2
]
χs(x

µ) = 0, (34)
[
∇µ∗∇µ − iσ

µν∇∗µ∇ν − κ
2
]
ϕa(x

µ) = 0, (35)

and their complex conjugates.
One can proceed further with transformations of

these equations to the accustomed forms. This is only
an algebraic exercise. One can see the existence of “new
terms"in the equations: we proved that some physical
states of the spin-1/2 fermion have interactions of the
form

iεijkσk∇i∇
∗
j → +ie2σ · [A×A∗], (36)

for “s"states, and with the inverse sign, for the
“a"states. (The unit system c = ~ = 1 is used.)

At last we apparently note that the (1/2, 0) ⊕
(0, 1/2) field operator is naturally decomposed into
the parts Ψ = ψ

S
+ ψ

A

ψ
S
(xµ) =

∫
d3p

(2π)32Ep

{[
u
↑
(pµ)c

↑
(pµ)+

u
↓
(pµ)d

↓
(pµ)

]
e−iφ ++

[
Cu∗

↑
(pµ)c†

↑
(pµ)+

Cu∗
↓
(pµ)d†

↓
(pµ)

]
e+iφ

}
, (37)

ψ
A
(xµ) =

∫
d3p

(2π)32Ep

{[
u
↑
(pµ)d

↑
(pµ)+

u
↓
(pµ)c

↓
(pµ)

]
e−iφ −

[
Cu∗

↑
(pµ)d†

↑
(pµ)+

Cu∗
↓
(pµ)c†

↓
(pµ)

]
e+iφ

}
, (38)

where φ = (Et − p · x)/~. As easily demonstrated
both parts satisfy (separately each other)
the Dirac equation. Certain relations between
creation/annihilation operators are assumed. They
are dictated by the modified Majorana-like anzatzen.

We discussed above the possibility of existence of
longitudinal-type interactions. We also proved the
existence of these states on the free level [11]. On
the other hand, in a recent paper [12] we found that
the possibility of terms as ∼ σ · [A×A∗] appears
to be related to the matters of chiral interactions.
We briefly repeat these arguments below. As we are
now convinced, the Dirac field operator can be always
presented as a superposition of the self- and anti-self
charge conjugate ‘field operators’. The anti-self charge
conjugate part can give the self charge conjugate part
after multiplying by the γ5 matrix and vice versa. We
derived therein3

3The anti-self charge conjugate field function ψ2 can also be
used. The equation has then the form:

[iγµD∗

µ
+m]ψ′ ,a

2
= 0. (39)

[iγµD∗µ −m]ψ
s
1 = 0, (40)

or 4

[iγµDµ −m]ψ
a
2 = 0, (42)

Both equations lead to the terms of interaction such
as ∼ σ · [A×A∗] provided that the 4-vector potential
is considered as a complex function(al). In fact, from
(40) we have:

iσµ∇µχ1 −mφ1 = 0, (43)

iσ̃µ∇∗µφ1 −mχ1 = 0. (44)

And, from (42) we have

iσµ∇∗µχ2 −mφ2 = 0, (45)

iσ̃µ∇µφ2 −mχ2 = 0. (46)

The meanings of σµ and σ̃µ are obvious from the
definition of γ matrices. The derivatives are defined:

Dµ = ∂µ − ieγ
5Cµ + eBµ , ∇µ = ∂µ − ieAµ.

and Aµ = Cµ + iBµ.
From the above set we extract the terms as

±e2σiPauliσ
j
PauliAiA

∗
j , which lead to the discussed

terms [10,12].
In the considered cases it is the γ5 transformation

which distinguishes various field configurations
(helicity, self/anti-self charge conjugate properties etc)
in the coordinate representation. We would also like
to note that in the submitted Esposito-Recami paper
the terms of the type ∼ σ · [A×A∗] can be reduced
to (σ · ∇)V, where V is the scalar potential.

Finally, I would like to present references to some
works which, in my opinion, would be relevant
to further discussions of the questions put forth
here. Several works already revealed importance of
the term σ · [A×A∗] in the non-linear optics.
Other works are [13], where the concept of two

coordiante-space Dirac equations have been re-
discovered independently (cf. [6b,d,e] and [14, 15]);
and ref. [16], where the matters of interface between
gravity and quantum mechanics have been firstly
discussed rigorously.

Acknowledgments. I acknowledge useful discussions
with Profs. A. E. Chubykalo, A. Lakhtakia and A.
F. Pashkov. I am obliged to Profs. D. V. Ahluwalia

4The self charge conjugate field function ψ1 also can be used.
The equation has the form:

[iγµDµ +m]ψ′ ,s
1

= 0. (41)

As readily seen in the cases of alternative choices we have
opposite “charges"in the terms of the type ∼ σ · [A×A

∗] and
in the mass terms.
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and M. W. Evans (even though I do not always agree
with them), E. Recami and S. Esposito for useful
information. In fact, this Letter is the continuation
of their works.

I am grateful to Zacatecas University, México, for a
professorship. This work has been partly supported by
the Mexican Sistema Nacional de Investigadores, the
Programa de Apoyo a la Carrera Docente and by the
CONACyT, México under the research project 0270P-
E.
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