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ABSTRACT. In this article, we present yet another characterization of Boolean
algebras and, using this characterization, establish a connection between propo-
sitional logic and Boolean algebras; in particular, we derive a deductive system
for propositional logic starting with Boolean algebras.
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1. Boolean Algebras

We adopt the following de�nition of a Boolean algebra for its closer a�nity with propositional
logic. By the series of lemmas that follow down to Theorem1.10, the de�nition is shown to
be equivalent to the usual de�nition of a Boolean algebra as a complemented distributive
lattice.

De�nition 1.1. A Boolean algebra B = (B,∨,¬) is a set B with a binary operation ∨ and
a unary operation ¬ satisfying the following condition: there exists u ∈ B such that

(1) the binary relation ≤ on B de�ned by

p ≤ q i� ¬p ∨ q = u

is a partial order, and,

(2) in this partial order, p ∨ q is the join of p and q.
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If such an element u ∈ B exists, it will be the largest element of the poset (B,≤), because
p ≤ ¬p ∨ p and ¬p ∨ p = u (i.e. p ≤ p) for any p ∈ B. We introduce a constant symbol 1 to
denote this largest element and call it the unit. We have just seen

Lemma 1.2. ¬p ∨ p = 1.

The following says that the pair (¬,¬) forms a Galois connection from the poset (B,≤)
to its dual.

Lemma 1.3. p ≤ ¬q i� q ≤ ¬p.

Proof. Indeed,

p ≤ ¬q ⇐⇒ ¬p ∨ ¬q = 1 by the de�nition of ≤ .

⇐⇒ ¬q ∨ ¬p = 1 by the commutativity of join.

⇐⇒ q ≤ ¬p by the de�nition of ≤ .

Remark 1.4. As properties of a Galois connection, Lemma1.3 implies

(1) p ≤ ¬¬p;

(2) if p ≤ q, then ¬q ≤ ¬p;

(3) ¬p = ¬¬¬p.

In fact, the following stronger conditions hold.

Lemma 1.5.

(1) p = ¬¬p.

(2) p ≤ q i� ¬q ≤ ¬p.

Proof.

(1) Since p ≤ ¬¬p by Remark 1.4(1), it su�ces to show that ¬¬p ≤ p (i.e. ¬¬¬p∨ p = 1).
But by Remark 1.4(3) and Lemma1.2,

¬¬¬p ∨ p = ¬p ∨ p = 1.

(2) The forward implication holds by Remark 1.4(2), and the reverse implication follows
from the forward implication by virtue of the equation (1) above:

¬q ≤ ¬p =⇒ ¬¬p ≤ ¬¬q
=⇒ p ≤ q
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By Lemma1.5, the mapping p 7→ ¬p is an order-reversing involution and provides an order
isomorphism between the poset (B,≤) and its dual. A constant symbol 0 is introduced by

0 := ¬1.

to denote the smallest element, and a binary operation ∧ is de�ned by

p ∧ q := ¬(¬p ∨ ¬q)

to denote the meet of p and q. The order-reversing involution p 7→ ¬p turns a join into a
meet and vice versa (de Morgan's law):

Lemma 1.6. ¬(p ∨ q) = ¬p ∧ ¬q and ¬(p ∧ q) = ¬p ∨ ¬q.

As the dual of Lemma1.2, we have

Lemma 1.7. p ∧ ¬p = 0.

A Boolean algebra (B,∨,¬) thus yields a complemented lattice (B,∨,∧,¬, 1, 0). The
following says that ¬p ∨ q gives the pseudocomplement of p relative to q in this lattice.

Lemma 1.8. r ∧ p ≤ q i� r ≤ ¬p ∨ q.

Proof. Indeed,

r ∧ p ≤ q ⇐⇒ ¬(r ∧ p) ∨ q = 1

⇐⇒ ¬r ∨ ¬p ∨ q = 1 ∗1

⇐⇒ r ≤ ¬p ∨ q

(∗1 by Lemma1.6).

The lattice (B,∨,∧) is thus Heyting, and hence distributive:

Lemma 1.9. (r ∨ s) ∧ p = (r ∧ p) ∨ (s ∧ p).

