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Abstract

To extend the standard model to Planck scale energies I propose a phenomenological
model of quantum black holes and dark matter. I assume that inside any black hole
there is a core object of length scale LPlanck. The core is proposed to replace the singu-
larity of general relativity. A simple phenomenological schematic model is presented for
the core as quantum fields of SO(10) grand unified theory. A survey is made of calcula-
tional models that could support or supplement the present scheme and of theoretical
frameworks for future developments.
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1 Introduction

The motivation behind the model described here is to find an economic way to go
beyond the standard model (BSM), including mini black holes, inflation and the model
of renormalization group improved quantum gravity. This short note is hoped to be
a step forward in exploring the role of Planck scale gravity in particle physics and
inflationary universe but any complete theory of quantum gravity (QG) remains beyond
the scope of this note.

I made earlier a gedanken experiment of what might happen when exploring a mini
black hole deep inside with a probe. In [1] I made two assumptions

(1) Inside any black hole there is a three dimensional integral part core of spin 0 ( 1
2 ).

The core has an associated length scale of the order LPlanck. The core is called here the
gravon, and gravion if its a fermion.

(2) The black hole singularity of general relativity is replaced by the core.

This model is not designed to give new predictions for cosmic microwave background
(CMB), or any other, measurements. Most current models compare very well with all
available data. The purpose of the model is to take a new look inside black holes. 1

With the Planck scale having its the conventional value 1019 GeV finding a gravon
is hard. Gamma-ray signals from the sky may be a promising way. A gamma-ray, or
jet, with energy half the Planck mass would be a favorable signal for the model. In fact,
primordial black holes (PBH) with mass about 1015 g will be evaporating today and their
abundance is constrained by the flux of gamma-rays, for a comprehensive treatment see
[2]. If the lifetime could be estimated experimentally it would give information of
the internal properties of a black hole. A long lifetime would indicate gravitational
and/inflationary matter properties of the internals of BHs while a short lifetime would
be a sign of SM particle internals including QCD contributions.

In this note I disclose the physical motivation and description of the model. In
section 2 I discuss the core qualitatively and in subsection 2.2 alternative candidates for
modeling quantum black holes are being searched. From this subsection (2.2) on up to
section 5 this note is a survey of literature. Section 3 is devoted to inflation mechanisms
and the Starobinsky model of gravity. In 4 I give some hints of what may come after a
simple model turns inadequate. I consider higher derivative gravity, issues of conformity
in extra dimensions and a model in string theory. I finish in section 5 with conclusions.
What is not discussed here is the horizon, which has been extensively treated in the
literature after the AMPS paper [3]. Excluded are also most QG candidate theories like
String Theory and Loop Quantum Gravity. Dark energy is left for future considerations.

2 The Black Hole Core

2.1 Properties of the Gravon

Properties of the gravon model are the following:

(i) the gravon is a critical state between a minimum energy classical black hole, with en-
ergy just above MPlanck, and a quantum field with maximum energy just below MPlanck,

(ii) the critical state makes a transition up in energy to a black hole by absorbing a
graviton and down to a fireball by emitting a graviton 2. The fireball does not have

1An illustrative comparison might be to see the core of a mini hole as a peeled apple.
2This reminds me of the ’one-graviton’ level interaction in [4] proposed to explain a wholly different

process of collapse of the quantum state vector
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a horizon and it decays explosively into SM particles. Properties of black holes, other
than the core, are beyond the scope of this note,
(iii) for calculational purposes the fireball can be approximated by a heavy Higgs-like
scalar. The energy scale is 2-3 orders of magnitude above the grand unified theory
(GUT) scale. I believe unification of the SM interactions takes place and hence a model
is needed for it. SO(10) is a suitable GUT group which accommodates all one generation
quarks and leptons in a 16 dimensional spinorial representation (16). Therefore at the
energy considered, all particles have zero mass, all interactions have the same strength,
all gauge bosons (45) can be produced freely and all quarks can transform into leptons.
The Higgs come in the representations (10), (16) and (45). Gravity is not, for the
present, part of unification,
(iv) the gravon is a horizonless remnant of a thermally end-radiated black hole, either
stable or with some (short I suppose) lifetime [5]. Remnants have no singularity or
information loss problems, see the recent review [6].

In the rest of this section a survey is made of aspects of gravity relevant in one way
or another for the present scheme.

2.2 Modeling the Core

The core is a finite lifetime bunch of energy, originating from vacuum fluctuation or
black hole decay. I consider a few different model cases below which might give insight
into the quantum nature of the core. There is a large and ever increasing amount of
models and calculations in the literature under the general title of quantum gravity.
The modern view is that general relativity forms a quantum effective field theory at low
energies upon which models can be built. For cosmology, the point of view advocated
in this note gives an extremely minimal time interval before the big bang for any major
effect of quantum gravity.

