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Abstract

This article continues our previous study in arXiv:1010.0458. Sakaton inter-
actions potentials are re-optimized. Masses of mesons, baryons, light nuclei and
hypernuclei are obtained in a good agreement with experiment. Scattering cross
sections (pp, pp, np, and Λp) appear overestimated, especially at high energies.
This suggests that using interaction potentials that are nonsingular at r = 0
would lead to a better agreement with experiments. In general, our results indi-
cate that Sakata model may be a promising replacement for the quark model of
hadrons.

1 Introduction

Quark model is universally accepted as the foundation of the modern theory of strong
nuclear interactions and the entire Standard Model. In spite of its successes, the idea
of quarks is vulnerable to criticism as well. For example, the postulated quarks and
gluons cannot be directly observed, even in principle. These particles are assumed to
possess very unusual properties: fractional electric charges and non-observable color.
The mechanism of quark confinement inside mesons and baryons has not been under-
stood yet. Quantum chromodynamics is a non-Abelian gauge quantum field theory.
Calculations of even simplest bound states or low-energy scattering processes are no-
toriously difficult in this approach.

So, one is tempted to ask provocative questions: is the nature of strong interactions
bound to be so complicated? are there alternative ways to think about physics of
hadrons? One such alternative idea was proposed by S. Sakata in 1956 [1], i.e., long
before the advent of the quark model. The beauty of the Sakata model was that
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the number of arbitrary assumptions was reduced to a minimum there. Elementary
constituents (sakatons) were chosen to be the familiar proton (p), neutron (n), and
Lambda-hyperon (Λ).1 If one assumes2 that sakaton-antisakaton interaction potentials
are strongly attractive, but sakaton-sakaton and sakaton-antisakaton potentials are
equally repulsive, then one can describe the mass spectrum of hadrons in a remarkable
agreement with observations even without full quantum mechanical calculations [3, 4].
For example, in the Sakata model the pion is identified with a sakaton-antisakaton
bound state π− = np, so that its mass is composed from the masses of constituents
m(n) = m(p) = 940 MeV/c2 and the energy of their attraction. The latter can be
estimated from the known value m(π−) = 140 MeV/c2 as V (n, p) ≈ −1740 MeV , so
that

m(π−) = m(np) = m(n) +m(p) + V (n, p)/c2 = 940 + 940− 1740 = 140 MeV/c2

Assuming that n and p have equal interaction strengths with Λ,3 one can immediately
evaluate the mass of the Σ− baryon4

m(Σ−) = m(Λnp) = m(Λ) +m(n) +m(p) + V (Λ, n)/c2 + V (Λ, p)/c2 + V (n, p)/c2

= 1116 + 940 + 940− 1740 = 1256 MeV/c2

Of course, one cannot expect this simplistic approach to work in all cases. For
example, in addition to explaining the stability of the famous Ω− = ΛΛΛpn particle,
the Matumoto mass formula [3, 4] incorrectly predicted the same masses and stabilities
for two other members of the triplet Ω−− = ΛΛΛpp and Ω0 = ΛΛΛnn, which have not
been observed.

In our previous publication [2] we tried to go beyond the simple mass formula.
We designed a set of inter-sakaton potentials and calculated masses of multisakaton
bound states by numerical solution of corresponding Schrödinger equations. A good
agreement was obtained with the mass spectrum and stabilities of known mesons and
baryons. However, there were also two areas where our previous results appeared
inadequate:

1. When attempting to model particle collisions, we found that scattering cross
sections of hadrons were overestimated by several orders of magnitude.

1In this work we consider only systems possessing up, down, and strange flavors. By adding the
fourth elementary hadron Λ+

c , one can extend the Sakata model to charmed particles as well [2].
2in analogy with electrostatic interactions between charges
3e.g., V (Λ, n) = −V (Λ, p)
4the experimental value is m(Σ−) = 1189 MeV/c2
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2. Our pn, pp and nn potentials were completely repulsive, so they could not explain
the binding of protons and neutrons in nuclei.