Proof. By Lemma1.8, the mappings r 7→ r ∧ p and q 7→ ¬p ∨ q form a Galois connection.
The mapping r 7→ r ∧ p thus preserves joins.

We have completed the proof of the �rst part of the following theorem.

Theorem 1.10. If (B,∨,¬) is a Boolean algebra, then (B,∨,∧,¬, 1, 0) is a complemented
distributive lattice. Conversely, if (B,∨,∧,¬, 1, 0) is a complemented distributive lattice,
then (B,∨,¬) is a Boolean algebra.

Proof. It remains to prove the second assertion. But this is immediate because

p ≤ q i� ¬p ∨ q = 1

holds in a complemented distributive lattice.

Here we introduce another abbreviation:

p→ q := ¬p ∨ q.

p → q denotes the pseudocomplement of p relative to q (recall Lemma1.8). With this
abbreviation, the condition in De�nition 1.1(1) is written as
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Lemma 1.11. p ≤ q i� p→ q = 1.

We use the following in the proof of Lemma1.13.

Lemma 1.12. The following hold in a Boolean algebra.

(1) p→ (q → r) = (p ∧ q)→ r.

(2) (p→ r) ∧ (q → r) = p ∨ q → r.

(3) p ∧ (p→ q) = p ∧ q; in particular, p ∧ (p→ q) ≤ q .

Proof. Indeed,

p→ (q → r) = ¬p ∨ (¬q ∨ r)
= (¬p ∨ ¬q) ∨ r
= ¬ (p ∧ q) ∨ r
= (p ∧ q)→ r

(p→ r) ∧ (q → r) = (¬p ∨ r) ∧ (¬q ∨ r)
= (¬p ∧ ¬q) ∨ r
= ¬ (p ∨ q) ∨ r
= p ∨ q → r

p ∧ (p→ q) = p ∧ (¬p ∨ q)
= (p ∧ ¬p) ∨ (p ∧ q)
= p ∧ q

The equations in the following lemma are used in the proof of Theorem2.17.

Lemma 1.13. The following hold in a Boolean algebra.

(1) p→ p = 1.

(2) (p→ q)→ ((q → r)→ (p→ r)) = 1.

(3) p→ p ∨ q = 1 and q → p ∨ q = 1.

(4) (p→ r)→ ((q → r)→ (p ∨ q → r)) = 1.

(5) p→ (q → (p ∧ q)) = 1.

(6) (p ∧ (p→ q))→ q = 1.

Proof.

(1) This is Lemma1.2 rewritten in the abbreviated notation.
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(2) Since we have

(p→ q)→ ((q → r)→ (p→ r)) = (p ∧ (p→ q) ∧ (q → r))→ r

by the repeated application of Lemma1.12(1), it su�ces, thanks to Lemma1.11, to
show that

p ∧ (p→ q) ∧ (q → r) ≤ r.

But by Lemma1.12(3),

p ∧ (p→ q) ∧ (q → r) ≤ q ∧ (q → r) ≤ r.

(3) Because p ≤ p ∨ q and q ≤ p ∨ q, these equations follow from Lemma1.11.

(4) By (1) and (2) in Lemma1.12,

(p→ r)→ ((q → r)→ (p ∨ q → r)) = ((p→ r) ∧ (q → r))→ (p ∨ q → r)

= (p ∨ q → r)→ (p ∨ q → r)

But (p ∨ q → r)→ (p ∨ q → r) = 1 by (1).

(5) By Lemma1.12(1),

p→ (q → (p ∧ q)) = (p ∧ q)→ (p ∧ q) .

But (p ∧ q)→ (p ∧ q) = 1 by (1).

(6) Since p ∧ (p→ q) ≤ q by Lemma1.12(3), the equation follows from Lemma1.11.

2. Propositional Logic

2.1. The algebra of propositional logic

An L-algebra de�ned below provides an algebraic model for propositional logic.

De�nition 2.1. An algebra of type L = (∨,¬), or an L-algebra, is an algebra consisting of
a binary operation ∨ and a unary operation ¬. An L-homomorphism is a map between two
L-algebras which preserves ∨ and ¬.