2.2.1 Einstein-Dirac Cosmology

The singularity of general relativity is a property independent of the size of the system,
whether the whole universe or a mini black hole. I start with an example from the
large scales. The work in [8] gives indication of singularity avoidance in Friedmann-
Robertson-Walker (FRW) cosmology. Their analysis leads to the formation of a fermion
condensate, instead of the singularity, and a bouncing scale function. I summarize [8]
as follows.

The authors study Einstein-Dirac (ED) equations

Rij −
1

2
Rδij = 8πκT ij (1)

(D −m)Ψ = 0 (2)

where T ij is the energy-momentum tensor of the Dirac particles, κ is the gravitational
constant, D is the Dirac operator and Ψ the wave function. For metric the closed
Friedmann-Robertson-Walker is chosen

ds2 = dt2 −R2(t)dσ2 (3)

where R is the scale function and dσ2 is the line element on the unit 3-sphere

dσ2 =
dr2

1− r2
+ r2dθ2 + r2sin2θdφ2 (4)
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where r, θ and φ are the standard polar coordinates. The Dirac operator in this metric
is written as

D = iγ0

(
∂t +

3Ṙ(t)

2R(t)

)
+

1

R(t)

(
0 DS3

−DS3 0

)
, (5)

where γ0 is the standard Dirac matrix, and DS3 is the Dirac operator on the unit
3-sphere. The operator DS3 has discrete eigenvalues λ = ± 3

2 ,±
5
2 , . . ., corresponding

to quantization of momenta of the particles. The Dirac equation is separate with the
ansatz

Ψλ = R(t)−
3
2

[
8πκ

3

(
λ2 − 1

4

)]− 1
2
(
α(t) ψλ(r, ϑ, ϕ)
β(t) ψλ(r, ϑ, ϕ)

)
, (6)

where α and β are complex functions. For a homogenous system the components of the
energy-momentum tensor simplify and the time component is

8πκT tt =

[
m
(
|α|2 − |β|2

)
− 2λ

R
Re(αβ)

]
. (7)

Substituting ψ and T ji into the Einstein-Dirac equation one gets

i
d

dt

(
α
β

)
=

(
m −λ/R
−λ/R −m

)(
α
β

)
(8)

Ṙ2 + 1 =
m

R

(
|α|2 − |β|2

)
− λ

R2

(
βα+ αβ

)
. (9)

With the ansatz (6) all single particle wave functions have the same time dependence
thus they form a coherent macroscopic quantum state. The fermionic many-particle
state is a spin condensate.

The ED equations further reduce to ordinary differential equations involving the
scale function R(t) and the complex functions α(t) and β(t). In the limits λ = 0 and
m = 0 the equations reduce to the Friedmann equations for dust and radiation universes,
respectively. For large R the universe behaves classically as in the dust case. But near
the singularities big bang and big crunch quantum effects change the situation. Under
certain conditions Ṙ can become zero and change sign even for small values of R. Thus
the formation of a big bang or big crunch is prevented. This effect is called the bouncing
scale function.

2.2.2 Asymptotically Free Quantum Gravity

Building on higher derivative terms in the Einstein-Hilbert action, super-renormalizable
and asymptotically free theories of gravity have been discussed in the literature [9], see
also [10]. Asymptotic freedom removes the singularity. Secondly, asymptotic freedom
due to higher derivative form factor causes an effective negative pressure. Repulsive
gravity at high density produces a bounce of a black hole. Black holes in fact never
form. A distant observer sees a long lifetime for the trapped surface and interprets it
as a black hole. The bounce is not given by Heisenberg uncertainty but follows from
the dynamics of the system.

In [9] the following non-polynomial extension of the quadratic gravitational action
of [11] has been considered
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S =

∫
d4x

2
√
|g|

κ2

[
R−Gµν

V (−�/Λ2)−1 − 1

�
Rµν

]
, (10)

where κ2 = 32πGN and Λ is the Lorentz invariant energy scale. Its value is of the order
of Planck mass. The form factor, an entire function V contains the non-polynomial
property of the theory. V cannot have poles in the complex plane to ensure unitarity
and it must have at least logarithmic behavior in the UV to give super-renormalizability
at the quantum level. The theory reduces to general relativity in the low energy limit
since all the corrections to the Einstein-Hilbert action are suppressed by the factor Λ−1.

The form factor is related to the propagator and to the effective potential of the
theory. An example of a form factor is

V (z)−1 = exp(zn) (11)

where z = −�/Λ2 and n is a positive integer. String theory suggests n = 1. These
theories have only the graviton pole. There are no ghosts or tachyons. The UV is
dominated by the bare action, counterterms are negligible. Further details of these
theories are discussed in [9].