In this work we decided to recalibrate sakaton interaction potentials for better
description of these two important aspects.

2 Theory and computational details

2.1 Model Hamiltonian

In our opinion, it should be possible to build theory of strong interactions based on
the idea of point particles interacting by instantaneous forces. This belief is supported
by the success of the “dressed particle” approach to relativistic quantum field theories
[5, 6, 7], where fields are replaced by directly interacting particles, while all scattering
properties and bound state energies are preserved and no renormalization is needed.

Thus we describe an interactingN -sakaton system by the approximate non-relativistic
Hamiltonian

H =
N∑
i=1

mic
2 +

N∑
i=1

p2i
2mi

+
N∑
i<j

Vij(rij) (1)

where pi, rij ≡ |ri − rj| are momenta of the sakatons and their relative distances,
respectively. Masses mi of sakatons are shown in Table 1.

Table 1: Model properties of sakatons.
sakaton Mass Electric Strangeness Spin
symbol MeV/c2 charge
n 940 0 0 1/2
p 940 1 0 1/2
Λ 1116 0 -1 1/2

To proceed with calculations, we need to specify sakaton-sakaton interaction poten-
tials V (r) in (1). Unfortunately, this information is not readily available. Indeed, many
accurate nucleon-nucleon potentials are known in the literature [8, 9, 10, 11], but much
less is known about nucleon-antinucleon, nucleon-Λ0, and Λ0 −Λ0 interactions. More-
over, existing nucleon-nucleon potentials were fitted to reproduce low-energy proper-
ties, like binding energies of nuclei (few MeV) and scattering amplitudes for collision
energies below 1 GeV. However, according to our discussion in Introduction, in order
to represent sakaton binding in mesons and baryons we need potentials that describe
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strong attraction (E < −1.5 GeV) in sakaton-antisakaton pairs and equally strong
repulsion (E > 1.5 GeV) in sakaton-sakaton pairs at short distances. Unfortunately,
existing studies were not interested in these energy ranges.

So, we decided to optimize our own distance-dependent functions V (r), which were
chosen as superpositions of three Yukawa potentials

Vij(r) = Aijzizj
e−αijr

r
+Bij

e−βijr

r
+ Cijzizj

e−γijr

r
(2)

where zi = +1 for sakatons and zi = −1 for antisakatons. Optimized parameters of
these potentials are collected in Table 2. Interaction (2) consists of three parts: the
first term is of the Matumoto type. It corresponds to attraction in sakaton-antisakaton
pairs (zizj = −1) and equal repulsion in sakaton-sakaton and antisakaton-antisakaton
pairs (zizj = 1). Our preliminary tests indicated that this interaction alone was inade-
quate as it systematically overestimated binding and thus predicted stability of many
nonexistent species. Some extra repulsion is added by the second term. The third
term is designed to represent the (relatively) long-range (r≈ 1 fm) nucleon-nucleon
attraction in nuclei [2].

Table 2: Parameters of sakaton-sakaton interaction potentials (2) optimized in this
work.

A α B β C γ
MeV·fm fm−1 MeV·fm fm−1 MeV·fm fm−1

p− p 2137 8.2 1119 10.04 -12 0.125
n− n 2137 8.2 1119 10.04 -12 0.125
p− n 1610 7.02 886.6 14.55 -18.6 0.106
p− Λ 1334 7.245 386.8 10.726 -21 0.25
n− Λ 1334 7.245 386.8 10.726 -21 0.25
Λ− Λ 709 9.13 500 11.15 -22 0.30

As an example, in Fig. 1 we show the proton-proton interaction potential by a
thick full line. The proton-neutron potential (thin full line) has a similar shape, but
the attractive well at r ≈ 1 fm is somewhat deeper, so that a bound state of the
deuteron (pn) can be supported (see Table 5). These functions are comparable to
well-known models of nucleon-nucleon interactions: the Malfliet-Tjon potential [12]
and the scalar portion of the Reid potential [8], though in our case the attractive well
is shallower and wider. The proton-antiproton (pp) interaction (broken line) is almost
a mirror image of the pp potential. Other sakaton-antisakaton potentials have similar
shapes. Their strong attraction at r < 0.5 fm is responsible for holding mesons and
baryons together.
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Figure 1: Interaction potentials: proton-proton (thick full line), proton-neutron (thin
full line), and proton-antiproton (broken line).