A Boolean algebra is an L-algebras. In fact, the class of Boolean algebras forms a vari-
ety (equationally de�ned class) of L-algebras; the following equations, due to Huntington,
constitute one of the equational axiom systems for Boolean algebras.

p ∨ (q ∨ r) = (p ∨ q) ∨ r
p ∨ q = q ∨ p

¬(¬p ∨ q) ∨ ¬(¬p ∨ ¬q) = p

Just as we did for Boolean algebras in the previous section, we de�ne the binary operation
∧ by

p ∧ q := ¬(¬p ∨ ¬q),
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and the binary operation → by
p→ q := ¬p ∨ q.

Every L-homomorphism preserves the de�ned operations ∧ and→. If h is an L-homomorphism
between two Boolean algebras, then h preserves 1; for,

h(1) = h(¬p ∨ p) = ¬h(p) ∨ h(p) = 1.

Likewise, h preserves 0.

De�nition 2.2. The category of Boolean algebras is denoted by BA and the category of
L-algebras is denoted by LA.

The one-element Boolean algebra 1 is terminal in both BA and LA.

2.2. Booleanization

De�nition 2.3. An L-homomorphism h : A→ B is called a Boolean homomorphism if its
codomain B is a Boolean algebra. A congruence θ on an L-algebra A is called a Boolean
congruence if the quotient L-algebra A/θ is a Boolean algebra.

The equivalence kernel of a Boolean homomorphism is a Boolean congruence. Conversely,
if θ is a Boolean congruence on an L-algebra A, the projection [−] : A→ A/θ is a Boolean
homomorphism. For any L-algebra A, there is a unique Boolean homomorphism from A
to the one-element Boolean algebra 1. Hence every L-algebra A has at least one Boolean
congruence, the nonproper Boolean congruence on A, consisting of a single equivalence class.

De�nition 2.4. The kernel of a Boolean homomorphism h : A→ B is the inverse image of
the unit of the Boolean algebra B, and the kernel of a Boolean congruence θ on an L-algebra
A is the equivalence class which is the unit of the quotient Boolean algebra A/θ.

We will see later that a Boolean congruence is determined by its kernel.

Theorem 2.5. Arbitrary intersection of Boolean congruences on an L-algebra is again a
Boolean congruence.

Proof. Let {θi} be a family of Boolean congruences on an L-algebraA. Then the intersection⋂
i θi is given by the equivalence kernel of the direct product

∏
i [−]θi : A→

∏
iA/θi. Since

each A/θi is a Boolean algebra,
∏

iA/θi is a Boolean algebra (the class of Boolean algebras
is a variety and thus closed under direct products). Hence

⋂
i θi is a Boolean congruence.

Corollary 2.6. The Boolean congruences on an L-algebra form a closure system and hence
a complete lattice.

De�nition 2.7. Let A be an L-algebra.

(1) The least Boolean congruence on A is denoted by ∆A or just by ∆.

(2) The nonproper Boolean congruence on A is denoted by ∇A or just by ∇.

If B is a Boolean algebra, then ∆B is the trivial equivalence relation given by equality.

Theorem 2.8. Let A be an L-algebra. If a congruence θ of A contains ∆, then θ is a
Boolean congruence.
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Proof. Since A/θ = (A/∆) / (θ/∆), A/θ is a homomorphic image of A/∆. Since A/∆ is
Boolean, so is A/θ.

Corollary 2.9. Let A be an L-algebra. The assignment θ 7→ θ/∆ yields a lattice isomor-
phism from the lattice of Boolean congruences on A to the lattice of congruences on the
Boolean algebra A/∆.

The projection [−] : A → A/∆ , or the Boolean algebra A/∆ itself, is called the
Booleanization of an L-algebra A. The Booleanization is characterized by the following
universal mapping property.

Theorem 2.10. If h : A → B is a Boolean homomorphism from an L-algebra A to a
Boolean algebra B, then there is a unique homomorphism ĥ : A/∆ → B such that the
diagram

A
[−] //

h ""

A/∆

ĥ
��
B

commutes.

Proof. The homomorphism ĥ is de�ned by

ĥ ([a]) = h (a)

for a ∈ A.