It is known that if one adds all quadratic curvature invariants to the Einstein-Hilbert
action the resulting theory is renormalizable at the price of ghost modes [11]. In string
theory the Einstein-Hilbert action is the first term of an infinite series containing powers
of the curvature tensor and its derivatives.

According to Narain and Anishetty [12] the behavior of running coupling constant
in the coupled system of higher derivative gravity and gauge fields is renormalizable to
all order loops. The leading contribution to the gauge coupling beta function comes
entirely from quantum gravity effects and it vanishes to all order loops.

In [12] the authors study fourth order higher derivative gravity which is claimed
to be renormalizable to all loops [11] and unitary [13]. The motivation for their
study came from the realization that at one loop four kinds of divergences appear√
−g,
√
−gR,

√
−gRµνRµν and

√
−gR2. They consider the following higher derivative

gravity action in dimensions 2 ≤ d ≤ 4

S =

∫
d4x
√
−g

16πG

[
−R− 1

M2

(
RµνR

µν − d

4(d− 1)
R2

)
+

(d− 2)ω

4(d− 1)M2
R2

]
(12)

where M has dimension of mass and ω is dimensionless. There are negative norm states,
the propagator of the spin 2 massive mode appears with wrong sign violating unitarity
at tree level. It was found though that in a certain domain of coupling parameter space,
large enough to include known physics, the one loop running of gravitational parameters
makes the mass of spin 2 massive mode behave in such a way that it is always above
the energy scale being studied.

For our scheme asymptotically free quantum gravity is very interesting but there
may not be at the moment general consensus whether it works as hoped.

2.2.3 Asymptotic Safety

Asymptotic safety was proposed by Weinberg [14] in 1976 as a condition of renormal-
izability, for a thorough review see [15]. It is based on a nontrivial, or non-Gaussian,
fixed point (NGFP) of the underlying renormalization group (RG) flow for gravity. It
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is nonperturbative in character and it guarantees finite results for measurable quanti-
ties. The method for investigation of this scenario is functional renormalization group
equation (FRGE) for gravity. The FRGE defines a Wilsonian RG flow on a theory
space which consists of all diffeomorphism invariant functionals of the metric gµν of
the type occuring in the action of general relatvity. From this construction emerges a
theory called Quantum Einstein Gravity (QEG). QEG is not a quantization of classical
general relativity, but it is consistent and predictive theory within the framework of
quantum field theory.

The nature of the fundamental degrees of freedom is of secondary importance. From
the viewpoint of renormalization theory it is the universality class that matters, not the
particular choice of dynamical variables. Once a functional integral picture has been
adopted, even nonlocally and nonlinearly related sets of fields or other variables may
describe the same universality class and hence the same physics.

The method of ref. [16] uses the effective average action Γk, which is background
independent. The RG scale dependence is governed by the FRGE of ref. [17]

k∂kΓk[Φ, Φ̄] =
1

2
Str

[(
δ2Γk

δΦAδΦB
+Rk

)−1

k∂kRk

]
. (13)

where ΦA is the collection of all dynamical fields and Φ̄A denotes their background
counterparts. Rk is an infrared cutoff which vanishes for p2 � k2 and provides a k-
dependent mass term for fluctuations with momenta p2 � k2. Solutions of the FRGE
give families of effective field theories Γk[gµν ], 0 ≤ k <∞, labeled by the coarse graining
scale k. The solution Γk interpolates between the microscopic action at k →∞ and the
effective action Γk→0.

Suppose there is a set of basic functionals Pα[·]. Any functional can be written as a
linear combination of the Pα’s. The the solutions Γk of the FRGE have expansions of
the form

A[Φ, Φ̄] =

∞∑
α=1

ūα Pα[Φ, Φ̄] . (14)

The basis Pα[·] may include local field monomials and non-local invariants. The gener-
alized couplings ūα are used as local coordinates. Or use a subset of couplings, so called
essential couplings, which cannot be absorbed by a field reparametrization. The method
is non-perturbative but truncations have to be made to the expansions of solutions.

