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Abstract: In the paper it is demonstrated that the particular form of CHSH, S =

E{A(1)[B(1) − B(2)] − A(2)[B(1) + B(2)]} with, S maximally 2 and minimally−2, for

A and B functions ∈ {−1, 1}, is not generally valid. The nonzero probability that local

hidden extra parameters violate the CHSH, is not eliminated with basic principles derived

from the CHSH.
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1 Introduction and test of the CHSH

The CHSH inequality is an element in the discussion about the existence or nonexistence

of additional local hidden parameters [1]. The CHSH inequality [2] is derived from Bells

formula for the correlation [3], E(a, b), between distant spin measurements with setting

setting parameters a and b. Generally,

E(a, b) =

∫
dλρλAλ(a)Bλ(b) (1.1)

In (1.1) we can identify the probability density ρλ ≥ 0, with
∫
dλρλ = 1. The λ are

introduced to explain the correlation and need to have a local effect. This can e.g. be

accomplished [5] if a λ1 is assigned to the A measurement instrument and λ2 to the B

instrument. Furthermore, the measurement functions Aλ(a) and Bλ(b) both project in

{−1, 1} to represent binairy spin variables (e.g. up=1, down=-1). The CHSH inequality is

based on the following expression,

S = E(1, 1)− E(1, 2)− E(2, 1)− E(2, 2) (1.2)

The quartet of setting pairs Q = {(1, 1), (1, 2), (2, 1), (2, 2)} occurs random in a series of

N spin measurements of entangled particle pairs. Alice and Bob are two assitents in the

experiment who, per trial or particle pair measurement, randomly select the setting of

their measurement instrument. The argument in favor of the CHSH inequality [4] and

against a possible probability loophole [5] is as follows. From (1.1) and (1.2) we may write,

suppressing the hidden variables index λ, notation for the moment,

S = E{A(1)[B(1)−B(2)]−A(2)[B(1) +B(2)]}. (1.3)

According to [4], because, A and B are both ∈ {−1, 1}, we see that when B(1) = B(2),

then S = ±2, while, when B(1) = −B(2), it again flollows, S = ±2. Hence, |S| based

on (1.1) cannot be larger than 2 and therefore the nonzero probability of |S| > 2 with

a local hidden variables model of [5] must be based on a mistake. It will be demon-

strated in the next section that this claim is untrue. In the paper we show that this

argument does not hold in general. The loophole paper [5] has the intention to derive a

test of the strength of conclusions that can be derived from the CHSH inequality. Tests

of strength are not uncommon in statistcs. In [5] this is done via a reformulation of Bells
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formula. Let us define sets based on the difference E(a, b) − E(x, y), (a, b) and (x, y)

are different settings. We have, Ω+(a, b;x, y) = {λ |Aλ(a)Bλ(b) = Aλ(x)Bλ(y) = +1},
together with Ω−(a, b;x, y) = {λ |Aλ(a)Bλ(b) = Aλ(x)Bλ(y) = −1} and Ω0(a, b;x, y) =

{λ |Aλ(a)Bλ(b) = −Aλ(x)Bλ(y) = ±1}. The three sets are disjoint and if Λ denotes the

universe set of the λ variables we also have Λ = Ω+(a, b;x, y)∪Ω−(a, b;x, y)∪Ω0(a, b;x, y).

Note that in E(a, b)− E(x, y) only the λ ∈ Ω0(a, b;x, y) contribute. Therefore

E(a, b)− E(x, y) = −2

∫
λ∈Ω0(a,b;x,y)

Aλ(x)Bλ(y)dλ (1.4)

If subsequently, E(a, b) = 0 and we write Ω′0(x, y) = Ω0(a, b;x, y) and (a, b) such that

E(a, b) = 0, then

E(x, y) = 2

∫
λ∈Ω′0(x,y)

ρλAλ(x)Bλ(y)dλ (1.5)

With E(x, y) = ET (x, y). Subsequently from E(a, b) = 0 it follows [5] that,

EC(x, y) = 2

∫
λ∈Ω′+(x,y)

ρλdλ− 2

∫
λ∈Ω′−(x,y)

ρλdλ (1.6)

and, of course, EC(x, y) = E(x, y) via E(a, b) = 0.

The settings that we employ are, for Alice, 1A = (1, 0, 0)T and 2A = (0, 0, 1)T . The

superscript T means transposed of a vector. For Bob we take, 1B = 1√
2
(1, 1, 0)T and

2B = 1√
2
(−1, 0,−1)T . If the A and B indices in 1A etc, are not necessary they will

be omitted. With this selection of setting vectors and taking the quantum correlation

innerproduct 〈a, b〉 =
∑3

i=1 aibi, the S from (1.2) will produce |S| = 3√
2
> 2. Like in [5] we

take the probability density, ρλ = ρλ1,λ2 and ρλ1,λ2 = ρλ1ρλ2 . The separate λ1, is assigned

to A and λ2, is assigned to B. For, j = 1, 2,

ρλj = {
1√
2
, λj ∈

[
− 1√

2
, 1√

2

]
= Λj

0, λj /∈
[
− 1√

2
, 1√

2

] (1.7)

with the universal set, Λ = Λ1 × Λ2. Furthermore, Ω′±(x, y), is the Cartesian product of a