Note that in our model p and n sakatons have equal masses and the same interaction
parameters. This implies that all calculated properties (e.g., masses and scattering
cross-sections) are invariant with respect to simultaneous sakaton replacements p ↔ n.

2.2 Bound state calculations

Bound state energies of multisakaton systems were calculated using the stochastic
variational method of Varga and Suzuki [13, 14]. The FBS computer program [15]
was downloaded from the CPC Program Library (Queen’s University of Belfast, N.
Ireland). Only ground states with the lowest total spin (s = 0 for bosons and s = 1/2
for fermions) and zero orbital momentum were considered here. The basis set size
depended on the number of sakatons in the system. For mixed sakaton-antisakaton
species with particle numbers N = 2, 3, 4, 5 the basis size was K = 50, 220, 250,
and 800, respectively. For sakaton-only species (i.e., nuclei) the basis size K = 50
was independent on the number of particles. For other computational parameters [15]
we used values M0 = 10, K0 = 50, bmin = 10−6, and bmax = 10 adjusted for optimal
balance between accuracy and the speed of convergence.
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2.3 Scattering calculations

Scattering calculations were performed in the first Born approximation [16, 17]. For
scattering of two particles with momenta p1 = −p2 ≡ pc.m in the center-of-mass frame
the differential cross section was calculated as5

dσ

dΩ
=

(2π)4~2

c4( 1
E1(pc.m.)

+ 1
E2(pc.m.)

)2
|TB(k)|2 (3)

where Ei(p) ≡
√
m2

i c
4 + p2c2 are energies of the colliding particles, k ≡ p′

1 − p1 is
the transferred momentum and the matrix element TB is the Fourier transform of the
interaction potential6

TB(k) =
1

(2π~)3

∫
dre

i
~krV (r) (4)

For comparison with experiments it was convenient to rewrite dσ/dΩ as a function of
invariant Mandelstam variables s ≡ (p̃1 + p̃2)

2 and t ≡ (p̃1 − p̃′1)
2, which have simple

meanings in the center of mass frame

s = (E1(pc.m.) + E2(pc.m.))
2

t = −c2k2 = 2c2pc.m.(cos θ − 1) (5)

where θ is the scattering angle (between vectors p′
1 and p1). Taking into account (5)

and dΩ = 2πd(cos θ), we obtain (in the case of equal masses m1 = m2 = m)

dσ

dt
=

dσ

dΩ
· 2π

dt/d(cos θ)
=

dσ

dΩ
· π

c2p2c.m.

=
dσ

dΩ
· 4π

s− 4m2c2
(6)

The total elastic cross section was calculated by integrating the differential cross
section (3) on angles

σelastic(pc.m.) = 2π

π∫
0

sin θdθ
dσ

dΩ
(7)

5see equation (3.149) in [17]
6In this work we will study only collisions of elementary sakatons and antisakatons, so the potential

V (r) here is one of the spherically symmetric functions Vij(r) from (2). Corresponding Fourier
integrals can be easily evaluated through elementary functions.
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For easier comparison with experiments we switched to the laboratory reference frame7

and expressed σelastic as a function of the “lab frame” momentum of the incoming
particle 8

plab = pc.m.

√
s/(m2c)

So, in the case of equal masses, the lab frame cross section was obtained by replacing
p2c.m. → (mc

√
m2c2 + p2c.m. −m2c2)/2 in formula (7).

Our calculations for both binding energies and cross sections were, of course, ap-
proximate as they ignored important relativistic and high order perturbation correc-
tions. Nevertheless, we believe that most significant physical effects were captured by
this model, and the results could be trusted within order of magnitude.

