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Abstract

Based on, the well-ordering (N; <) of the set of natural numbers
N, and some basic concepts of number theory, and using the proof by
contradiction and the inductive proof on N, we prove that the validity
of the Goldbach�s statement:

every even integer 2n � 4, with n � 2, is the sum of two primes.
This result con�rms the Goldbach conjecture, which allow to inserting
it as theorem in number theory.

Key Words: Well-ordering (N; <), basic concepts and theorems on
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1 A brief history and some results on the con-
jecture

Historically, from the reference [6], the conjecture dating since 1742 in a letter
addressed to Euler from Goldbach expresses the following fact:

Any natural number n > 5 is the sum of three primes.

The mathematician Euler replied that this fact is equivalent to the following
statement:
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Every even integer 2n � 4 is the sum of two primes.

Since then, three major lines of attack to this famous conjecture emerged :
"asymptotic study", "almost primes study" and �nally "basis".

The �rst result, obtained in the asymptotic case is due to Hardy and Lit-
tlewood in 1923 under the consideration of Riemann hypothesis. In 1937,
Vingradov showed the same result without using this assumption.

Theorem 1 (asymptotic theorem). There exists a natural number n0 such
that every odd number n � n0 is the sum of three primes.

A natural number n =
rQ
i=1

peii (where each pi is a prime) is called a k-

almost prime when
rP
i=1

ei = k; the set of k-almost primes is denoted by Pk.

The approach via almost-primes consists in showing that there exists h; k � 1
such that every su¢ ciently large even integer is in the set Ph + Pk of sums
of integers of Ph and Pk. The �rst result in this line of study was obtained
by Brun in 1919 by showing that: every su¢ ciently large even number is
in P9 + P9. In 1950, Selberg further improves the result by showing that:
every su¢ ciently large even integers it is in P2 + P3. The best result in this
direction is due to Chen(announcement of results in 1966, proofs in detail in
1973 and 1978) proving that:

Every su¢ ciently large even integer may be written as 2n = p+m, where p
is a prime and m 2 P2

1.1 The result of this paper

To proving the conjecture, we consider for any even natural number 2n > 4,
with n > 2, the �nite sequence of natural numbers Sm (n) = (si (n))i2f1;2;:::;mg
de�ned by: si (n) = 2n � pi where pi is the ith prime number in the �nite

strictly ordered sequence of primes

Pm := p1 = 2 < p2 = 3 < p3 = 5 < ::: < pm
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where m = � (2n) denotes the number of primes p such that p < 2n. Using
two stages of proofs: the proof by contradiction (or reductio ad absurdum)
including the inductive proof or mathematical induction, we proof that: for
any natural number n > 2, there exists at least one prime number sr (n) =
2n � pr belonging to the sequence Sm (n), which con�rms the result 2n =
sr (n) + pr where pr is the rth prime number of the sequence Pm of primes.
We give also a second indirect proof, of the above result, without using
the induction. These proofs con�rms the validity of this conjecture which
becomes then a theorem of number theory.

2 Preliminary and theoretical elements es-
sential to the paper

The set of natural numbers N := 1; 2; :::; n; :::, is well-ordered using the usual
ordering relation denoted by �, where any subset of N contains a least ele-
ment (this fact is an axiom called the least integer principal). Another way
to see the well-ordering of N, is that any natural number n can be reached
in �nite counting steps by ascent (adding 1) or descent (subtracting 1) from
any other natural number m, there isn�t an in�nite descent on natural num-
bers. This signi�cant characteristic property of the set of naturals numbers
N, is the key of almost results of properties of natural numbers.The concept
of well-ordering is of fundamental importance in view of the mathematical
induction to proving, in two steps only, the validity of a property H (n) de-
pending on natural number n. For a natural numbers a; b, we say a divides b,
if there is a natural number q such that b = aq. In this case, we also say that
b is divisible by a, or that a is divisor of b, or that a is a factor of b, or that
b is a multiple of a. If a is not a divisor of b, then we write a - b. A natural
number p > 1 is called prime, if it is not divisible by any natural number
other than 1 and p. Another way of saying this is that, an natural number
p > 1 is a prime if it cannot be written as the product p = t1t2 of two smaller
natural numbers t1; t2 not equal to 1. A natural number b > 1 that is not
a prime is called composite. The number 1 is considered neither prime nor
composite because the factors of 1 are redundant 1 = 1�1 = 1�1� :::::�1.
We shall write
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p1 = 2 < p2 = 3 < p3 = 5 < p4 = 7 < ::: < pi < :::

