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                   Appraisal of a new gravitational constant 

 Sandro Antonelli*    

 
           Abstract  A new assessment of the constant S of the Vortex    

           Theory of gravitation is given according to a direct calculus   

                      along with the issues involved  in fitting  B1913+16, J0737 

                      30-39 , B1534+12 and B2127+11C data. Graviton’s mass of 

           10
-61

Kg. is therefore obtained confirming known estimates. 

 

Keywords: Alternative theories to General Relativity (TGR) ; Gravitational waves; 4-

Vorticity Tensor, Binary System  B1913+16, Massive Gravity.   PACS. 04.30.                                         

        

                                          The hypotheses of Vortices is pressed with many difficulties  

                                                                                                      (Newton, Principia)  

1. Introduction 

 

It is well-known as TGR is related to some compelling questions leading towards       

ambiguities [3]: does not it seem a contradiction indeed that a body subject to mere 

gravitational fields travel a geodesic of space-time losing in the meanwhile gravitational 

energy? Furthermore, the expression of gravitational damping in the known formula of 

third derivative of quadrupole moment (cf.equ.(7)), although proven valid by now also for 

strong fields by the post-Newtonian formalism with so great an approximation [18], on the 

other hand breaks down the general covariance in favour of linear one, just because the PN 

(v/c)
2
 series expansion cannot avoid the lost of the full symmetry of the exact Einstein’s 

Equations. This is demonstrated by the fact that in TGR any scalar quantity has a physical 

content only if has an invariant character with respect to general transformations of 

coordinates, but not so gravitational energy fluxed away, seen that it is always possible to 

choose a suitable frame for which two gravitating bodies are at rest [2]. 

Hence I think that from such dilemmas one cannot get out without taking the general 

relativity as only an aspect of an extended theory as proposed recently by the intriguing 

tensor Vortex gravity model [6], any advance being subordinate to the determination of the 

constant S, a very cumbersome goal related to the evaluation of the following delayed 

integro-differential equation, nothing but the solution
1
 at great distance of the double curl 

in curved Space-Time of the main equation recalled shortly in Appendix B (see also 

[6,4,5]): 

                                                        
* email: antonelli41@live.it    Present Address: 151, S.P. 57 Accesso aM. 03017 Morolo Italy   

 1  The reader should notice the change of notation with respect to [6] to banish any misleading of the skew 

symmetric Riemann tensor obtained as  C= R
 (respectively  Rin [6]   equ. 3.3; 4.12) with that 

of  Einstein's equations   Here C is meant derived by contraction of the first order estimate of the 
Riemann tensor as stressed in [1].   
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]  is the energy momentum tensor (EM) of two stars masses (in our 

case the system PSR 1913+16 
2
) and  Rthe curvature Riemann tensor, the slash 

standing for contravariant derivative. We can well distinguish in equ. (1) two terms whose 

the first, bound recursively to LHS  =1/2c(g) , the deformation of metric with 

respect to proper time,  proved at a great extent pre-eminent over the second one, (that is 

the double curl of the skew-symmetric tensor we called C Riemann tensor C) by tens of 

order of magnitude both for the former (see [1]) as for the latter solution by successive 

approximations, even though it has been evidenced that the contribution of the first term 

dropped in a clearly way in this second approximation. The reader is strongly 

recommended to go through the two papers [6,1].  

 

2. Methods and Results 
 

Reviewing the antecedents in the previous calculus, as reported in [1], we chose the 

Minkowski metric as start metric in the successive approximations procedure, i.e. a 

constant cartesian metric g |0= η. 

But already to the second approximation in which the new metric is taken out integrating 

numerically with respect to the proper time 

 
0

1 2g | c K x / ' d '




  


                                           (2) 

the calculus proved incredibly CPU-consuming: the chief term in equ. (1) yields elements 

of the deformation tensor as large as 125 Gbytes each, unmanageable for any computing 

software. The choice has been thereby to simplify as much as possible to getting the 2
nd

 

order renouncing to covariant derivatives in the new metric concerning the term including 

the double curl (the term C


=  -1/2 curl  
C/

 in equ. (1)).  Worth of noting the 

first term in Equ. (1), encompassing the curvature tensor R

 is  therefore really a 

crucial one and together the most burdensome needing hundreds of GBytes. Thus some 

kind of ansatz is required that should be chosen with insight. 

