
	   1	  

Proof of no Johnson noise at zero temperature 
 
 

Laszlo B. Kish 1, Gunnar Niklasson 2, Claes-Goran Granqvist 2 
 

1 Department of Electrical and Computer Engineering, Texas A&M University, College 
Station, TX 778943-3128, USA 

 
2 Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, 

P.O. Box 534, SE-75121 Uppsala, Sweden 
 
 
Abstract. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise of a 
resistance are the sum of Nyquist's classical Johnson noise equations and a (quantum) zero-point term with 
power density spectrum proportional to frequency and independent of temperature. At zero temperature, the 
classical Nyquist term vanishes however the zero-point term produces non-zero noise voltage and current. 
We show that the claim of zero-point noise directly contradicts to the Fermi-Dirac distribution, which 
defines the thermodynamics of electrons according to quantum-statistical physics. As a consequence, the 
Johnson noise must be zero at zero temperature, which is in accordance with Nyquist's original formula. 
Further investigation shows that the Callen-Welton derivation has conceptual errors such as neglecting 
phonon scattering, disregarding the Pauli principle during calculating the transition probabilities and using 
bosonic (linear oscillator) energies leading to the zero-point noise artifact. Following Kleen's proposal, the 
possible origin of the heterodyne (Koch - van Harlingen - Clark) experimental results are also discussed in 
terms of Heffner theory of quantum noise of frequency/phase-sensitive linear amplifiers. Experiments that 
failed to see the zero-point noise term are also mentioned. 
 
 
1. Introduction: The Johnson noise and the second law 
 
In this paper, we prove that the zero-point term in the Johnson noise of resistors is non-
existent. 
 
The Johnson (-Nyquist) noise [1,2] of resistors and impedances is a spontaneous voltage 
and current fluctuation due to the stochastic motion of charge carriers (electrons) in the 
conductor material at thermal equilibrium. The second law of thermodynamics requires 
that, in thermal equilibrium, the time average of the instantaneous power flow between 
two parallel resistors is zero: 
 

 Pa⇔b (t,T ) t
  =   0  ,        (1) 

 
where t is time, Pa⇔b (t,T )  is the instantaneous power flow between resistors Ra and Rb, 
see Figure 1, and Equation 1 holds in any frequency band. 
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Figure 1. The second law of thermodynamics requires that the net power flow between resistors Ra and Rb 
is zero. This is provided by the functional form of the power density spectrum Su(f,T) of Johnson noise 
(represented by voltage generators in the figure), which is, at any frequency and temperature, proportional 
to the resistance.  
 
For a passive impedance Z( f )  in thermal equilibrium, this condition requires that the 
functional form of the noise voltage and current spectra are: 
 
Su ( f ) = Re Z( f )[ ]Q( f ,T ) = R( f )Q( f ,T )  ,      (2) 
 
Si ( f ) = Re Y ( f )[ ]Q( f ,T ) = G( f )Q( f ,T )       (3) 
 
where Y ( f ) = 1/ Z( f )  if the admittance;  R( f )  and G( f )  are the real part of the 
impedance and admittance, respectively, Su ( f )  and Si ( f )  are the Johnson noise voltage 
and current generators, respectively, where Si ( f )  is the Norton-equivalent of Su ( f ) ,  

Si ( f ) = Su ( f ) / Z( f )
2  (the power density spectrum of the current noise of the short-

circuited impedance). 
 
Q( f ,T )  is a universal function of frequency and temperature, which is independent from 
material properties, geometry or the way of electrical conductance  [1-3].  
 
Therefore, if we can prove that, in a given system at zero temperature the function 
Q( f ,0)  is zero, then this finding is a proof that Q( f ,0) = 0  in any system, that is, the 
Johnson noise is zero at zero temperature.	  
 
 
2. The Callen-Welton result for the Johnson noise 
 
In the rest of the paper, for the sake of simplicity of notation, we work with frequency-
independent resistances, however this does not limit the generality of our treatment 
because all the equations and conclusions remain valid if Re Z( f )[ ]  is substituted into R  
in these equations and considerations. 
 
The Callen-Welton derivation (fluctuation-dissipation theorem) [4] of Johnson noise 
results in the sum of the classical Johnson-Nyquist term and a zero-point term: 
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Su ,q ( f ,T ) = 4Rhf N( f ,T )+ 0.5[ ]    →
f <<kT /h

   4kTR + 2hfR      (4) 

 
where Su ,q ( f ,T )  is the one-sided power density spectrum of the voltage noise on the 
resistor and h is the Planck constant. The Planck number N( f ,T ) , which already exists 
in Nyquist's result, is the mean number of hf  energy quanta in a linear harmonic 
oscillator with resonance frequency f , at temperature T : 
 
N( f ,T ) = exp(hf / kT )−1[ ]−1   .       (5) 
 
For the classical physical range f << kT / h , the Plank number becomes 
N( f ,T ) ≅ kT / (hf ) , which results in the well-known 4kTR noise spectrum at low 
frequencies. In conclusion, the first term of the sum in Equation 4 is the classical physical 
(Nyquist) result [2] and the second term is its quantum correction (zero-point noise): 
 
Su ,ZP ( f ,0) = 2hfR  ,         (6) 
 
where the notation reflects that, at zero temperature, the classical term disappears because 
N( f ,0) = 0  while the quantum term, the zero-point noise spectrum, is claimed to exist 
even at zero Kelvin due to the zero-point energy.  
 