the in�nite increasing sequence of primes, where pi is the ith prime in this se-
quence. The Euclid�s theorem ensures that there are in�nitely many primes,
without knowing their pattern and indication of how to determine the ith
prime number. There is not a regularity in the distribution of these primes
on the chain (N;�)( in certain situation they are twins, i.e., there exists a
positif integer k such pk+1 = pk + 2, like p2 = 3 and p3 = 5, p5 = 11 and
p6 = 13 (it is not known today whether they are an in�nitely many twin
primes), in the same time, for any integer k � 2, the sequence of the succes-
sive k� 1 naturals numbers k! + 2; k! + 3; k! + 4; :::; k! + k, are all composite,
for the simple reason that, any term k! + t, for 2 � t � k; is divisible by t.
The fundamental theorem of arithmetic shows that any natural number

n > 1 can be written as the product of primes and this factorization is unique
up to the order of the prime factors. The primes are regarded as "atoms"
where every natural number is built , in unique way, out of prime numbers.
For a natural number n � 2, we denote by � (n) the number of primes p � n,
(� (n) is called also the prime counting function, for example � (4) = 2,
� (5) = 3,...and so on). The fundamental theorem of primes (Tcheybeche¤an
empiric estimation around 1850, Hadamard and de Vallée-Poussin theoritical
proof at the end of 19th century) shows that, for any large natural number
n, we have � (n) � n

lnn
and then pn � n lnn where ln denotes the natural

logarithm of base e = 2; 71:::. Finally, the Bertrand�s postulate(1845) and
the Tchebyche¤ theorem provides that between any natural number n � 2
and its double 2n there exists at least one prime. Equivalently, this may be
stated as � (2n) � � (n) � 1, for n � 2, or also in compact form pn+1 < pn
for n � 1.

Finally, the proof by contradiction and the inductive proof can be stated
as follows. Proving by so called proof by contradiction or reduction to absur-
dum, the validity of the property H, consists to assume that the hypothesis
H is false, which is then logically equivalent to (non H) is true and derived
from this, by rules of logic, a false statement or contradiction c of the form
c = (nonR) ^ R, this result con�rms that the hypothesis H is not false,
i.e., non(non H) is true, we deduce then that H must be true(the absurdity
or non sense or contradiction follows by the assumption that H is false).
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The mathematical induction is just pattern of the direct proof based on the
well-ordering of the set of natural numbers N. Proving the statement H (n)
depending on the natural number n, consists to verify in the �rst step, the
validity of the statement H for certain element n0 2 N, this step is called
the base case of induction. And in the second step, assuming the validity of
the statement H (n) for n 2 N, (called the inductive hypothesis), then prove
directly the truth of H (n+ 1) (this is the inductive case), we can conclude
then, based on the well-ordering of N, the truth of the statement H (n) for
all n � n0.

3 The construction and analysis of the se-
quence Sm (n)

Prior to the construction and analysis of the sequence Sm (n), we begin by
these simple lemmas in view of their utilities for the rest of the paper.

Lemma 2 If the odd integer t > 1 is not prime, then it can be factored only
on the form t = t1t2 where t1, t2 are proper factors 6= 1, and each factor t1
or t2 it is also an odd natural number greater or equal to the number 3.

Proof. By de�nition of prime, if the integer t > 1 is not prime then it is
composite. Let t = t1t2 be any possible factorization of t with t1, t2 are the
proper factors 6= 1. If one of these factors (or both) is an even integer then
the product t1t2 = t will be also an even integer, but the number t is odd.
Then each of the factors t1and t2 must odd and then greater or equal to the
number 3.

Lemma 3 Any natural number b 6= 1 admits a prime divisor. If b is not
prime, then there is a prime p divisor of b such that p2 � b.

Proof. By the de�nition of prime number, if the natural number b 6= 1
admits only the number b as proper divisor then b is a prime number. If b
is not prime, then it can be factored as b = pq such that: 1 < p < b and
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1 < q < b with p is the smallest, under the usual ordering �, proper factor
of the number b. Since p is the smallest proper factor of the number b then
p must be a prime otherwise, it is not then the least factor of b. As p is
the least factor of b then p � q. Multiplying both sides by p, we obtain:
pp = p2 � pq = b.
Let m � 1 be natural number. We denote by Im = f1; 2; :::;mg the �-

nite sequence of consecutive naturals numbers from 1 to m. Let n � 2 be a
natural number, we consider the �nite strictly increasing sequence of prime
numbers

p1 = 2 < p2 = 3 < p3 = 5 < ::: < pi::: < pm

where m = � (2n) denotes the number of primes p < 2n. Let Pm = (pi)i2Im
denote this �nite successive primes less strictly than 2n. The Tschebyche¤�s
theorem asserts that at least the prime pm is between n and its double 2n.
For any natural number n > 2, we consider the �nite sequence Sm (n) =
(si (n))i2Im of natural numbers de�ned by: si (n) = 2n � pi where pi is the
ith prime of Pm. Then we have:

s1 (n) = 2n� 2,
s2 (n) = 2n� 3,
s3 (n) = 2n� 5,
.
.
.
si (n) = 2n� pi,
.
.
.
sm (n) = 2n� pm.