The Booleanization A 7→ A/∆ thus yields a left adjoint (a re�ector) of the inclusion
BA ↪→ LA, making BA a re�ective subcategory of LA. In fact, this is an instance of a
general result of universal algebra: every variety forms a re�ective subcategory.

2.3. Theories

A formal de�nition of a theory of an L-algebra is given below. We will soon see that a theory
is nothing but the kernel of a Boolean congruence.

De�nition 2.11. Let A be an L-algebra. A non-empty set Θ ⊆ A is called a theory of A
if it satis�es the following conditions.

(1) The binary relation .Θ on A de�ned by

p .Θ q i� ¬p ∨ q ∈ Θ

is a preorder.

(2) In this preorder, p ∨ q is a join of p and q (see (4) in Appendix); that is,

(a) p .Θ p ∨ q and q .Θ p ∨ q;
(b) if p .Θ r and q .Θ r, then p ∨ q .Θ r.

(3) Θ is upward closed with respect to .Θ; that is, if p ∈ Θ and p .Θ q, then q ∈ Θ.

The equivalence relation induced by the preorder .Θ is denoted by ≡Θ. If p ≡Θ q (i.e.
p .Θ q and q .Θ p), p and q are said to be equivalent under the theory Θ.
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Lemma 2.12. Let Θ be a theory of an L-algebra A. Then

(1) if q ∈ Θ, then p .Θ q for any p ∈ A;

(2) if p ≡Θ p′ and q ≡Θ q′, then p ∨ q ≡Θ p′ ∨ q′;

(3) p .Θ ¬q i� q .Θ ¬p;

(4) p .Θ ¬¬p;

(5) if p .Θ q, then ¬q .Θ ¬p.

Proof.

(1) By De�nition 2.11(2a), q .Θ (¬p ∨ q). Hence, by De�nition 2.11(3), q ∈ Θ implies
(¬p ∨ q) ∈ Θ, i.e. p .Θ q.

(2) See (5) in Appendix.

(3) The condition is rewritten as

(¬p ∨ ¬q) ∈ Θ i� (¬q ∨ ¬p) ∈ Θ.

Since (¬p ∨ ¬q) ≡Θ (¬q ∨ ¬p) (see (5) in Appendix), the assertion follows from De�-
nition 2.11(3).

(4, 5) The condition (3) above says that the pair (¬,¬) is a Galois connection from the
preordered set 〈A,.Θ〉 to its dual, and is thus equivalent to the conjunction of the
conditions (4) and (5).

The a�nity between the conditions (1), (2) in De�nition 2.11 and the de�ning conditions of
a Boolean algebra (De�nition 1.1) suggests the correspondence between theories and Boolean
congruences, and indeed this is the case as we see below in Theorem2.13 and Theorem2.14.

Theorem 2.13. If Θ is a theory of an L-algebra A, then the equivalence relation ≡Θ is a
Boolean congruence on A and Θ is the kernel of ≡Θ.

Proof. By (2) and (5) in Lemma2.12, ≡Θ is a congruence. We now show that Θ is an
equivalence class of ≡Θ. Let p ∈ Θ. We need to see that q ≡Θ p i� q ∈ Θ for any q ∈ A.
But by De�nition 2.11(3), q ≡Θ p and p ∈ Θ imply q ∈ Θ, and by Lemma2.12(1), q ∈ Θ and
p ∈ Θ imply q ≡Θ p. It remains to prove that the quotient L-algebra A/≡Θ is a Boolean
algebra with Θ being the unit. For this it su�ces to show that Θ satis�es the conditions (1)
and (2) in De�nition 1.1. Denote the equivalence class of p ∈ A under ≡Θ by [p], and de�ne
the binary relation ≤ on A/≡Θ by

[p] ≤ [q] i� ¬[p] ∨ [q] = Θ.

Since ¬[p] ∨ [q] = Θ i� ¬p ∨ q ∈ Θ, we have

[p] ≤ [q] i� p .Θ q.

The relation ≤ is thus nothing but the partial order induced by the preorder .Θ (see (1)
in Appendix). Since the projection [−] : A → A/≡Θ preserves joins (see (6) in Appendix),
[p] ∨ [q] = [p ∨ q] is the join of [p] and [q].
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Theorem 2.14. If θ is a Boolean congruence on an L-algebra A, then the kernel Θ of θ is
a theory of A and θ is determined by Θ.