Expanding Γk as above and inserting into FRGE one obtains a system of infinitely
many coupled differential equations for the ūα’s

k∂k ūα(k) = βα(ū1, ū2, · · · ; k) , α = 1, 2, · · · . (15)

which can be solved using analytical or numerical methods.
A simple ansatz for action is the Einstein-Hilbert action where Newton’s constant

Gk and the cosmological constant Λk depend on the RG scale k. Let gµν and ḡµν denote
the dynamical and background metric, respectively. The effective action then satisfies
in arbitrary spacetime dimension d

Γk[g, ḡ, ξ, ξ̄] =
1

16πGk

∫
ddx
√
g
(
−R(g) + 2Λk

)
+ Γgfk [g, ḡ] + Γghk [g, ḡ, ξ, ξ̄] (16)

where R(g) is the scalar curvature from metric gµν , Γgfk denotes the gauge fixing action

and Γghk the ghost action with the ghost fields ξ and ξ̄.
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The corresponding β-functions describing the evolution of the dimensionless Newton
constant gk = kd−2Gk and dimensionless cosmological constant λk = k−2Λk, were
derived the first time in [16] for any value of the spacetime dimensionality. The most
important result is the existence of a non-Gaussian fixed point suitable for asymptotic
safety. It is UV-attractive both in g- and λ-directions (roughly λ ≈ .35 and g ≈ .4).

In the study of [18] it was shown that for r → 0 the RG improved black hole metric
approaches that of de Sitter space. This means that the quantum corrected spacetime is
completely regular, free from any curvature singularity. The improved regularity comes
because the 1/r-behavior of fclass = 1− 2G0M/r is tamed by very rapidly vanishing of
the Newton constant at small distances.

A heavy black hole obeys the classical relation TBH ∼ 1/M . The mass of the hole
is reduced by the radiation the temperature increases. This tendency is opposed by
quantum effects. Once the mass is as small as Mcr ∼MPlanck the temperature reaches
its maximum value TBH(Mcr) [18]. For even smaller masses it drops very rapidly and
vanishes at or below the MPlanck. In the present model the microscopic black hole is
supposed have a remnant which does not Hawking radiate any more.

Asymptotic safety is an important theoretical tool for quantum gravity. The meth-
ods used to derive the result are relevant to our scheme, even though the analysis does
not support asymptotic freedom. On the other hand, the FRGE analysis necessitates
approximations, like series truncations with unknown accuracy, and contains a number
of field theory subtleties.

2.2.4 Sub-Planckian Black Holes

In [19] an approach with a more extensive length scale, including sub-Planckian, is
considered although with the same type of goals as in this note. The authors discuss
the concept of mass using the Komar integral and find that this provides a useful way
of linking black holes and elementary particles. Their definition of mass suggests that
gravity is effectively 2-dimensional near the Planck scale.

The Compton wave length RC = ~/(Mc) and Schwarzschild radius RS of a black
hole are equal at the Planck scale. As one approaches the Planck point from the left in
Fig. 1, it has been argued [21] that the Heisenberg uncertainty principle (HUP) should
be replaced by a generalized uncertainty principle (GUP) of the form

∆x >
~

∆p
+

(
αL2

Planck

~

)
∆p (17)

where α is a dimensionless constant (usually assumed positive) which depends on the
particular model and the factor of 2 in the first term has been dropped.

If one rewrites (17) using the substitution ∆x→ R and ∆p→ cM one gets

R > R′C ≡
~
Mc

+
αGM

c2
=

~
Mc

[
1 + α

(
M

MPlanck

)2
]

(18)

This expression might be regarded as a generalized Compton wavelength, the last term
representing a small correction as one approaches the Planck point from the left.

The GUP has important implications for the black hole horizon size, as can be seen
by examining what happens as one approaches the intersect point from the right Fig. 1.
In this limit, it is natural to write (18) as

R > R′C =
αGM

c2

[
1 +

1

α

(
MPlanck

M

)2
]

(19)
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Figure 1: The division of the (M,R) diagram into the classical, quantum, relativistic and
quantum gravity domains. - This figure is from [19] with permission.

and this represents a small perturbation to the Schwarzschild radius for M � MPlanck

if one assumes α = 2. There is no reason for anticipating α = 2 in the heuristic
derivation of the GUP. However, the factor of 2 in the expression for the Schwarzschild
radius is precise, whereas the coefficient associated with the Compton term is somewhat
arbitrary. This motivates an alternative approach in which the free constant in (18) is
associated with the first term rather than the second. One then replaces Eqs. (18) and
(19) with the expressions

R′C =
β~
Mc

[
1 +

2

β

(
M

MPlanck

)2
]

(20)

and

R′S =
2GM

c2

[
1 +

β

2

(
MPlanck

M

)2
]

(21)

for some constant β, with the second expression being regarded as a generalized event
horizon (GEH).