The Johnson current noise of the resistance follows from the theory of linear operations 
on the noise and Ohm's law: 
 
Si,q ( f ,T ) = 4Ghf N( f ,T )+ 0.5[ ]    →

f <<kT /h
   4kTG + 2hfG  .    (7) 

 
Similarly to the voltage noise, the first term of the sum in Equation 7 is the classical 
physical (Nyquist) result [2] and the second term is its quantum correction (zero-point 
noise):  
Si,ZP ( f ,0) = 2hfG ,          (8) 
 
which is again claimed to exist independently from the temperature. 
 
 
3. Proof that the quantum zero-point term does not exist in the Johnson noise 
 
It follows from the considerations in Section 1, that to prove that the zero-point term does 
not exist under general conditions, it is enough to create a proof for a special case 
because that proof will imply that the zero-point noise is zero in any other system, 
otherwise the second law is violated. 
 
Consider the simplest electron conductor system [5], a metal with non-zero residual 
resistance at zero temperature, due to randomly located defects. We study the Johnson 
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noise current in a short-circuited resistor positioned along the x axis by measuring the 
current in the loop. (Alternatively, without changing the essence of argumentation, a ring-
shaped sample could also be used). The current is the sum of the elementary currents 

 I(

k )  of occupied single electron states in the k-space:  

 

 
I = I(


k )


k{ }
∑  ,          (9) 

 
where 

 


k{ }  denotes the set of wave vectors of the occupied states. At temperature T, the 

probability of state occupation versus the energy E of the state, is given by the Fermi-
Dirac distribution [5]: 
 

 

P(E,T ) = 1

1+ exp E − EF

kT
⎛
⎝

⎞
⎠

      ,       (10) 

 
where EF energy-parameter is the Fermi level. At absolute zero temperature, and zero 
electrical field, the occupation probability P satisfies: 
 

 
P(E,T = 0) =

1   for  E ≤ EF  
0  for  E > EF  

⎧
⎨
⎩

 ,       (11) 

 
that is, all the states are filled below EF energy and no states are filled beyond EF. In the 
k-space, this fact is visualized by the Fermi-surface, which is the surface given by the set 
of k vectors corresponding to EF. Due to the symmetry properties of the Fermi-surface 
and according to Equation 9, the net current in the material is zero because for each 
positive occupied k value in any direction, there is an occupied negative k with the same 
absolute value, too [5], see Figure 2. (Note, at zero temperature and an external non-zero 
DC current generator drive, the occupied states shift in the positive direction on the kx 
axis (see Figure 2) [5]. 
 
It is obvious from this picture that, at zero temperature in thermal equilibrium, a non-zero 
Johnson noise current through the short-circuited resistor would violate the zero-
temperature Fermi-Dirac distribution, see Equation 11 and the solid curve in Figure 2, 
because that would require spontaneous violations of the symmetry of the Fermi-Dirac 
distribution in random directions at different instants of time.  
 
In conclusion, the material is totally "silent" at zero temperature and no Johnson noise 
can occur then. Consequently the zero-point term of Johnson noise claimed by the 
Callen-Welton formula (in Equations 4,6,7,8) does not exist. 
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Figure 2. Illustration of the Fermi-surface at 2-dimensions (solid circle). In thermal equilibrium, at zero 
temperature and zero current, electrons occupy all the states within the Fermi-sphere and no states outside 
of it are occupied. The dashed line illustrates the situation at zero temperature with external DC current 
generator driving, which results in a non-equilibrium state and a broken symmetry of the occupied states.  

 
For the completeness of the picture, let use see how the classical term of Johnson noise is 
generated in Equations 5 and 7. The classical (Nyquist) term is also zero at zero 
temperature in accordance with Equation 5. However, at non-zero temperature, in thermal 
equilibrium, the occupation probability is [5]: 
 

 
P(E,T > 0) =

1− ε(E,T )   for  E ≤ EF  
ε(E,T )        for  E > EF  

⎧
⎨
⎩

 ,     (12) 

 
where the ε(E,T )  probability ( 0 < ε ) characterizing the electron states that are 
"communicating" and take part in thermal motion (Nyquist noise term) , electronic 
specific heat, etc [5]. These are the carriers of the classical Johnson noise. 
 
 
4. Where is the error in the Callen-Welton derivation? 
 
So, where is the mistake in the Callen-Welton derivation [4] that produced the zero-point 
thermal noise artifact? 
 