Proof. Denote the equivalence class of p ∈ A under θ by [p], and denote the partial order of
the Boolean algebra A/θ by ≤; that is,

[p] ≤ [q] i� ¬[p] ∨ [q] = Θ.

Now de�ne the binary relation .Θ on A by

p .Θ q i� ¬p ∨ q ∈ Θ.

Since ¬[p] ∨ [q] = Θ i� ¬p ∨ q ∈ Θ, we have

p .Θ q i� [p] ≤ [q].

The relation.Θ is thus nothing but the preorder induced by the partial order≤ on A/θ, and θ
coincides with the equivalence relation ≡Θ induced by the preorder .Θ (see (3) in Appendix).
θ is thus determined by Θ. It remains to prove that Θ and .Θ satisfy the conditions in
De�nition 2.11. We have already seen that .Θ is a preorder. Since the projection [−] : A→
A/θ re�ects joins (see (6) in Appendix) and [p ∨ q] = [p] ∨ [q] is the join of [p] and [q] in
(A/θ,≤), p ∨ q is a join of p and q in (A,.Θ). Finally, Θ is upward closed in (A,.Θ) since
Θ is the largest element of (A/θ,≤).

Corollary 2.6 and the bijective correspondence between theories and Boolean congruences
we have just seen yield the following.

Theorem 2.15. The theories of an L-algebra A form a closure system and thus a complete
lattice. There is a canonical isomorphism between the lattice of Boolean congruences on A
and the lattice of theories of A.

By this isomorphism, a theory and the corresponding Boolean congruence are identi�ed
with each other and often denoted by the same symbol.

De�nition 2.16. Let A be an L-algebra.

(1) The closure system of theories of A is denoted by TA or just by T .

(2) The closure operator associated with the closure system TA is also denoted by TA or
T . Given a subset S of A, T (S) is the smallest theory of A containing S and called
the theory generated, or axiomatized, by S.

(3) The smallest theory of A, TA (∅), is denoted by ∆A or just by ∆.

(4) The set A is also denoted by ∇A or just by ∇ and called the inconsistent theory of
A. A theory is called consistent if it is not inconsistent. We also call a subset S of
A consistent (resp. inconsistent) if the theory axiomatized by S is consistent (resp.
inconsistent).

(5) A consistent theory of A is called complete if it is not properly included in any con-
sistent theory of A.

Theorem 2.17. For a non-empty subset Θ of an L-algebra A, the following are equivalent.
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(1) Θ is a theory.

(2) Θ satis�es the following:

(a) (p→ p) ∈ Θ;

(b) if (p→ q) , (q → r) ∈ Θ, then (p→ r) ∈ Θ;

(c) (p→ p ∨ q) , (q → p ∨ q) ∈ Θ;

(d) if (p→ r) , (q → r) ∈ Θ, then (p ∨ q → r) ∈ Θ;

(e) if p, (p→ q) ∈ Θ, then q ∈ Θ.

(3) Θ satis�es the following:

(a) (p→ p) ∈ Θ;

(b) ((p→ q)→ ((q → r)→ (p→ r))) ∈ Θ;

(c) (p→ p ∨ q) , (q → p ∨ q) ∈ Θ;

(d) ((p→ r)→ ((q → r)→ (p ∨ q → r))) ∈ Θ;

(e) if p, (p→ q) ∈ Θ, then q ∈ Θ.

(4) Θ satis�es the following:

(a) ∆ ⊆ Θ;

(b) if p, (p→ q) ∈ Θ, then q ∈ Θ.

(5) Θ satis�es the following:

(a) if p, q ∈ Θ, then (p ∧ q) ∈ Θ;

(b) if p ∈ Θ and p .∆ q (i.e. (p→ q) ∈ ∆), then q ∈ Θ.

Proof.

(1)⇔ (2) The conditions in (2) are just those in De�nition 2.11 written using the abbrevi-
ation p→ q := ¬p ∨ q.

(1) , (2)⇒ (4) Obvious.