                                                        
2 We recall some hallmarks of the B1913+16 binary system: m1:1.4414(2) Msun;  m2:1.3867(2) Msun  ;      

e: 0.617; orbital period  T : 7.72 hours;  major semi-axis  a: 1.950E9 m; distance: 5kpc (16300 LY);   

dT/dt: -2.4056(51)E-12. (See also the ATNF catalogue). 
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Because of the way which is got the C tensor (see footnote 1) we have attempted to value 

the curvature tensor  
(1)

R = (    / 4 ) C as to first approximation. Once evaluated 

the new g |1  through integration of K= y k/S according to Eq.(2) ,as in our paper 

[1] we retained that the new Riemann tensor were not dependent explicitly on the factors k 

nor on S because of the Christoffel symbols that it is composed of, which involves terms 

of the form (g
 g -...). However this choice is of only little interest in expressing the 

mean energy loss through the semi-axis and the simple 1/S
2
  dependence, so an effective 

value, but it makes absolutely unreliable the physical estimate of the constant S as already 

seen in [1] of order of 10
14

 , while a just simple model to the second order has given the 

more acceptable result of S=0.3261 which has allowed already to attribute the graviton the 

mass 10
-43

Kg. Therefore, in effect we should expect some hinging on the ratio k/S. Taking 

as working hypothesis for the new Riemann tensor the more appealing makeshift 

expanding (g
g -...):       

                (2) 3
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improves the estimate of  S  to 3.4E-14 for the three binary at issue, a value not far from 

the outcome of the complete direct calculus, still approximated, that we are going to carry 

out. We get for this model (see the whole power at http://1drv.ms/1NOnDU6 ; there “asse” 

stands for major semi-axis, “th” for colatitudes, “ f  ” for orbital phase) 

3 4 2

2 970E 24 1 085E 29 4 723E 18. . .
E

S S S

  
   = -7.891E24 J/s  against    -7.959E24 J/s 

for Einstein’s and 
VT = -2.423E-12 to within 0.7% with the experimental one against 

[13,sect. 4.1.2] as seen later too  
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 = -2.40242(2)E-12 

 

In the following we are referring to the model of equ. (3)  as 1st approximation Vortex 

Model. As checked with CILEA supercomputer section the direct calculus of energy loss 

via equ.(1) is very beyond standard RAM performance (see note 3) without taking in 

account the lack of manageability of the output files to average in turn.  The strategy that 

has been adopted here therefore was to guess that the passage of integration of equ.(2) 

results in a staircase-like behaviour for each of the components of F[]  

   
0 0

2
'

c K x / ' d ' F ( ) d
 



 


       that can be well interpolated by the straight line 

of the kind  F ( =1.37),  orbital phase. 

http://1drv.ms/1NOnDU6
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Fig.1:Integration method used in equ. (2) for working out the new metric 

1g | and hence its inverse. The 

integrand containing K  is patterned by two Gaussian functions as fitted by B1913+16 outcomes . The 

right interpolation is found for a line slope at the value of integrand function F[]  corresponding to 

=1.37.  

This fetch is put on to obtain
1g | while for 1g | a 3 steps Simpson algorithm has been 

adopted. Moreover, taking as n = (, Φ) the direction of propagation of the wave from 

coordinate system of the orbit plane, as can be verified heuristically on data also from [1] 

concerning B1913, it is a good approximation to put d E /dtd|(
peak 

<dE/dt>T, this to reduce the burden of calculation (especially introduced by the 

inverse 1g |
 ). This may be justified by seeing that the distribution function may be 

roughly shaped as two triangles each centered about a unit interval on . Then, since it is 

noted the differential energy loss not to depend significantly on  the colatitude 
  has 

been fixed to (edge-on sight). We have over-marked  E because the power should 

be indeed  averaged over time, so a factor to multiply  /   is needed to turn back the 

average on the orbital anomaly, namely    
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1 2

2 21 2 1
/
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 .  The term dividing in (4) 

is omitted however in that the integration over the anomaly Φ cancels it because the 

asymptotic metric to manage the strength tensor of Vortex theory (see later) is the usual 

Minkowski’s which does not depend on Φ.Thus in the following plots for dE/dtd  it is 

meant the integrand of equ.(4) that we could style as “effective” differential power. 

