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Abstract

Presently - and surprisingly - only two ways to compose systems are
known : classical systems have their state spaces composed by Carte-
sian product, while in the case of quantum systems, by tensor product.
Reasons, as well as hints are presented why and how more rich ways
of composition of systems should be considered. Improving compu-
tational power is one such reason, why a hint may come from DNA
computation. Mathematically, the issue comes down to choosing a
proper way to compose certain classes of finite graphs which include
as a particular case the juxtaposition of finite string of words in an
alphabet.

1. Motivation

One of the curious and strange facts in the history of science is the
long ongoing lack of awareness of the issue of the composition of sys-
tems, which only came to awareness in the second part of the 20th
century.
And still today, in the realms of non-living systems, we only happen
to know of two ways of such compositions : the classical, and the
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quantum, the former given by Cartesian products, and the latter, by
tensor products.

Take the example of wheels which - since time immemorial - have
been known and composed in various ways into systems, among them
carts with two, three or four wheels, for instance. Yet it took a few
centuries even after the introduction of Cartesian coordinates in the
17th century, and thus in general, of Cartesian products of sets, un-
til modern Control Theory introduced the concept of state space of a
system. And then it turned out that the state space S of a classical
mechanical system composed of two such systems, with the respective
state spaces S ′ and S ′′, is given by their Cartesian product S = S ′×S ′′.

Amusingly however, even today, few people happen to know that -
in Physics - we only know about one single other way to compose
state spaces of systems, namely, by tensor product. Indeed, given two
quantum systems with their respective state space being the Hilbert
spaces H ′ and H ′′, the composite quantum system which is obtained
from them will have the state space given by the Hilbert space resulted
from the tensor product H = H ′ ⊗H ′′.

So much for all what we happen to know so far in Physics about the
ways to compose systems, more precisely, to compose the state spaces
of systems.
Not to mention that most of those involved in various branches of sci-
ence, engineering, including the mathematicians specialized in tensor
products, are not quite aware of the above ...

And then, in that situation, a few decades back, came the growing
interest in quantum computation ...

Now, just like usual electronic digital computation, quantum compu-
tation is also essentially built upon the composition of a large number
of simple systems. In the former case, the simple systems are bits
which are composed into a register where the effective computations
take place. In the case of a quantum computer the simple systems
are qubits, which is a shortened form of “quantum bits”. And they
also have to be composed - this time as quantum systems - into quan-
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tum registers. Furthermore, in order to be able to compete with usual
electronic digital computers, such quantum registers may have to be
the quantum composition of, say, at least two to three hundred qubits.

For more clarity, let us get into some details.

2. The Simple Case of Computers

Let us suppose that the register RE of a usual electronic digital com-
puter is the classical mechanical composition of n > 1 bits B1, . . . , Bn.
Then as is well known, the state space of SE of RE is given by the
finite set

(1) SE = B1 × . . .×Bn = {0, 1}n

which has 2n elements.

In a dramatically different manner, the state space SQ of a quantum
register RQ which is the quantum composition of the same number
n > 1 of qubits Q1, . . . , Qn, is an infinite subset of a 2n dimensional
complex Hilbert space, namely

(2) SQ $ C(2n) = C2
⊗

. . .
⊗

C2

where the tensor product has n factors. Thus clearly, if in (2) the
usual Cartesian product would be used instead of the tensor product,
then we would obtain the space C(2n) = C2 × . . .×C2, which starting
already with n ≥ 3, and as n grows, is becoming considerably smaller
that the quantum state space in (2).

The relations (1), (2) can already give a good idea about the consid-
erably increased computational power of quantum computers. And
the essential fact is that the surprising difference between (1) and (2)
comes in a most simple and direct way from the difference between
the Cartesian, and on the other hand, the tensor products which are
involved.
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3. Cartesian versus Tensor Products, and Entanglement
as the Gap between them

That considerable difference between (1) and (2) can more generally
be seen, for instance, as follows, and it is purely a matter of linear alge-
bra. Let X and Y be two finite dimensional vector spaces over a field
K, having the respective dimensions dim(X) = h and dim(Y ) = k.
Then as is well known