(4)⇒ (3) Since p → p = 1 in any Boolean algebra (Lemma1.13(1)), (p→ p) ∈ ∆. Hence
(a) holds because ∆ ⊆ Θ. (b), (c), and (d) are shown to hold in the same way using
the equations (2), (3), and (4) in Lemma1.13.

(3)⇒ (2) To see that (b) holds, assume that (p→ q) , (q → r) ∈ Θ. Then (b) in (3) yields
(p→ r) ∈ Θ by the repeated application of (e). Similarly (d) follows from (d) in (3)
by virtue of (e).

(4)⇒ (5) Clearly, (4) implies (b) in (5). To see that (a) holds, let p, q ∈ Θ. Since
p→ (q → (p ∧ q)) = 1 in any Boolean algebra (Lemma1.13(5)), (p→ (q → (p ∧ q))) ∈
∆, and hence (p→ (q → (p ∧ q))) ∈ Θ by (a) in (4). Now we have (p ∧ q) ∈ Θ by the
repeated application of (b) in (4).

(5)⇒ (4) To see that (a) holds, let q ∈ ∆. By Lemma2.12(1), p .∆ q for any p ∈ Θ.
Hence q ∈ Θ by (b) in (5). To see that (b) holds, assume that p, (p→ q) ∈ Θ. By
(a) in (5), (p ∧ (p→ q)) ∈ Θ. Since (p ∧ (p→ q))→ q = 1 in any Boolean algebra
(Lemma1.13(6)), ((p ∧ (p→ q))→ q) ∈ ∆. Now we have q ∈ Θ by (b) in (5).
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If B is a Boolean algebra, then ∆ is the trivial congruence and the preorder .∆ coincides
with the intrinsic partial order ≤ of B, and the conditions in Theorem2.17(5) are written as

(1) if p, q ∈ Θ, then (p ∧ q) ∈ Θ;

(2) if p ∈ Θ and p ≤ q, then q ∈ Θ.

A non-empty subset Θ of a Boolean algebra satisfying these conditions is called a �lter. The
notions of a theory and a �lter thus coincide in a Boolean algebra. For a general L-algebra,
the following theorem holds.

Theorem 2.18. Let A be an L-algebra. The assignment Θ 7→ Θ/∆ yields a lattice iso-
morphism from the lattice of theories of A to the lattice of �lters of the Boolean algebra
A/∆.

Proof. Immediate from Corollary 2.9 and Theorem2.15.

Theorem2.19 and Theorem2.20 below are derived from each other.

Theorem 2.19. Let S be a non-empty subset of a Boolean algebra B. An element q ∈ B is
in the �lter generated by S if and only if p1 ∧ · · · ∧ pn ≤ q for some p1, . . . , pn ∈ S.

Proof. See the proof of Theorem2.20.

Theorem 2.20. (Deduction theorem). Let S be a non-empty subset of an L-algebra A. An
element q ∈ A is in the theory axiomatized by S if and only if p1 ∧ · · · ∧ pn .∆ q (i.e.
(p1 ∧ · · · ∧ pn → q) ∈ ∆) for some p1, . . . , pn ∈ S.

Proof. De�ne S by

S = {q ∈ A : p1 ∧ · · · ∧ pn .∆ q for some p1, . . . , pn ∈ S} .

We must prove that S = T (S), and for this it su�ces to show that

(1) S ⊆ S;

(2) S satis�es the conditions in Theorem2.17(5);

(3) if a set Θ ⊆ A contains S and satis�es the conditions in Theorem2.17(5), then Θ
contains S.

But, these are easily veri�ed.

Corollary 2.21. (Compactness theorem). The closure system of theories of an L-algebra A
is algebraic; that is, for any subset S of A,

T (S) =
⋃
{T (C) : C is a �nite subset of S}.
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2.4. Formal deductions

The de�ning conditions of a theory such as (2) and (3) in Theorem2.17 give rise to a deductive
system. The following deductive system is derived from the conditions in Theorem2.17 (2).