An important caveat is that (17) assumes the two uncertainties add linearly. On the
other hand, since they are independent, it might be more natural to assume that they
add quadratically [20]:

∆x >

√(
~

∆p

)2

+

(
α`2Pl∆p

~

)2

. (22)

One refers to Eqs. (17) and (22) as the linear and quadratic forms of the GUP. Adopting
the β formalism, then gives a unified expression for generalized Compton wavelength
and event horizon size

R′C = R′S =

√(
β~
Mc

)2

+

(
2GM

c2

)2

, (23)

leading to the approximations

R′C ≈
β~
Mc

[
1 +

2

β2

(
M

MPlanck

)4
]

(24)
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and

R′S ≈
2GM

c2

[
1 +

β2

8

(
MPlanck

M

)4
]

(25)

for M � MPlanck and M � MPlanck, respectively. These might be compared to the
exact expressions in the linear case, given by Eqs. (20) and (21).

Regardless of the exact form of the GUP, these arguments suggest that there is
a connection between the uncertainty principle on microscopic scales and black holes
on macroscopic scales. This is termed the black hole uncertainty principle (BHUP)
correspondence and it is manifested in a unified expression for the Compton wavelength
and Schwarzschild radius [22]. It is a natural consequence of combining the notions
of the GUP and the GEH. Indeed, it would be satisfied for any form of the function
R′C ≡ R′S which asymptotes to RC for M �MPlanck and RS for M �MPlanck. Models
in which this function is symmetric under the duality transformation M ↔ 1/M (such
as the linear and quadratic forms given above) are said to satisfy the strong BHUP
correspondence [22].

One controversial implication of the BHUP correspondence is that it suggests there
could be sub-Planckian black holes with a size of order their Compton wavelength. One
can argue that there is only a low probability of sub-Planckian objects becoming black
holes.

The authors explore another type of solution which involves sub-Planckian black
holes but avoids some of the complications associated with the LBH solution. In partic-
ular, it implies a linear rather than quadratic form of the GUP and it does not involve
another asymptotic space.

The continuity between the Compton and Schwarzschild lines suggests some link
between elementary particles and sub-Planckian black holes. However, one might prefer
to maintain a distinction between these objects. For example, the function |∆x| has a
minimum at 0 for models with α < 0 but with a discontinuity in the gradient. Since
R′C = R′S = 0 at this point, one effectively has G → 0 (no gravity) and ~ → 0 (no
quantum discreteness) The distinction between particles and black holes could also be
maintained with more general forms of the GUP and GEH.

In the standard picture, the Schwarzschild solution is obtained by solving Einstein’s
equations in vacuum and matching the metric coefficients with the Newtonian potential
as a boundary condition to fix the integration constant. This constant relates to the
mass specified by the Komar integral [23, p. 251]:

M ≡ 1

4πG

∫
∂Σ

d2x
√
γ(2) nµσν∇µKν (26)

where Kν is a timelike vector, Σ is a spacelike surface with unit normal nµ, and ∂Σ
is the boundary of Σ (typically a 2-sphere at spatial infinity) with metric γ(2)ij and
outward normal σµ.

The authors consider only the particle case in the sub-Planckian regime and write
(26) as

M ≡
∫

Σ

d3x
√
γ nµKνT

µν ' −4π

∫ RC

0

dr r2T 0
0 (27)

where γ is the determinant of the spatially induced metric γij , Tµν is the stress-energy
tensor and T 0

0 accounts for the particle distribution on a scale of order RC. This
corresponds to the rest mass appearing in the expression for the Compton wavelength,
RC = ~/(Mc).
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Consider now a decaying black hole with mass M & MPlanck. The fate of such an
object is an open problem in quantum gravity with at least three possible scenarios for
the end-point of evaporation.
(1) The black hole keeps decaying semi-classically with a runaway increase of the tem-
perature and a final explosion involving non-thermal emission of hard quanta. In this
case, the energy momentum tensor exhibits an integrable singularity, T 0

0 = −Mδ(~x),
and the Komar energy has a standard profile. However, this scenario may be criticized
since it relies on classical and semi-classical arguments applied to a quantum gravity
dominated regime.
(2) Quantum gravity effects modify the classical profile of the mass-energy distribution,
so that T 0

0 6= −Mδ(~x). This happens in a variety of proposals, including asymp-
totically safe gravity, non-commutative geometry, non-local gravity and gravitational
self-completeness, for refs. see [19]. In all these cases, the end-point of evaporation
turns out to be a stable zero-temperature extremal black hole configuration, preceded
by a positive heat capacity cooling phase. The Komar energy would again be defined by
(26), while the size of the black hole remnant would correspond to the natural ultravi-
olet cut-off of quantum gravity. This means that the endpoint of evaporation separates
the two phases, i.e. particles and black holes. Such a scenario has the following three
properties:

• singularity avoidance or inaccessibility

• non-singular final stage of evaporation

• consistent definition of black hole size with RS > `Pl for all masses.