(3) dim(X × Y ) = h + k, dim(X
⊗

Y ) = hk

therefore, typically, that is, unless h, k ≤ 2, one obviously has

(4) dim(X × Y ) < dim(X
⊗

Y )

And here comes in one of the specific quantum phenomena which is
entanglement and which turns out to be one of the basic resources in
quantum computation. Namely, in view of (4), the injective linear
mapping

(5) X × Y 3 (x, y) 7−→ x⊗ y ∈ X
⊗

Y

is typically not surjective. For convenience, this mapping is identified
with the simple strict inclusion

(6) X × Y $ X
⊗

Y

and in view of (4), the vast majority of elements in the tensor prod-
uct X

⊗
Y are not in the Cartesian product X×Y . Their set, namely

(7) (X
⊗

Y ) \ (X × Y )

gives the set of all entangled elements of the tensor product X
⊗

Y .
And as seen from (3), typically, there are many more of the entan-
gled elements in a tensor product X

⊗
Y , than there are of the non-

entangled elements in the Cartesian product X × Y .
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4. ”Quantum Like” Systems and their Alternative Ways
of Composition ...

One of the major difficulties in the effective construction of quantum
computers is the well known quantum phenomenon of decoherence.
In view of that, in certain quantum computer related circles, the idea
arose to find and use so called ”quantum like” systems, that is systems
which may have some computationally useful properties of the usual
quantum system, on the other hand however, do not suffer from the
phenomenon of decoherence.
As it happens however, so far, no such systems of sufficient practical
relevance have seemingly been presented ...

Nevertheless, the mere idea of considering such ”quantum like” sys-
tems suggests the consideration of ways of composing systems, more
precisely, their state spaces, which are different from both the classi-
cal one given by Cartesian products, and the quantum one, given by
tensor products.

Now, a rather a priori requirement for such new ways of composing
state spaces of systems is that the respective ways should not be much
simpler than the tensor products which are involved in the composi-
tion of quantum systems. Indeed, we are interested in possibly not
losing much from the power of quantum computers. Thus these new
compositions should on the scale

(8) Cartesian product −−−−−−−−−−− tensor product

be rather nearer to the tensor product, than to the Cartesian one.

And then, why not, and in view of (1), (2) above, these new compo-
sitions may as well be more rich, than the tensor product as well ...

In this regard, preliminary studies can be found in [1-7]. There, the
most general and purely algebraic essence of tensor products is at-
tempted to be found, so as to be able to pursue various of its possible
generalizations, in this way exploring the part of the above scale (8)
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to the right of tensor products.
Further related details can be found in [8,9].

Needless to say, there may as well be ways of composing systems far
more rich, and to a good extent outside of the realms grasped by (8) or
its more obvious extensions. And as seen in the next subsection 5, such
a possibility is suggested by what is called the ”DNA computing”, [10].

Coming back to tensor products and it mentioned extensions in [1-7].
It is simply to note that the essence of it is in the free semigroup of
one dimensional finite strings of words over some alphabet, endowed
with the simple algebraic operation of concatenation of such strings.

Thus as a rather natural further and much more rich extension is sug-
gested by the considering free semigroups of finite graphs in which the
algebraic operation is some suitable composition of graphs.

And here, one is faced with the :

Problem :

Which may be the suitable ways to compose graphs, when it comes
to model compositions of state spaces of systems used as registers in
computation ?

�

5. A Hint : DNA Computing ?

So far, a distinctly third way of computation, namely, DNA computa-
tion has been considered and studied to some extent. This computa-
tion is indeed markedly different from the usual electronic digital one,
and also from what quantum computation is supposed to be. And it is
based on some of the ways information is processed on the DNA level
in living organisms. Consequently, it is in principle already effectively
implementable, and it may not need more than the use of several living
cells, be they each on their own, or being parts of some living organism.
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Now, the possible hint for finding more rich ways to compose systems
may, indeed, happen to come from DNA computing due to the follow-
ing.

The structure itself of DNA is the well known so called double helix
which obviously has the following features :

• it is a rather minor generalization of one dimensional finite strings
of words in an alphabet of four letters,

• with a corresponding minor generalization of concatenation as
the algebraic operation.
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