• Logical axioms:

(1) p→ p

(2) p→ p ∨ q
(3) q → p ∨ q

• Inference rules:

(1) p→ q, q → r ` p→ r

(2) p→ r, q → r ` p ∨ q → r

(3) p, p→ q ` q

Except for the last inference rule (modus ponens), the deductive system has its origin in the
de�ning conditions of a Boolean algebra (the conditions in De�nition 1.1).

De�nition 2.22. Let A be an L-algebra, S ⊆ A, and p ∈ A. A �nite sequence (p1, . . . , pn)
of elements of A such that p = pn is called a deduction (or proof) of p from S if for each
i ≤ n one of the following holds:

(1) pi is a logical axiom;

(2) pi ∈ S;

(3) there are j, k < i such that pj, pk ` pi is an inference rule.

S is said to syntactically entail p, written S ` p, if there is a deduction of p from S.

Theorem 2.23. Let A be an L-algebra, S ⊆ A, and p ∈ A. Then p ∈ T (S) if and only if
S ` p.

Proof. De�ne S by
S = {p : S ` p}.

We must prove that T (S) = S, and for this it su�ces to show that

(1) S ⊆ S;

(2) S satis�es the conditions in Theorem2.17 (2);

(3) if a set Θ ⊆ A contains S and satis�es the conditions in Theorem2.17 (2), then Θ
contains S.

But, these are easily veri�ed.

Only a �nite number of elements in S appear in a deduction. This fact gives another proof
of Corollary 2.21.
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2.5. Interpretations

A �lter of a Boolean algebra B is called an ultra�lter if it is not properly included in any
proper �lter of B.

Theorem 2.24. A theory Φ of an L-algebra A is complete if and only if Φ/∆ is an ultra�lter
of the Boolean algebra A/∆.

Proof. Immediate from Theorem2.18.

The following characterization of ultra�lters is easily proved.

Fact 2.25. A �lter Φ of a Boolean algebra B is an ultra�lter if and only if Φ is the kernel
of some homomorphism from B to the two-element Boolean algebra 2.

A complete theory in a general L-algebra is characterized in the same say.

Theorem 2.26. A theory Φ of an L-algebra A is complete if and only if Φ is the kernel of
some Boolean homomorphism from A to the two-element Boolean algebra 2.

Proof. By Theorem2.10, Boolean homomorphisms A → 2 and homomorphisms A/∆ → 2
correspond one-to-one via the following commutative diagram:

A
[−] //

h
""

A/∆

ĥ
��
2

The assertion thus follows from Theorem2.24 and Fact 2.25.

The following fact is a consequence of Zorn's lemma.

Fact 2.27. (Ultra�lter theorem). Every proper �lter Θ of a Boolean algebra is included in
an ultra�lter; in fact, Θ is given as the intersection of the ultra�lters that include it.

In a general L-algebra, the ultra�lter theorem is rephrased as follows.

Theorem 2.28. Every consistent theory Θ of an L-algebra is included in a complete theory;
in fact, Θ is given as the intersection of the complete theories that include it.

Proof. Immediate from Fact 2.27 on noting Theorem2.18 and Theorem2.24.

De�nition 2.29. Let A be an L-algebra. A Boolean homomorphism from A to the two-
element Boolean algebra 2 is called an interpretation of A. Given S ⊆ A, an interpretation
h : A → 2 is called a model of S if S is included in the kernel of h; that is, if h assigns 1
to every element of S. Given S ⊆ A and p ∈ A, S is said to semantically entail p, written
S 
 p , if every model of S is a model of {p}.

Theorem 2.30. Let A be an L-algebra. A subset S of A has a model if and only if S is
consistent.

Proof. If an interpretation h : A → 2 is a model of S, then the kernel of h is a complete
theory of A and contains T (S). Hence S is consistent. If S is consistent (i.e. T (S) is
a consistent theory), then by Theorem2.28, T (S) is included in a complete theory Φ. By
Theorem2.26, Φ is the kernel of some Boolean homomorphism h : A → 2. Clearly, h is a
model of S.
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Theorem 2.31. Let A be an L-algebra, S ⊆ A, and p ∈ A. Then p ∈ T (S) if and only if
S 
 p.