Besides, the wrinkle has been preferred to focus the reckoning in correspondence with 

each one of the two main resonance peaks wherein to fit the two values of S.  Actually, if 

one proceeded the whole calculus with the value of S  sought for the 1
st
 peak, the second 

one on the right would be found unequal of several orders, just because of the very rough 
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but necessary simplification in getting the new metric in equ. (2) through the numeric 

integral (as said, only a step per orbital interval in the azimuthal variable
3
) of deformation 

tensor carried out in such an approximation, inasmuch as the new metric becomes less 

accurate as the interval of integration extends over the whole 2  angular orbital journey, 

so occasioning a greater growth in systematic errors. For this purpose the interval [0, 2] 

has been broken in the two [0, ] and   [, 2] in each of which has been chosen to 

calculate by Maple the effective power function dE/dtd  with respect to the anomaly in 

steps of  0.1-0,2 rad in the orbital plane. In short, this trick saves from an  awkward 

integral over . Worth to note is the fact that this does not imply loss of  generality in that 

is seen that in Vortex Theory there is not any uncoupling of  the  from the  mode in the 

orbital plane line of sight as in TGR (see probl.3.2 in [13]) although the  mode here is 

differently defined. But let us just recall now the main steps to get the expression for 

dE/dt. We apply firstly this method to the classical B1913+16 binary system while 

comparing the results with the other recent B1534+12 [17] , J0737-3039 [16] B2127+11C 

[19] discovered in 1991, 2003 and 1989. In carrying out the strength tensor   

 (see 

Appendix B and [6]) for the energy loss calculus
4
  dE/dt=c  ts

0 
n

s
 r

2
 dΩ, with                    

ts
0 

=  - s
  0

   , the azimuthal variable has to be taken as a function of delayed time 

and so also of distance from the observer,  i.e.      υ≡υ(t-r/c), which raises of a great deal 

the burden of calculus. This has led to a function of S  f(S) to be inserted in the differential 

relation of third Kepler's law outputting a polynomial equation to find the root thereof:   

 

2 2
24 2

2 3 0
1 2 1 2

dT dE r
f ( S ) T a

dt G m m dt Gm m

   
      

  
                     (5) 

 Fortunately, the function  f(S) , being monotonic, has been able to be tackled through  the 

dichotomic method in finding out the root (other methods as secants or Newton'one would 

introduce propagation errors). The reckoning has yielded the following double S constant 

series in the two intervals: 

 

 S1st peak S2nd peak 
1 2S S S  

B1913+16 S|=0.4 = 5.293E-19 S|=5.6 = 1.979E-19 3.236E-19 

J0737-3039 S|=0.4 = 1.122E-19 S|=5.31 = 8.442E-20 9.732E-20 

B1534+12 S|=1.11 = 3.473E-19 S|=5.31 = 1.131E-18 6.266E-19 

B2127+11C S|=0.5= 3.302E-19 S|=5.6=1.062E-19 1.873E-19 

  S=(Sa Sb Sc Sd)
1/4  
 2.466E-19 

                                                        
3   We know from the sampling theorem that in order to rebuild a periodic function, there is  need for a 

sampling frequency at least double of that maximum of its spectrum (Nyquist frequency). Nevertheless 

taking yet three step per interval entailing a course estimate of the numerical integration need about 

500Gbytes, while four steps per interval would involve  too much bigger files to manage for K , of order of 
Terabytes. 
4 as known from the free divergence of EM tensor. Indeed, we should strictly have  written                  

dE/dt= c  ts
0 ns (L(g)) 1/2 dσ with L(g)  the restriction of the metric over a surface enclosing the binary 

system, but we take it instead as the usual jacobian in spherical coordinates in account of the sidereal 

distance from it. 
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 dE/dtd (J/s)   1st peak dE/dtd (J/s)   2nd peak 

B1913+16 |=0.4 = 7.873E24 |=5.6= 7.872E24 

J0737-3039 |=0.4 = 2.394E25 |=5.31 = 2.393E25 

B1534+12 |=1.11 = 3.338E23 |=5.31 = 3.338E23 

B2127+11C |=0.5= 1.140E25 |=5.6= 1.140E25 

Table1: Fitted  S constant and effective differential power values at the resonances. 