λ1 and a λ2 interval, i.e. Ω′±(x, y) = Ω′A±(x)× Ω′B±(y). Similar as in [5] let us take

Ω′A±(1) ∈
{
∅, {λ1 | − 1 + 1√

2
≤ λ1 ≤ 1√

2
}
}
, Ω′B±(1) ∈

{
∅, {λ2 | − 1√

2
≤ λ2 ≤ 0}

}
Ω′A±(2) ∈

{
∅, {λ1 | − 1√

2
≤ λ1 ≤ 1− 1√

2
}
}
, Ω′B±(2) ∈

{
∅, {λ2 | 0 < λ2 ≤ 1√

2
}
} (1.8)

Note,
∫
λj∈∅ ρλjdλj = 0. The following form will be used in the study of (1.3),

EC(x, y) =

∫
Ω′A+(x)

dλ1

∫
Ω′B+(y)

dλ2 −
∫

Ω′A−(x)
dλ1

∫
Ω′B−(y)

dλ2 (1.9)

In order to have a similar approach as in (1.3) we introduce θ··,·(x) forms will be defined

from the sets in (1.8). For instance let us define

θ±Aλ1(x) = { 1, λ1 ∈ Ω′A±(x) 6= ∅,
0, λ1 /∈ Ω′A±(x).

(1.10)
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We note that θ±Aλ1(x) = 0, when, Ω′A±(x) = ∅. Similarly,

θ±B λ2(y) = { 1, λ2 ∈ Ω′B±(y) 6= ∅,
0, λ2 /∈ Ω′B±(y).

(1.11)

and θ±B λ2(y) = 0 when Ω′B±(y) = ∅. Given the expressions in (1.9) - (1.11), the S given in

(1.3) can be similarly given by

S =
∫

Λ1
dλ1

∫
Λ2
dλ2[θ+

Aλ1
(1)θ+

B λ2
(1)− θ−Aλ1(1)θ−B λ2(1)

−θ+
Aλ1

(1)θ+
B λ2

(2) + θ−Aλ1(1)θ−B λ2(2)

−θ+
Aλ1

(2)θ+
B λ2

(1) + θ−Aλ1(2)θ−B λ2(1)

−θ+
Aλ1

(2)θ+
B λ2

(2) + θ−Aλ1(2)θ−B λ2(2)]

(1.12)

Suppose we take the following values for the θ··,· ∈ {0, 1} variables in (1.12).

θ+
Aλ1

(1) = θ+
B λ2

(1) = 1, θ−Aλ1(1) = 1, θ−B λ2(1) = 0,

θ−Aλ1(2) = θ−B λ2(2) = 1, θ+
Aλ1

(2) = θ+
B λ2

(2) = 0.
(1.13)

The possibility of selection of θ··,· ∈ {0, 1} such as in (1.13) cannot be rejected. With

this selection of θ··,· ∈ {0, 1} variables, possible confusion of ”multiple random models” is

avoided. The averaging over models L such as was done in [4] does not apply to the present

case. Its use in [4] was already questionable. In [5] there is only one single fixed model

with random input. In the present paper the line of reasoning presented in (1.3) which was

also used in [4] to reject the conclusions from [5] leads us to

S =

∫ + 1√
2

−1+ 1√
2

dλ1

∫ 0

− 1√
2

dλ2 +

∫ + 1√
2

−1+ 1√
2

dλ1

∫ 1√
2

0
λ2 +

∫ 1− 1√
2

− 1√
2

dλ1

∫ 1√
2

0
dλ2 (1.14)

Hence, S = 3√
2

and therefore |S| > 2 with a single fixed local hidden variables model where

the method of deriving S is similar to the way it is used in [4].

2 Conclusion & Discussion

We conclude that the conjecture in [4] that ”there must be a mistake in [5]” is unjustified

and that indeed local models can violate the CHSH criterion with nonzero probability. A

possible objection that A and B functions do not exist is unfounded. Both EC as well as

ET are equivalent to the same Bell formula. Conclusions for EC are valid for ET and vice

versa. In this paper it was demonstrated that the step from term-by-term: S = E(1, 1)−
E(1, 2)−E(2, 1)−E(2, 2), to compact S = E{A(1)[B(1)−B(2)]−A(2)[B(1) +B(2)]} and

therefore S for A and B both ∈ {−1, 1} varying between and including −2 and 2, does

not hold in all cases. If the step from term-by-term to compact is allowed in the original

expression of Bells formula then it is allowed in the Ω set analysis of Bells formula in [5].

We showed that a single fixed model of local hidden variables may violate CHSH bounds.

Therefore, local hidden variables in e.g. tHoofts predeterminism [6] or in mirror matter [7],

[8], [9], [10], [11] are still a possibility for the explanation of the entanglement correlation.

Perhaps there is no explanation beyond randomness. It is reasonable to expect that this

conclusion is arrived at with properly tested statistics.
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