Example 4 For n = 10, the �nite sequence of primes less than 20 is then:
p1 = 2 < p2 = 3 < p3 = 5 < p4 = 7 < p5 = 11 < p6 = 13 < p7 =
17 < p8 = 19. Consequently � (20) = 8 and the terms of the sequence
S8 (n) = S8 (10) = (si (10))i2f1;2;:::;8g are:

s1 (10) = 20 � 2 = 18, s2 (10) = 20 � 3 = 17, s3 (10) = 20 � 5 = 15,

s4 (10) = 20 � 7 = 13, s5 (10) = 20 � 11 = 9, s6 (10) = 20 � 13 = 7,

6



s7 (10) = 20� 17 = 3, s8 (10) = 20� 19 = 1.

Lemma 5 For the natural number n > 2 with m = � (2n), the �nite se-
quence of natural numbers Sm (n) = (si (n))i2Im de�ned by si (n) = 2n � pi,
with 1 � i � m, is strictly decreasing from s1 (n) = 2n � 2 = Max (Sm (n))
to sm (n) = 2n � pm = min (Sm (n)) � 1, and each element si (n) of this
sequence is an odd natural number except the �rst term s1 (n) = 2n� 2 that
is evidently an even number. The last term sm (n) is equal to 1 only in the
case when pm = 2n� 1.
Proof. Let n > 2 be a natural number with m = � (2n). Since the �nite
sequence of primes p1 = 2 < p2 = 3 < p3 = 5 < ::: < pi < :::pm is strictly in-
creasing, and each term si (n) is de�ned by 2n� pi then the sequence Sm (n)
is strictly decreasing from s1 (n) to sm (n). In fact, we have pi+1 > pi for
1 � i � m � 1 and then si (n) = 2n � pi > si+1 (n) = 2n � pi+1, this shows
that we have:

s1 (n) = 2n�p1 = 2n�2 > s2 (n) = 2n�p2 = 2n�3 > s3 (n) = 2n�p3 = 2n�
5 > :::si (n) = 2n� pi > si+1 (n) = 2n� pi+1 > ::::: > sm (n) = 2n� pm � 1.
Since for all i, with 2 � i � m, the prime pi is odd then also the term
si (n) = 2n�pi is odd. The �rst term s1 (n) = 2n�2 is the unique even num-
ber in the sequence Sm (n). The last term sm (n) = 2n� pm = min (Sm (n))
can be equal to the number 1 if and only if pm = 2n�1. In fact, if pm = 2n�1
then sm (n) = 2n � pm = 2n � (2n � 1) = 1. In the reverse case, we have
8p 2 Pm, p < 2n and then 2n�p > 0() 2n�p � 1 and we have 2n�p = 1
only in the case when p = 2n�1 = pm. In example 4, we have this situation,
as p8 = 19 then s8 (10) = 20� 19 = 1.

4 Existence of prime in the sequence Sm (n) =
(si (n))i2Im, for all natural number n > 2 with
m = � (2n)

Theorem 6 For any natural number n > 2 with m = � (2n), the �nite
sequence of natural numbers Sm (n) = (si (n))i2Im de�ned by si (n) = 2n�pi,
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with 1 � i � m, contains at least one prime sr 2 Pm \ Sm (n).

Proof. For any natural number n > 2, let Sm (n) = (si (n))i2Im be the �nite
sequence of natural numbers as de�ned in the section 3 above. The proof
is by contradiction, and so begin by assuming that the following hypothesis
H (n) is true for some natural number n > 2.

The hypothesis H (n):
"there exists a natural number n > 2, such that: each term si (n) 2

Sm (n), for any i 2 Im, is not a prime number".

This is equivalent to:

"there exists a natural number n > 2, such that: each term si (n) 2 Sm (n),
for all i 2 Im, is a composite number or equal to the natural number 1".