 

Taking the geometric average gives for S
 
= 2.47E-19 m

-1
. Taking also the semi-dispersion 

for error estimate about each binary system the relative error may be expressed 

as  
1 4/  

a b c dlog S S S S getting for S =±1.16E-19 m
-1

 .  

With these value we are able now to draw the energy loss with respect to the orbital phase. 

We report the instantaneous emitted power for a given direction at polar angle  Ө     

and azimuth Φ=    corrected of the time averaging factor /   in the direct calculus 

versus first  approximation (Figure 2) for the Vortex Model for the B1913+16 system. As a 

collation, we report also the Einstein's one as known proportional to the products of third 

derivatives of  the quadrupole moment [9]: 
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       

   

    

      It is worth mentioning that a single point in the direct calculus takes about three hours 

of processing. We note in this direct calculus a moving to the right of the secondary 

negative peak but we have had to cope with a larger reckoning approximation (the stair 

function of. Fig.1), although more realistic, with respect to an ad hoc model such as that of 

equ.(3). In the direct calculus the peaks are obtained correspondently to the values of 

Table 1.  
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Fig.2: Plot of 2  periodic emitted effective instantaneous power for B1913+16 in the Vortex model with the 
two-fold peak (whose number depends chiefly on e ) to 1st approximation and in the direct calculus in 

comparison with Einstein’s one at polar angle Ө      and azimuth Φ=    The broken line in the first 
figure joins the various calculated points.  

 

Our strict criterion in calculus of precision, as recalled in [1], is given by the effective 

symmetry of the deformation tensor (Figure3(a)) and the skew-symmetry of C Riemann 

tensor (Figure 3(b)) along the orbit, i.e. to the extent of the semi-axis order as the two 

tensors appear in the evaluation of the integral in equ.(1), as included in the constraint on 

the variables of the Dirac delta of the energy-momentum tensor of the two point masses of 

the binary system. The accuracy is shown bettered with respect to our model equ.(3). 
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Fig.3(a): Plot  of  2  periodic  K24 – K42 representative of deformation speed precision  in polar coordinates 
in the first two steps iterative solution for B1913+16,  in function of the azimuthal angle along the elliptic 

orbit.   

 

 

 
Fig.3(b): Plot of  2  periodic  C24 + C42 representative of skew- symmetric Riemann tensor  precision  in 
polar coordinates in the first two steps  iterative solution for B1913+16,  in function of the azimuthal angle 

along the elliptic orbit.         
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We then report the B1913+16 orbital period decay advancing at periastron time in Fig.4. 

Expressing it
5
 [13]  as 2

2
n n

T
t nT t

T
 


 at the modified julian epoch tn (MJD), we may 

collate directly the Vortex Model with TGR  tendency for T  in the matching of the 

experimental fitted curve. We remember The TGR prediction is to within the celebrated 

0.2 percent [14].  

By inserting the mean energy as from the virial theorem in the 3th Kepler’s law and 

differentiating,  the variation of the orbital period comes out as 
3

2

E
T T

E
 


  , 

1 2

2

G m m
E

a

 
 


 ; By replacing the values, one gets  T = -2.4042(2)E-12 for TGR 

versus -2.417E-12 for the Vortex Model against ExpT  = -2.4056(51)E-12 [14]. We so have 

0.13±0.21% agreement for TGR against  0.5% for Vortex. However better can be found 

for the other two systems. 

 
 

Fig.4: Period change in the damping of B1913+16 system with respect to the fitted data versus Modified 

Julian Day Time from 1975 to 2013. We can observe how the TGR approximates closer up to 0.2%  to the 
expected than Vortex Theory prediction which indeed is seen in the detail inset to anticipate of about 0.5%.  

