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Abstract

The Etherington’s distance-duality equation is the relationship between the luminosity distance

of standard candles and the angular-diameter distance. This relationship has been validated from

astronomical observations based on the X-ray surface brightness and the Sunyaev-Zel’dovich effect

of galactic clusters. In the present study, we propose a derivation of the Etherington’s reciprocity

relation in the dichotomous cosmology.

I. INTRODUCTION

The Etherington’s distance-duality equa-

tion was introduced in 1933 [1]. Ethering-

ton mentioned this equation was proposed

by Tolman as a way to test a cosmological

model. Ellis proposed a proof of this equa-

tion in the context of Riemannian geometry

[2, 3]. A quote from Ellis [3]: ”The core of the

reciprocity theorem is the fact that many geo-

metric properties are invariant when the roles

of the source and observer in astronomical ob-

servations are transposed”. This statement

is fundamental in the reciprocity theorem as

shown here in the derivation of the theorem

in the dichotomous cosmology. While the

proof of the Etherington’s distance duality

in the context of Riemannian geometry is te-

dious, the derivation in the dichotomous cos-

mology is straightforward. As a reminder,

the dichotomous cosmology [4, 5] consists of

a static matter universe with an expanding

luminous world. One needs to imagine a cube

of light expanding, in a space where galaxies

do not recede from each other.

Fortunately, the Etherington’s distance-

duality equation, which is a crucial relation-

ship in cosmology, can be verified from astro-

nomical observations. While the luminosity

distance is measured from supernova observa-

tions, the angular-diameter distance is deter-

mined from the X-ray surface brightness and

the Sunyaev-Zel’dovich effect [6] of galactic

clusters [7]. In [8], the authors found that the

ratio between the two distances DL for the

luminosity distance and DA for the angular-

diameter distance, defined as η = DL

DA(1+z)2
is

bound to be η = 1.01± 0.07 at 68% c.l. Sim-
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ilar results were obtained in [9, 10], where no

significant violation of the distance-duality

relationship was found. In [11], the authors

tested the cosmic distance duality for differ-

ent galactic cluster samples. The study [12] is

focused on analytical expressions for the de-

formation of the distance duality in terms of

the cosmic absorption parameter. The reci-

procity theorem is considered to be true when

photon number is conserved, gravity is de-

scribed by a metric theory with photons trav-

eling on unique null geodesics [13]. Any vi-

olation of the distance duality would be at-

tributed to exotic physics.

Following the introduction in section I, the

distance measurements are derived in section

II. To derive the Etherington’s reciprocity

theorem in the dichotomous cosmology, we

first need the distance measurements, which

may be derived from the tired-light paradigm

(section II.A) or from expanding metrics (sec-

tion II.B). Both derivations lead to the same

equations as shown in II.A and II.B. In sec-

tion II.C, we derive the Etherington’s dis-

tance duality using our distance measure-

ments. Finally, we offer our conclusion in

section III.

II. DERIVATION OF THE DISTANCE

MEASUREMENTS

A. Derivation from tired-light

paradigm

When a photon loses energy during its

travel in space, the wavelength of light is

stretched, and because the number of cycles

of the light wave is conserved, an expansion

of the luminous world is produced. As a con-

sequence of this stretching of light, the veloc-

ity of the light wavefront increases during its

travel (Fig. 1). According to special relativ-

ity, the speed of light is invariable. Hence, in

order to maintain the light wavefront at the

speed of light, the model introduces a time

contraction between the emission point and

the observer. The study [4] mentions a time-

dilation; in order to rectify this, the model is

based on a time contraction in the arrow of

time.

Considering that photons lose energy as

light gets stretched, the following equation is

obtained:

1 + z =
E(z)

E0

, (1)

where E(z) is the photon energy when emit-

ted, E0 is the photon energy at reception, and

z is the redshift.

A simple decay law of the photon energy

is considered:
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FIG. 1. Where (a) is the light wavefront without

stretching, and (b) with stretching. We can see

that in (b) the light wavefront is going faster

than in (a).

Ė

E
= −H0 , (2)

where H0 is the Hubble constant.

Therefore

E(t) = E0 exp(−H0t) , (3)

and

E(T ) = E0 exp(H0T ) , (4)

where t is the time which is equal to zero

at the time of observation, and T the light

travel time of the source from the observer.

A set of two transformations is considered:

first a time-variable light wavefront to acco-

modate the expansion of the luminous world,

and second a time contraction to maintain

the light wavefront at the speed of light.

1. Light wavefront with respect to the emis-

sion point

The light wavefront velocity before time

contraction is expressed as follows:

v(t) = c
Eemit

E(t)
. (5)

To maintain the light wavefront at the

speed of light, the following time contraction

is applied:

δt′

δt
=
Eemit

E(t)
. (6)

Hence, the light travel time with respect

to the source is:

T ′ =
∫ 0

−T

δt′

δt
dt =

∫ 0

−T

Eemit

E(t)
dt . (7)

Introducing (3) in the previous equation

and integrating, we get:

T ′ =
Eemit

E0

1

H0

(
1 − E0

Eemit

)
. (8)

Introducing (1) in the previous equation,

we get:

T ′ =
z

H0

, (9)

which is the light travel time measurement

for the luminosity distance.
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2. Light wavefront with respect to the ob-

server

The light wavefront velocity before time

contraction is expressed as follows:

v(t) = c
E0

E(t)
. (10)

To maintain the light wavefront at the

speed of light, the following time contraction

is applied:

δt0
δt

=
E0

E(t)
. (11)

Hence, the light travel time with respect

to the observer is:

T0 =
∫ 0

−T

δt0
δt
dt =

∫ 0

−T

E0

E(t)
dt . (12)

Introducing (3) in the previous equation

and integrating, we get:

T0 =
1

H0

(1 − exp(−H0T )) . (13)

Introducing (4) in the previous equation,

we get:

T0 =
1

H0

(
1 − E0

Eemit

)
. (14)

Introducing (1) in the previous equation,

we get:

T0 =
1

H0

z

(1 + z)
, (15)

which is the light travel time measurement

for the actual distance.