Proof. If S is inconsistent (i.e. T (S) = A), then by Theorem2.30, S has no models and
S 
 p holds vacuously for any p ∈ A. Hence the assertion is true in this case. Now suppose
that S is consistent (i.e. T (S) is a consistent theory). Since T (S) is the intersection of
all the theories containing S, p ∈ T (S) i� p is in every consistent theory containing S.
By Theorem2.26, S 
 p i� p is in every complete theory containing S. Hence the proof is
complete if we show that p is in every consistent theory containing S i� p is in every complete
theory containing S. But this is immediate from Theorem2.28.

Theorem 2.32. Let A be an L-algebra, S ⊆ A, and p ∈ A.

(1) ( Completeness theorem). If S 
 p, then S ` p.

(2) ( Soundness theorem). If S ` p, then S 
 p.

Proof. Immediate from Theorem2.31 and Theorem2.23.

2.6. The formal language of propositional logic

The formal language of propositional logic is given by the term algebra L(V ) of type L =
(∨,¬) generated by a set V of propositional variables. The elements of L(V ) constitute the
well-formed formulas of propositional logic.
By the freeness of L(V ), every map from V to an L-algebra A extends uniquely to an

L-homomorphism from L(V ) to A. In particular, a truth assignment (i.e. a map from V to
the two-element Boolean algebra 2) extends uniquely to an interpretation of L(V ). Semantic
entailment can thus be de�ned in terms of truth assignments.
If Θ is a theory of L(V ), then the quotient Boolean algebra L(V )/Θ is called the Linden-

baum algebra of Θ. The Booleanization L(V )/∆ of L(V ) yields a free Boolean algebra over
V . Since every algebra is a homomorphic image of a free algebra, every Boolean algebra is
isomorphic to a Lindenbaum algebra.
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A. Appendix. Preorder

Provided below are some basic facts on preorders.

(1) Every preordered set (A,.) induces a poset (A/≡,≤) by the equivalence relation ≡
de�ned on A by

x ≡ y i� x . y and y . x

and the partial order ≤ de�ned on the quotient set A/≡ by

[x] ≤ [y] i� x . y

, where [x] and [y] denote the equivalence classes containing x and y.

(2) Let f be a surjective map from a set A onto a poset (B,≤). Then f induces a preorder
. on A by

x . y i� f (x) ≤ f (y) .

The map f then becomes a preorder morphism (A,.)→ (B,≤). Moreover, the poset
(A/≡,≤) induced by the preordered set (A,.) is isomorphic to (B,≤); in fact, there
is a canonical isomorphism (A/≡,≤) ∼= (B,≤) making the diagram

(A,.)

[−]

��

f

&&
(A/≡,≤) ∼=

// (B,≤)

commute.

(3) As a special case of (2) above, consider an equivalence relation θ on a set A and
suppose that a partial order ≤ is de�ned on the quotient set A/θ. Then the projection
[−] : A→ A/θ induces a preorder . on A by

x . y i� [x] ≤ [y] .

The projection [−] then becomes a preorder morphism (A,.) → (A/θ,≤), and the
poset induced by the preordered set (A,.) coincides with the original poset (A/θ,≤).

(4) If (A,.) is a preordered set, a join (least upper bound) of any two elements a, b ∈ A
is de�ned in the same way as in a poset and denoted by a ∨ b. A join a ∨ b, if exists,
is characterized by the following properties:

(a) a . a ∨ b and b . a ∨ b;
(b) for all c ∈ A, if a . c and b . c, then a ∨ b . c.

(5) A preordered set (A,.) may be viewed as a thin category. Any two elements x, y ∈ A
are isomorphic (in the sense of category theory) precisely when x ≡ y, and a join a∨ b
is the same thing as a coproduct of a, b ∈ A. Joins in a preordered set thus enjoy the
properties of coproducts in a category, in particular:

(a) a ∨ b ≡ b ∨ a;
(b) if a ≡ a′ and b ≡ b′, then a ∨ b ≡ a′ ∨ b′.

(6) Let (A/≡,≤) be the poset induced by a preordered set (A,.). If (A,.) and (A/≡,≤)
are viewed as thin categories, the projection [−] : A → A/≡ will be an equivalence
functor. The projection thus preserves and re�ects joins (i.e. coproducts) as well as
all other colimits and limits.
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