First of all, to determine energy dissipation and impedance (see their Equation 2.6 and the 
related equations [4]) Callen-Welton calculate the transition probabilities of charge 
carriers to new energy states that are shifted by ±hf  energy compared to the original 
state, where f is the frequency of the sinusoidal voltage drive U0 sin 2π ft( )  of the 
resistor, where U0  is the voltage amplitude and t is time. To do that, they use the time-
dependent perturbation energy qU0 sin 2π ft( ) , where q is the charge of the electron. 
Unfortunately, this whole concept is inappropriate. In a solid, the energy dissipation is 
not based on ±hf  energy shifts. Particularly at a low frequency f, the electrons in the 
conductance band are randomly scattered into a wide range of energies with the order of 
kT random absolute energy shift. The characteristic lifetime of a state, mean free time [5], 
is much shorter than the sinusoidal period 1/f ; it is in the order of 10-13 seconds at room 
temperature. Thus time-dependent perturbation theory, which assumes that the state 
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persist for many sinusoidal periods 1/f, is completely inappropriate. Neither the lifetime 
of the state is long-enough, nor the scattering takes place with ±hf  energy shifts but a 
much larger random energy shift, in accordance with standard solid state physics [5]. 
 
Moreover the Callen-Welton derivation [4] directly violates the Pauli-principle. They 
neglected the fact that the charge carriers are fermions thus they satisfy the Pauli-
principle, which results in the Fermi-Dirac distribution [5,6]. The transition probabilities 
used by Callen-Welton do not depend on the occupation level of the state to which the 
transition occurs. The transition probabilities in their Equation 2.6 and in the related 
equations [4] should have been multiplied by (1-n), in accordance with the Pauli-
principle, where n is the occupation number (0 or 1) of the end-state of the transition, see 
the detailed treatment in [6]. Without that step, the system of electrons cannot converge 
to a Fermi-Dirac statistics in thermal equilibrium. 
 
Another questionable step in the Callen-Welton derivation is that, when they calculate the 
energy of the system at a given frequency, they use the energy of quantum linear 
harmonic oscillator at the given temperature. However, again, the system in question is 
the system of electrons. The linear harmonic oscillator describes bosons with Bose-
Einstein statistics (phonons, photons, etc.) while electrons are fermions with the 
completely different Fermi-Dirac statistics [6]. 
 
 
5. On the Koch - van Harlingen - Clark experiment [7] 
 
It is not our main concern to explain how could the Josephson junction based frequency-
selective, heterodyne detection experiments [7] lead to the seeming confirmation of the 
non-existent zero-point Johnson noise. However, it is worthwhile to mention one such 
attempt by Kleen [8] who, following Heffner's approach [9], gave an estimate about the 
potential role of the time-energy uncertainty principle in frequency-selective, phase 
sensitive linear amplifiers. Kleen [8] got the linear frequency dependence and 
approximately the same values as Equation 6 and the experiments [7].  
 
However, instead of Kleen, we quote here Heffner's results [9], which deduce the noise-
temperature TZP of frequency and frequenecy/phase selective linear amplifiers due to the 
uncertainty principle at zero thermodynamical temperature:  
 

TZP = hf / k

ln 2 −1/ A
1−1/ A

⎛
⎝

⎞
⎠

  .        (13) 

 
Equation 13 implies that at R source resistance, the equivalent input noise of the amplifier 
at zero temperature will be 
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Su = 4kTZPR = 4R hf

ln 2 −1/ A
1−1/ A

⎛
⎝⎜

⎞
⎠⎟
= γ 4Rhf  ,     (14) 

 
where A is the amplification and the γ ≈ 0.5  value would result in the exact zero-point 
noise artifact of Equation 6.  
 
We evaluated Heffner's formula, see Table 1, and found that amplification A=1.19 yields 
the artifact value however a wide range of amplification gives similar data.  
 

Table 1. Various amplification and corresponding γ  values. 
A 1.1 1.19 2 10 
γ  0.40 0.50 0.91 1.34 

 
 
7. Experiments indicating the non-existence of the zero-point term 
 
Voss and Webb [10] evaluated the shot noise of Josephson junctions and found that the 
results have excellent fit with a thermal activation model while these experimental results 
and 4 - 10 orders of magnitude below the noise level implied by the zero-point Johnson 
noise. Unfortunately, they suspected that the reason for deviations was the Langevin 
model of Josephson junctions, and did not mention/explore the possibility that the zero-
point term of Fluctuation-Dissipation Theorem is incorrect. 
 
It is also relevant to note that, back at the beginning of the 1980s, van der Ziel et al, did 
not see the zero-point term via direct (non-heterodyne) measurements [11] of Hanbury 
Brown-Twiss type microwave circuitry [12] at 1 Kelvin temperature and up to 95 GHz 
frequency, even though this frequency limit at this temperature is about 5 times beyond 
the kT/h classical/quantum boundary. 
 
 
7. Conclusions 
 
The zero-point Johnson noise term in the Fluctuation-Dissipation-Theorem is incorrect. It 
is the result of neglecting the fermion nature of charge carriers in conductors including 
the Pauli-principle. The Fermi-Dirac statistics of charge carriers implies that there is no 
Johnson noise at zero temperature thus the zero-point noise term must be non-existent. 
 
Additional work is needed to clarify the exact source of the Koch - van Harlingen - 
Clarke experimental results, perhaps combined with experiments on impedances, and 
with direct wideband detection instead of heterodyne/selective one. 
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