B. Derivation from expanding metrics

In the dichotomous cosmology, the lumi-

nous world is expanding; therefore, we can

derive the distance measurements using ex-

panding metrics.

1. Luminosity distance

The luminosity distance is the distance

measured from the luminosity of standard

candles. Supernovae Ia are considered sta-

nard candles, meaning they all have the same

absolute brightness when they explode. From

their apparent brightness, we can deduce the

luminosity distance, because the brightness

diminishes proportionally to the inverse of

the distance squared. The formula used to

measure the luminosity distance is the dis-

tance modulus equation.

By considering a photon travelling away

from the center of a supernova, the luminos-

ity distance is calculated as follows:

drL
dt

= c+H0rL , (16)

where rL is the luminosity distance, H0 the

Hubble constant, and c the speed of light.

By integrating this equation between 0

and T , we get:

rL =
c

H0

(exp(H0T ) − 1) . (17)
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Because da
dt

= H0a, we get dt = da
H0a

, where

a is the scale factor. In addition, the relation-

ship between the scale factor and the redshift

is given by the cosmological redshift equation

(1+z) = 1
a
, where the scale factor is equal to

one at present time.

Hence, the light travel time versus redshift

is as follows:

T =
∫ 1

1/(1+z)

da

H0a
=

1

H0

ln(1 + z) . (18)

Equations (17) and (18) yield:

rL =
c

H0

z . (19)

which is identical to (9) with rL = cT ′

2. Euclidean distance

A measurement of the distance is obtained

by calculating the corresponding distance if

there were no expansion, which we call the

Euclidean distance. Let us introduce y to

this distance measurement. By considering a

photon moving towards the observer, we get:

dy

dt
= −c+H0y . (20)

By setting time zero at a reference Tb in

the past, we get: t = Tb − T ; therefore, dt =

−dT (where T is the light travel time when

looking at a source into the past). Hence:

dy

dT
= c−H0y , (21)

with boundary condition y(T = 0) = 0.

Integrating this equation between 0 and

T , we get:

y =
c

H0

(1 − exp(−H0T )) . (22)

By substitution of (18) into (22), we get:

y =
c

H0

z

(1 + z)
, (23)

which is identical to (15) with y = cT0.

C. Etherington’s distance duality

From (19) and (23), we get:

rL = (1 + z)y . (24)

The angular-diameter distance dA of an

object is defined in terms of x, the object’s

actual size, and θ, the angular size of the ob-

ject as viewed from earth. The equation is as

follows:

dA =
x

θ
. (25)

Because of the expansion of the luminous

world, the apparent size of celestial objects is

stretched by a factor (1+z), and the apparent

angular size is increased by the same factor.

Hence, the relationship between the actual

distance y and the angular-diameter distance

is as follows:

y = (1 + z)dA . (26)
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Equations (24) and (26) yield:

rL = (1 + z)2dA , (27)

which is the Etherington’s distance dual-

ity relationship. We have just derived the

Etherington’s reciprocity theorem.

III. CONCLUSION

The Etherington’s distance-duality equa-

tion, which relates the luminosity distance of

standard candles to the angular-diameter dis-

tance, is a crucial relationship in cosmology.

Although the Etherington’s reciprocity theo-

rem is considered to be peculiar to cosmologi-

cal models based on Riemannian geometry, in

the present study we propose a new deriva-

tion of this relationship in the dichotomous

cosmology. This derivation is straightforward

and follows naturally from the dichotomous

cosmology. Today, the Etherington’s reci-

procity theorem is considered established and

has been verified using astronomical observa-

tions based on X-ray surface brightness and

the Sunyaev-Zel’dovich effect of galactic clus-

ters.

[1] I. M. H. Etherington, Philos. Mag. 15, 761

(1933).

[2] G. F. R. Ellis, Proceedings of the 47th Inter-

national School of Physics ’Enrico Fermi’,

edited by R. K. Sachs (Academic Press,

New York and London) 15, 104 (1971).

[3] G. F. R. Ellis, Gen. Relativ. Gravit. 39,

1047 (2007).

[4] Y. Heymann, Progress in Physics 10(3),

217 (2014).

[5] Y. Heymann, Progress in Physics 10(4),

178 (2014).

[6] R. A. Sunyaev and Y. B. Zel’dovich, Comm.

Astrophys. Space Phys. 4, 173 (1972).

[7] J. Silk and S. D. M. White, The Astrophys-

ical Journal Letters 226, L103 (1978).

[8] F. Bernardis, E. Giusarma, and A. Mel-

chiorri, International Journal of Modern

Physics D 15, 759 (2006).

[9] J.-P. Uzan, N. Aghanim, and Y. Mellier,

Physical Review D 70, 083533 (2004).

[10] R. Nair, S. Jhingan, and D. Jain, Preprint

Archiv:1210.2642 [astro-ph.CO] (2013).

[11] R. S. Gonalves, R. F. L. Holanda, and

J. S. Alcaniz, Monthly Notice Letters of

the Royal Astronomical Society 420, L43

(2012).

[12] J. A. S. Lima, J. V. Cunha, and V. T.

Zanchin, The Astrophysical Journal Letters

742, L26 (2011).

[13] B. A. Bassett and M. Kunz, Physical Re-

view D 69, 101305 (2004).

6