Only a self-consistent theory of quantum gravity can confirm this possibility.
(3) In the absence of further theoretical indications or experimental evidence, the au-
thors explore a third scenario, which reverses the usual logic but still assumes the above
three properties. In so far as the black hole undergoes a final stage of evaporation, the
major contribution to integral (26) will be

M = −4π

∫ `Pl

0

dr r2T 0
0 (28)

where T 0
0 accounts for an unspecified quantum-mechanical distribution of matter and

energy. One still has M 6= −Mδ(~x) but the profile differs from the second scenario.
Integral (28) is generally not known and might lead to a completely different definition
of the Komar energy. Some anomalies are expected to emerge at the Planck scale since
they already emerge at the GUP level.

3 Inflation

It is assumed that the universe originated from a primordial quantum fluctuation in
vacuum, creation of a gravon field in a false vacuum. Qualitatively it is expected that
(1) at t ∼ 0 in the tiny very early spacetime the curvature value R was very high, near
singular, and a quantum fluctuation produced a gravon field of an associated length
scale of the order LPlanck,
(2) the created gravon is in a false vacuum with energy higher than the true vacuum
energy. The subsequent processes started the inflationary phase of the universe. 3 The
core has an applicable lifetime on the inflation time scale (between 10−33 and 10−32

sec).

3The common multiverse picture of bubbles as universes is not excluded but it does not change conclusions
for this model. The bubble collision rate can be made small by the vacuum tunneling potential height.
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(3) dark matter consists of neutral matter around a core, i.e. black holes.

3.1 False Vacuum and Higgs Inflation

Inflation [24, 50, 26] stretches the initial quantum vacuum fluctuations to the size of
the present Hubble patch, seeding the initial perturbations for the cosmic microwave
background radiation and large scale structure in the universe [27]. For a theoretical
review, see [28]. Since inflation dilutes all matter it is pertinent that after the end of
inflation the universe is filled with the right thermal degrees of freedom: the standard
model particles together with dark matter. For a review on pre- and post-inflationary
dynamics, see [29].

The decay of the initial false vacuum is a nucleation process in a first order phase
transitions [30]. It is initiated by the materialization of a bubble of true vacuum within
the false vacuum by quantum tunneling causing a change in the cosmological constant
[31].

I assume the tunneling of the scalar gravon takes place from a de Sitter vacuum to a
lower energy vacuum, de Sitter or flat, by the one bubble inflationary scenario [32, 33].
Slow roll inflation, by the scalar field potential, follows after the gravon tunneling to the
true vacuum in the standard inflationary way. The gravon decay produces primordial
black holes which slow down inflation towards exit.

The Higgs scalar field inflation action is [34, 35]

S =

∫
d4x
√
−g
[
LSM −

(
M̄2

Planck

2
+ ξ|H|2

)
R

]
(29)

where LSM is the SM Lagrangian minimally coupled to gravity, ξ is the parameter that
determines the non-minimal coupling between the Higgs and the Ricci scalar R, H is
the Higgs doublet and, as a consequence of such large non-minimal coupling, there
is a new scale in the theory, M̄Pl/

√
ξ, lower than the standard reduced Planck mass,

M̄Pl ≈ 2.43 × 1018 GeV. The part of the action that depends on the metric and the
Higgs field only (the scalar-tensor part) is

Sst =

∫
d4x
√
−g
[
|∂H|2 − V −

(
M̄2

Planck

2
+ ξ|H|2

)
R

]
, (30)

where V = λ(|H|2−v2/2)2 is the Higgs potential and v is the electroweak Higgs vacuum
expectation value. In [35] a sizable non-minimal coupling is taken, ξ > 1, because it is
required by inflation.

3.2 Starobinsky Model

Starobinsky has pointed out that quantum corrections to general relativity should be
important in the early universe. The Starobinsky model action is [36]

S =

∫
d4x
√
−g
( 1

16πG
R+

1

b
R2
)

(31)

with the dimensionless coupling b = 6M2/M2
Planck, where M is a constant of mass

dimension one, MPlanck = G−1/2, G is the Newton’s constant with scale dependence
and g is the determinant of the metric. This action creates de Sitter expansion phase
in the early universe and removes the early singularity.

Usually the Einstein term is regarded as the fundamental term, and the other terms
(higher powers in R) are secondary in the sense that they are originate from quantum

11



corrections. But one can take the view that the fundamental term is the one-loop second
term R2 rather than the linear term R.