 

For what it concerns the other star two systems B1534 and the double pulsar J0737 we too 

report as before the differential energy loss in the Vortex direct calculus and 1
st
 

approximation paralleled with the respective Einstein’s prevision. The differential 

functions prepared to be averaged by the usual factor /  along the orbit appear to 

                                                        

5 The formula is got by expressing the accumulated phase as function of time 
0

2
T

(T ) ( t )dt     , 

expanding the frequency   to 2nd order and drawing out the difference between the times of passage at 

periastron and the n-th proper period time n/0 
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disagree of at least two order of magnitude as to B1534 and J0737 as well as for the other 

two systems as seen below. However what physically matters is the integral over the solid 

angle to get < dE/dt > and this points out all the more we are dealing with two obviously 

different models.  Vortex Theory is seen to be more reliable in predicting J0737 period 

shift. Data values other than available are extrapolated assuming as before the rotator 

model of the accumulated phase in the relative motion    21 1

2 2
T T vT ... 


   . 

 
 

Fig.5(a): J0737 effective differential energy loss for Vortex and Einstein models respectively to a given 

direction at polar angle  Ө      and azimuth Φ=   . The system is at a distance of 1900 LY and has 
eccentricity 0.088 with major semi-axis of 8.804E8 m. 

 

 
Fig.5(b): Period change in the damping of  J0737 system with respect to the fitted data versus Modified 

Julian Day Time from 2003 to 2013. We can observe how Vortex Theory  prediction can barely be 
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discriminated to within the approximation precision, while TGR is seen in the detail inset to anticipate of 
about 0.6% the data fit delay. 

About the relativistic system J0737 we calculated T = -1.2523E-12 for Vortex vs             

T = -1.2592E-12 for Einstein’s theory against the intrinsic experimental value            
EXPT = -1.252(12)E-12 [16]. Hence the most precise test ever obtained for Vortex’s Model. 

 

 
Fig.6(a): Effective differential energy loss of B1534 system for Vortex and Einstein models respectively to a 

given direction at polar angle  Ө      and azimuth Φ=   . The system is at a distance of 2900 LY and 
has eccentricity 0.274 with major semi-axis of 2.283E9m. 

 
 
Fig.6(b): Period change in the damping of B1534+12 system with respect to the fitted data versus Modified 
Julian Day Time from 1991 to 2013. We can observe how Vortex Theory approximates closer  up to 0.2%  to 

the expected data than TGR prediction which indeed is seen in the detail inset to anticipate of about 10%.  
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We may again observe in Fig.6(b) the overcoming of Vortex theory to TGR. The outcome 

=VT  =-0.173E-12 seems indeed to resolve the small discrepancy puzzle between TGR 

and observed value of period variation, proper of this binary system. In comparison with 
ExpT  =-0.174(11)E-12 we have in fact  TGRT  =-0.192E-12 [17]. 

At last we have reviewed the B2127+C11 dwarf-NS system very similar to  B1913+16 

[19] for which VT = -3.98E-12 suits to ExpT  = (-3.95±0.13)E-12  as well as                 
TGRT = -3.98E-12. However uncertainties prevent us to usefully collect directly the 

models. We report the angular distribution of the radiated energy against Einstein’s one: 

   
 

 
Fig.7 :Effective differential energy loss of B2127+11C system for Vortex and Einstein models respectively 

to a given direction at polar angle      Ө =     and azimuth Φ = / 2 . The system is at a distance of 2900 
LY and has eccentricity  0.274  with major semi-axis of 2.283E9m. 

 

3. Conclusions 

 

In spite of all glitches of numerical quadratures, we deem the new value of the constant S 

=(2.5±1.2)E-19 m
-1

 more meaningful than our model at first approximation (S|1 =3E-14 

m
-1

).  As has been said in the reference article [6], it can be related to the mean free path of 

graviton through a Compton-like wavelenght = S 
-1 

=h/mc  meant to attribute a value to 

the "inertial mass" of graviton, in this case amounting to (5.5±2.6)E-61 Kg., not far from 

former bounds [7,8,11,12]. Applying this Vortex Model to keplerian problems at galactic 

distances as for galaxy rotational curves or solar system issues is a very entangled 

challenge to be faced with intensive amount of skill analysis. Further verifications and 

bearing out for consistency of this result other than bettering of statistics should also be 

provided from other binary NS-NS or dwarf/NS systems such as for instance J1756-2251 

and J1518+4904. An indirect confirmation should come also from the energy radiated 
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from the problem of Black Hole in-falling into another [15], excepting over dimensioned 

RAM required. 