3 Results

3.1 Bound states of sakatons

As we discussed above, according to the Sakata model, all mesons and baryons, except
p, n, and Λ0, are in fact composite systems built from the above elementary sakatons
and antisakatons. Atomic nuclei can be also regarded as multisakaton bound states.
So, the first challenge for our model was to explain the stability9 pattern of simplest
compound systems listed in Table 3.

Table 3: Summary table of compound hadrons considered in this work. Notation:
σ = (p, n,Λ) stands for all sakatons; ν = (p, n) stands for nucleons.
Sakaton Particle Comments see Table
composition type

σσ simple mesons all stable except ΛΛ 4
σσσσ tetrasakaton mesons all unstable
σσσ simple baryons all unstable except Σ and Ξ 4
σσσσσ pentasakaton baryons all unstable except Ω− 4
νν . . . ν nuclei 5
νΛ,ΛΛ, ννΛ, νΛΛ hypernuclei 6

As shown in Table 4, masses of light stable mesons and baryons are reproduced
reasonably well in our model. In agreement with experiment, no stable tetrasakaton

7where the ”target” particle 2 is at rest
8see eq. (46.36) in [18]
9We are interested only in stability with respect to strong interactions. Particles experiencing weak

and/or electromagnetic decays are regarded as stable here.
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mesons were found and the only stable pentasakaton baryon is the Ω− = ΛΛΛpn
particle.

Table 4: Stable compound mesons and baryons
Stable Sakaton Calc. Exp. Calc. Binding Exp. Binding
particle composition mass mass energy (MeV) energy (MeV)

MeV/c2 MeV/c2

π0 (pp, nn) 323.99 135 1556.01(→ p+ p) 1733(→ p+ n)
π+ pn 338.21 140 1541.79(→ p+ n) 1734(→ p+ n)
π− np 338.21 140 1541.79(→ n+ p) 1734(→ n+ p)
K0 Λn 499.46 498 1556.54(→ Λ + n) 1558(→ Λ + n)
K− Λp 499.46 494 1556.54(→ Λ + p) 1556(→ Λ + p)
Σ0 (Λpp,Λnn) 1428.13 1193 11.33(→ p+ Λp) 58(→ Λ + pp)
Σ+ Λpn 1400.47 1189 38.99(→ p+ Λn) 67(→ Λ + pn)
Σ− Λnp 1400.47 1189 38.99(→ n+ Λp) 67(→ Λ + np)
Ξ0 ΛΛn 1231.32 1315 388.14 (→ Λ + Λn) 299(→ Λ + Λn)
Ξ− ΛΛp 1231.32 1322 388.14 (→ Λ + Λp) 288 (→ Λ + Λp)
Ω− ΛΛΛpn 1720.95 1672 9.83(→ ΛΛn+ Λp) 137(→ ΛΛn+ Λp)

As we mentioned in subsection 2.1, our potentials (2) can describe nucleon-nucleon
binding in atomic nuclei. Indeed, results presented in Table 5 demonstrate that the
nuclear stability pattern is represented fairly well up to the 6Be nucleus. However, the
nuclear binding energies are systematically underestimated, which indicates that pp,
pn, and nn attractions are probably too low in our model.10

Similar results are presented in Table 6 for hypernuclei, i.e., nuclei where one or
more neutrons are replaced by Λ0 particles. Our model correctly predicts the absence
of pΛ, nΛ, and ΛΛ bound states. However, the binding energy of the 3

ΛH species
is underestimated, and the model predicts positive binding of several non-existent
hypernuclei. This indicates that our optimized interaction parameters in Table 2 are
not well balanced.

3.2 Elastic scattering

Total elastic cross sections for pp, pp, np, and Λp collisions are shown in Figs. 2, 3, 4,
and 5, respectively. Note that agreement with experiments has improved significantly
since our earlier attempts [2], but even the latest calculated σelastic are overestimated
by several orders of magnitude, especially at high collision energies.

10For some species shown in the Table, our calculations did not converge, probably due to numerical
instability of the FORTRAN code.
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Figure 2: Total elastic cross section for pp collisions. Experimental data from [18].
”Old” theory from [2].