A non-perturbative renormalization group (RG) analysis the Starobinsky action
leads to asymptotically safe (AS) gravity [14]. There exists a non-trivial, or non-
Gaussian, UV fixed point, where G is asymptotically safe and the R2 coupling van-
ishes. The starting point for RG calculations is an exact renormalization group equa-
tion (ERGE) in Wilsonian context, for details see [37]. The aim of [35] is to address
both the classical and quantum issues. The latter issue is more of a challenge, but the
authors have performed both of them carefully.

4 Theoretical Directions

When any simple model turns out inadequate one has to turn to an analysis with more
mathematical machinery. At present there are several possibilities to follow. I mention
below just a few.

4.1 Dynamic Planck Scale

Assuming scalar and fermion fields a scheme for dynamic generation of the Planck scale
with inflation seems possible as discussed in [38]. The authors aim at a model inde-
pendent analysis and make the interesting proposal that a complete theory of quantum
gravity may not even be needed because inflation is described by Einstein gravity at
energies below the Planck scale. This is supported by the model of the present note,
the quantum era of gravity occurs only extremely briefly before the big bang.

4.2 Higher Derivative Gravity

There is ample literature of higher derivative gravity but I mention only a recent paper
[39] which gives an up-to-date view to the field (authors include the originator of the
idea). The authors start with a general second-plus-fourth-order action

I =

∫
d4x
√
−g
(
γR− αCµνρσCµνρσ + βR2

)
(32)

where Cµνρσ is the Weyl tensor, the traceless part of the curvature tensor Rµνρσ, one
obtains a renormalisable system [40]. The spectrum of this theory contains [41] a
massless graviton, a massive spin-two ghost excitation with (m2)2 = γ

2α , and a massive
non-ghost spin-zero excitation with (m0)2 = γ

6β . The canonical value of γ is 1
16πG = 2

κ2 ,
where G is the 4D Newton constant. Quadratic curvature terms in the action arise in
most effective theories of quantized gravity, including string theory.

This article explores the set of static, spherically symmetric and asymptotically flat
solutions of this class of theories. From a Frobenius analysis of the asymptotic small-
radius behavior, the solution space is found to split into three asymptotic families, one
of which contains the classic Schwarzschild solution. These three families are carefully
analyzed to determine the corresponding numbers of free parameters in each. One
solution family is capable of arising from coupling to a distributional shell of matter
near the origin; this family can then match on to an asymptotically flat solution at
spatial infinity without encountering a horizon. Another family, with horizons, contains
the Schwarzschild solution but includes also non-Schwarzschild black holes. The third
family of solutions obtained from the Frobenius analysis is nonsingular and corresponds
to ‘vacuum’ solutions. In addition to the three families identified from near-origin
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behavior, there are solutions that may be identified as ‘wormholes’, which can match
symmetrically on to another sheet of spacetime at finite radius.

Without a full stability analysis of the various phases of the static solution space one
can extract some partial stability information from various quasinormal mode studies of
the stability of the Schwarzschild solution itself, considered as a solution of the higher-
derivative (32) theory. This has been studied in ref. [42]. It was, firstly, found there
that the Schwarzschild solution is stable in the γR + βR2 theory with α = 0. This is
not surprising, because that theory is equivalent to ordinary general relativity coupled
to a positive-energy massive scalar field.

In ref. [42] it was also suggested that the Schwarzschild solution could become un-
stable, for nontachyonic values of (m2)2 = γ

2α , for sufficiently small values of

µW =
Mm2

M2
Pl

, (33)

where MPl is the Planck mass. ref. [42] then went on to claim, nonetheless, that detailed
analysis of the quasinormal modes of the theory (32) showed no such instability. This
conclusion has, however, been challenged more recently in ref. [43], where it is claimed
that ref. [42] erred in considering only a static S-wave potential instability. Instead,
the analysis of ref. [43] does find Schwarzschild S-wave instabilities for µW . 1 by
treating the Ricci tensor Rµν as an effective massive field. This instability is compared
to Schwarzschild instabilities found in massive theories of gravity [44].

Instability of the Schwarzschild solution for small black holes (i.e. small µW ) raises
the question whether a stable sector of the static solution space exists, and whether one
or another of the non-Schwarzschild solutions the authors have discussed could then
represent a stable final phase. Clearly, the relation between µW and the branch point
in the black-hole solution space could be an important issue in this regard.

4.3 Extra Dimensions

In [45] the Starobinsky model is studied from the point of view of extra dimensions,
usually taking six extra dimensions. The authors take the view that the main term is
the R2 term. The pure R2 theory does not contain any dimensional constant and is
therefore scale invariant. Scale symmetry may be spontaneously broken, eg. by coupling
to matter sector, leading to a scale Λ. The authors give an estimate of the lower limit
of scale Λ ∼ 5× 1015 GeV. This is very close to the grand unified theory (GUT) value
and the authors suggest associating higher dimensional theory with GUT.