 

Appendix A: Tidal deformations in Vortex Theory  

 

Because instructive how Vortex Model works, we want to get the strain in a given 

direction as expressed by the formula (17) of [1] caused by the tidal force of a 

gravitational wave impinging on a certain region free-falling in the space-time. We will 

follow the notations therein by leaning on the derivation from the quoted books of 

Ferrarese and Sokolnikoff [4,10]. Let us  consider the evolution with respect to the proper 

time of a continuum of identifiable material particles from the reference or initial 

configuration C0  to the actual one  Cτ  , which we refer to the reference frames X and Y 

respectively, (they are different in general, see the two terns of fig. 8), whose a typical 

point P will have coordinates  x
 

and  y


 in passing from the undeformed state to the 

deformed of final one of the continuum. Thus, we may take the deformation of C0  in Cτ to 

be a continuous and one-to-one function so that the transformation of the curvilinear 

coordinates  x
 

of  the material particle  P  is singled-valued: 

 

     0 1 2 3 0 1 2 3 1y y x , x , x , x / , , , , A.      

 

depending on whether we use the initial or final coordinates as independent variables we 

will have the  so-called eulerian or lagrangian motion  standpoint.  

 
Fig. 8: Lagrangian description of time evolution of a continuum. 
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Therefore, once fixed the initial element of  coordinate  x
 

 the evolution of  y
 

is 

determined uniquely by knowing the proper time (molecular point of view).  Without loss 

of meaning O could coincide with P 0 whose coordinates for convenience we choose 

hereafter to be the orthogonal Cartesian ones with respect to the tern c


 (this is equivalent 

to refer them to a locally geodetic frame) whence the notation  OP ≡ y


c =OP ( x


,  ) .  

Moreover, since we are interested in detectable effects we can also omit the temporal 

components  x
 

and   y

 in our reasoning because decoupled from the space coordinates 

as discussed in the getting the expression for the deformation velocity K  in [1,§ 2], and 

because the Minkowski tensor is of signature (+,-,-,-) it suffices to change sign of   h  

according to equ. (2): 

                                                       

2
*

c K ( x / ' )d ' =g ( x / ) - = h ( x / )


  

   


                       
 (2b) 

 

to work with space distance positive in the next formulas. So, beware here gij  is positive 

definite . 

Therefore, for the line element in P 0  we have dl0
2 

= dP 0  · dP 0, whose                            

dP 0  =|dP 0  |a0 , with a0 = a0
i
ci  unit vector of  dP 0 . On the other hand, by definition,  dP 0  

=dx
i 
ci  so that  

                           dx
i 
= |dP 0| a0

i
                                              (A.2) 

 

Similarly, we can write for the line element in P :   dl
2 

== dP   · dP , where dP,  referred to 

the orthogonal tern in P 0 reads as dP = d y
i
ci =(∂ y

i
/∂ x

j
) ∂ x

j
ci = ej dx

j
   from the relation 

∂ OP/∂ x
j
 = ej . Hence 

                                                |dP |
2
= gij dx

i
dx

j
                                            (A.3) 

 

We define the physical component of the strain in a given direction as the elongation for 

unit length in that direction. Taking in account (A.2) e (A.3) we have: 

 

0

0 0

0

d d
1

d

i j

a i j

l l
g a a

l



       or through equ.(2b)     0 01 1i j

a i jh a a            (A.4) 

 

i.e. equ. (17) of [1]. This formula can help us to infer the formula for angle deformation 

between coordinate axes and to interpret the off-diagonal components of the strain tensor 

(or tensor of tidal forces if we think of this model); in fact let consider line elements being 

parallel to axes before deformation, say: (dl 1)|0 = (dx 1)=dx
1
, (dl 2 ) |0=(dx 2 ) = dx

2
; after 

the deformation, by following the reasoning leading to (A.3), we shall have for their scalar 

product: 

 

        dl 1 · dl 2=|dl 1||dl 2|cos Θ12 =(dy1)
k
(dy2)k=gij (dx 1)

i
(dx 2 )

j
   ,              (A.5) 

 

and because of equ. (2b) sign changed we get: 
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       dl 1 · dl 2 = (- hij+δij ) (dx 1)
i
(dx 2 )

j
 =- h12 (dl 1)|0  · (dl 2) |0 .                   (A.6) 