Figure 3: Total elastic cross section for pp collisions. Experimental data from [18].
”Old” theory from [2].
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Figure 4: Total elastic cross section for np collisions. Experimental data from [18].
”Old” theory from [2].

Figure 5: Total elastic cross section for Λp collisions. Experimental data from [18].
”Old” theory from [2].
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Table 5: Binding energies (with respect to complete dissociation) of nuclei.
Sakaton Nuclear symbol Exp. binding Calc. binding
composition energy (MeV) [19] energy (MeV)
pp 0 0
pn 2H 2.22 0.44
nn 0 0
ppp 0 diverged
ppn 3He 7.72 1.75
pnn 3H 8.48 1.75
nnn 0 diverged
pppp 0 0
pppn 4Li 4.62 1.10
ppnn 4He 28.30 1.08
pnnn 4H 5.50 1.10
nnnn 0 0
ppppp 0 diverged
ppppn 0 0
pppnn 5Li 26.33 5.23
ppnnn 5He 27.41 5.23
pnnnn 5H 1.08 0
nnnnn 0 diverged
pppppp 0 0
pppppn 0 0
ppppnn 6Be 26.92 9.10
pppnnn 6Li 31.99 10.84
ppnnnn 6He 29.27 9.10
pnnnnn 6H 5.78 0
nnnnnn 0 0

4 Discussion and conclusions

In spite of some deviations, meson, baryon, and nuclear stability patterns are repro-
duced quite well in our studies. The most remarkable is that our model predicts positive
binding energies for all existing mesons and baryons, while dozens of exotic σσσσ and
σσσσσ species turn out to be unstable in calculations. This is a strong indication that
sakaton potentials optimized here as well as the Sakata model itself do capture some
important aspects of the physics of hadrons.

The most troublesome are calculated elastic scattering cross sections that deviate
significantly from experiments, as shown in Figs. 2 - 5. To understand this behavior,
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Table 6: Binding energies (with respect to complete dissociation) of hypernuclei.
Sakaton Nuclear Exp. Binding Calc. Binding
composition symbol energy (MeV) [20] energy (MeV)

pΛ 0 0
nΛ 0 0
ΛΛ 0 0
ppΛ 0 0.52
pnΛ 3

ΛH 2.35 1.30
nnΛ 0 0.52
pΛΛ 0 0.72
nΛΛ 0 0.72
ΛΛΛ 0 diverged

we can turn to differential cross sections for pp collisions at
√
s = 19.4 GeV shown in

Fig. 6. According to (3), (4), and (5), the differential cross section dσ/dt as a function
of the transferred momentum

√
−t/c is proportional to the Fourier transform (4) of

V (r). Thus all features on the graph 6 should be traceable to their origins in the shape
of the position-space interaction potential. For example, the characteristic dip on the
theoretical dσ/dt(t) curve at t ≈ −0.1 GeV 2 has its explanation in the fact that the pp
potential (see Fig. 1) changes its sign around r ≈ 0.65 fm from repulsive to attractive.
It is likely that a similar dip on the experimental curve has the same nature, though
it is shifted to higher momenta (t ≈ −1.5 GeV 2) with respect to our result.

The largest discrepancies are at high transferred momenta. Experimental values
drop sharply at t < −0.1 GeV 2, but our calculated cross section remains almost con-
stant there, which is the reason for overestimation of the total elastic cross section
in our model. This slow asymptotic decline of the Fourier transform (dσ/dt) reflects
singular character of the position-space interaction potential (2) at r = 0. So, it is
reasonable to assume that a better agreement with scattering data can be achieved if,
instead of Yukawa-type potentials (2), we choose non-singular sakaton-sakaton interac-
tions, like V (r) ∝ e−αr or V (r) ∝ e−αr2 . Parameter optimization for such interactions
is currently underway.

The author is grateful to Dr. A. V. Shebeko for enlightening discussions, critical
comments, and continuing support.
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Figure 6: Differential cross section dσ/dt for elastic pp collisions at
√
s = 19.4 GeV.

Experimental data from [21].
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