In ten dimensional theories, originally in 5D Kaluza-Klein theory, a dilaton comes
always with gravity. If the Newton’s constant, or Planck mass, is promoted to a dy-
namical field the result is the dilaton. The dilaton field has been considered as a model
of dark energy in [46].

4.4 Non-Supersymmetric Strings

In the light of present LHC results research based on non-supersymmetric vacua is
becoming more important. In non-supersymmetric vacua almost all the moduli are lifted
up perturbatively, contrary to the supersymmetric ones which typically possess tens or
even hundreds of flat directions that cannot be raised perturbatively. An interesting
analysis of non-supersymmetric SO(16) × SO(16) heterotic string theory is presented
in [47]. It is based on the observation that there is a triple coincidence with the Higgs
potential

V = m2|H|2 + λ|H|4 (34)
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(with m2 ∼ −(90GeV )2 and λ ' 0.13) namely: quartic coupling λ, its running, and
the bare Higgs mass can all be accidentally small at around the Planck scale. This is a
direct hint for Planck scale physics in the context of superstring theory. The vanishing
bare Higgs mass implies that the supersymmetry is restored at the Planck scale and
that the Higgs field resides in a massless string state. The smallness of both λ and its
beta function is consistent with the Higgs potential being very flat around the string
scale. Such a flat potential opens up the possibility that the Higgs field plays the role
of inflaton in the early universe.

In [47] the authors study the concrete model: the SO(16)×SO(16) heterotic string
theory [48, 49]. This model breaks supersymmetry at the string scale but, unlike the
bosonic string theory in 26 dimensions, the tachyonic modes are projected out as in
the ordinary heterotic superstring theories. In the fermionic construction, the modular
invariance of the partition function restricts the allowed set of the fermion numbers in
Neveu-Schwarz (NS) and Ramond (R) sectors. The SO(16)×SO(16) model is the only
one that has neither a tachyon nor supersymmetry in ten dimensions.

There are two possibilities for the potential beyond the maximum: (i) the potential
smoothly becomes runaway (ii) the potential has another local minimum

In the latter case, the false vacuum gives a mechanism of eternal inflation. This
situation is similar to the idea of the inflation being a first order phase transition. In
the medium of the false vacuum, there appears a bubble of the electroweak vacuum due
to the tunneling. This eternal inflation in the false vacuum has caused the so-called the
graceful exit problem in the old inflation scenario [50]. However in the case (ii) there is
a down hill, slow roll and a down hill structure. The space inside the bubble experiences
the second stage of inflation hence this problem is ameliorated as one does not need let
bubbles collide.

The above described inflation scheme is close to one considered in sec. 3.1, for both
the Higgs and the gravon. May be the gravon and gravion are superpartners. Further
details should be checked out and there are a lot of subtleties to be resolved.

5 Conclusions

The present note contains a proposal of a schematic model, and references to literature
for details of existing relevant models. One can see that the structure and behavior
of Planck mass black holes has not, to my best knowledge, been discussed in terms of
GUT fields in the literature. The present model fulfills this gap. It takes a step beyond
the standard model of particles towards a model of Planck scale phenomena including
gravity, assuming the standard model is valid up to that scale.

Unfortunately not all existing calculational results concerning Planck mass region
gravity are in consensus. However, FRGE based calculations provide solid results for
Quantum Einstein gravity. Successful results are obtained also for f(R) type gravity
[51].

Independent of the details of the model or calculation there seems to be enough
evidence that black hole singularities are either avoided, by a bounce or pressure, or
they do not exist in the sense of classical relativity as in this scheme. If there would turn
out to be experimental evidence for the gravon and its lifetime could be estimated, one
would get information of the internals of black holes. The scheme of this note makes
an attempt to demystify the inside of black holes and proposes that inside the core of a
hole there are simply fields that the black hole has swallowed, i.e. the SM/GUT fields.

The scheme I propose here can be summarized as having the gravon the missing
element in quantum gravity. The present scheme supplements the models of other
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authors discussed in this note. Most of the time the gravon is hidden behind the black
hole horizon. Very near the end of the lifetime of the black hole one can see a flash of the
quantum gravon which decays instantly into SM particles. The gravon is a critical state
in the quantum transition between GR and SM/GUT. Quantization of GR, outside
black hole horizon, is not part of this scheme but it can be done independently.

The details of the present scheme remain to be developed into mathematical form,
a task one hopes to return in the future. One of the most interesting questions is what
happens to a black hole below the Planck mass value: here it is tentatively supposed
that the hole becomes particle-like quantum mechanical object which decays via GUT
SO(10) fields to broken symmetry SM particles.
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