 

Finally, on using (A.4) that is to say: 

 

   1 1 0 11 2 2 0 22d d 1 d d 1l l | h , l l | h                           (A.7) 

 

and inserting it into equ.(A.6) via (A.5)  we are able to express 

 

   12 1 0 2 0 12

12

1 2 11 22

d d

d d 1 1

h l | l | h
cos

l l h h


   
 

 
                        (A.8) 

 

so that if we term  σ12 = π/2 - Θ12 the amount to complete a right angle after deformation 

of coordinate axes x
1 

and x
2
, by taking the sinus function of σ we obtain the (A.8) again, 

and therefore: 

 

12 12 12 12=sin cos h                                        (A.9) 

namely the decreasing of angle between axes direction is related to so called the shearing 

strain or off-diagonal element of strain tensor. To conclude we show in  Fig.9 the effect of 

the presence of shearing strains h21 =h12 =Acos(τ) on the tip of an unit vector according 

to equ.(A.4) disregarding angular axes deformation: it is plain how cylindrical symmetry 

gets broken. Of course,  polarized  h  produces  in-phase elongations in the direction 

of coordinate axes  as shown in [1] according (A.7). 

 
Fig.9: Polar diagram of relative elongation of a round string of distributed mass on the unit circle subject to 

deformation according Eq.(A.4), so for 0

cos
a

sin





 
  
 

.  Angular shrinking of axes has been left out. The effect 

of deformation is manifestly exaggerated for understanding, actually being for instance of the order 1E-21 

for B1913+16. 
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Appendix  B:  Action of the model and a cartesian derivation of main equations 
 

We can infer the main equations of the Vortex Model from a variational action principle in 

a form remembering that for the coupling of charged matter current interacting with an 

electromagnetic field:      4A L d x'   

4 1

4 4 2 2

/C K g R K K R K
d x' K K R K R g

S

    
          

     
  

        
    



 

whereupon  the strength tensor   -in which play the role of the 

field potential as in electromagnetism and the second term in brackets the matter source 

term. From that the EM tensor in free space reads:        

                                            

t 
  

=  - 
  

   + 1 / 4  
   

  
                                                         

          
 

We already know the variation leads to wave equation in presence of matter as seen in the 

reference paper [6]. By the way, let us show that the classical deformation speed 1/2g 
corresponds to the deformation tensor of mechanics. Defined the local basis of vectors at 

each point of the cronotope e = OP/ x 
, differentiating e ( x


/)  with respect to  x 

, 

we get for definition of Christoffel symbols :   e  = 

  e . From that, it turns out 

that the gradient of the 4-velocity v =(v e 


) =  ( v  - 

  v ) e 


= 

(v)e
 leading =g=(e  e) = 1/2(ve +   v  e  )  to the classical 

expression:  =1/2 ( v +  v) . 

We know that although the vortex and the deformation tensor are both independent, they 

are differentially bound  through  the Vorticity formula of continua that we now derive in 3 

dimension cartesian coordinates as due to Zhen Li (Tsinghua Univ.), addressing the reader 

to the more thorough approach of Ferrarese and Stazi [4] . Standing the definition of 

vorticity:  

 

hk = 1/2 (hks
s
)             (h,k,s=1,2,3) 

the Jacobi relation turns out:

lhk +klh +hkl =1/2 (hks
s
/l  +lhs

s
/k +kls

s
/h ) 

= ½ s/s  = ½ div  =1/4 div (curl v) =0. 

Given that, then we have: 

lhk =l(h vk -k vh )=hl vk -kl vh 

and remembering that  hvk =qhk =Khk +hk  : 

=h qlk -k qlh =h Klk -k Klh +h lk -k lh =h Klk -k Klh +l hk  

hence the vorticity formula for its gradient:

l hk =h Klk -k Klh  
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which holds in V4  general coordinates as well. We make notice that in the definition of 

vorticity and deformation tensors ([1],[6]),  both sides of previous equation are scaled by 

the speed of light c in order to introduce the constant S of dimensions of [lenght]
-1

, whence 

the  ansatz:    C=S ω,  C= R
 

, so we have the main equation: 

 

 C =S ( K - K   )                ( ,,  =1,2,3,4 ) 
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