Symbolicaly the hypothsis H (n) can be written:
"9 (n > 2) 2 N; 8 i 2 f1; 2; 3; :::mg: the term si (n) is not a prime

number"
But, the unique term si (n) of Sm (n), which can be equal to the number 1
is, the last term sm (n) = 2n � pm in the case when pm = 2n � 1 (see the
lemma 5). The last term sm (n) = 2n�pm is the unique term of the sequence
Sm (n), which it is neither prime nor a composite number in the case when
pm = 2n� 1, i.e., in the case when sm (n) = 1.

To contradict or denying the hypothesis H (n) for all n > 2, (in symbolic
terms this contradiction is written: 8 (n > 2)2 N;9i 2 f1; 2; 3; :::mg such

that si (n) is a prime number), we compute the sum of the terms of the
sequence Sm (n) in two di¤erent ways: In the �rst way, we compute the

sum
mX
i=1

si (n) without any hypothesis, which represents the sum of the real

terms. In the second way, we compute the sum
mX
i=1

si (n), where each term

si (n) 6= 1 of Sm (n) it is supposed to be a composite natural number, under
the hypothesis H (n), for all n > 2.
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In the �rst way:

Sumrel (n) =
mX
i=1

si (n) =

mX
i=1

(2n� pi)

Where, Sumrel (n) represents the sum of the terms si (n) without the hy-
pothesis H (n), which it is the sum of real terms for n > 2.
In the second way:

Sumhyp (n) =

mX
i=1

si (n)

Where, Sumhyp (n) represents the sum of the terms under the hypothesis
H (n), for n > 2, with each term si (n) > 1 it is to be assumed a composite
number for all i 2 Im or i 2 Im�1 in the case when sm (n) = 2n� pm = 1.

In the �rst way, we have:

Sumrel (n) =
mX
i=1

si (n) =
mX
i=1

(2n� pi) =

= (2n� 2) + (2n� 3) + :::+ (2n� pi) + :::+ (2n� pm)
= (2n+ 2n+ :::+ 2n)� (2 + 3 + :::+ pi + :::+ pm)

=
mX
i=1

2n�
mX
i=1

pi = 2nm�
mX
i=1

pi.

This positive integer value represents, for n > 2, the real sum of all the terms
of the sequence Sm (n) with m = � (2n). Evidently m and then Sumrel (n)
are depending on the natural number n > 2, when n describes N. In the
second way, from the lemma 5, all the terms of sequence Sm (n) are odd
numbers except the �rst s1 (n) = (2n� 2). Since, under the hypothesis
H (n), each term si (n) 6= 1 it is supposed to be a composite number, we
consider then the possible factorization of each term si (n) as the following
form:

si (n) =
(under H(n))

p
0

i (n) qi (n)

such that p
0
i (n) is a prime number, the existence of this prime factor it is

assured by the fundamental theorem of arithmetic or it su¢ ces to see the
lemma 3, and qi (n) is the other propre factor. According to the lemmas 2
and 5, the factors p

0
i (n), qi (n) are odd � 3, for all i 2 f2; :::;mg in the case
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when pm 6= 2n�1, and for all i 2 f2; :::;m� 1g in the case when pm = 2n�1
(because in this case, we have sm = 2n�pm = 2n� (2n� 1) = 1). The term
s1 (n) = 2n� 2 = 2(n� 1) is the only natural even number of the sequence
Sm (n), which it is evidently a composite number.

Two cases are to consider for Sumhyp (n) =
mX
i=1

si (n),

depending on whether pm 6= 2n � 1 (in this case sm (n) = 2n � pm � 3 it is
also a composite number) or, pm = 2n� 1 (in this case sm (n) = 2n� pm = 1
it is neither prime nor a composite number).

1rtcase : if pm 6= 2n � 1, then all the terms si (n) are to be a composite
number, in view of H (n), and we have then:

Sumhyp (n) =
mX
i=1

si (n) = s1 (n) +
mX
i=2

si (n) = (2n� 2) +
mX
i=2

p
0
i (n) qi (n).

(from the hyp. H (n) and the lemmas 2 and 5 : p
0
i (n) is a prime � 3, qi (n)

is a proper factor � 3. The �rst term s1 (n) = 2n � 2 is written separately
in the summation).

2ndcase : if pm = 2n � 1, in this case we have sm (n) = 2n � pm =
2n� (2n� 1) = 1, thus we have:

Sumhyp (n) =
mX
i=1

si (n) = s1 (n) +
m�1X
i=2

si (n) + sm (n) =

(2n� 2) +
m�1X
i=2

p
0
i (n) qi (n) + 1.

(from the hyp. H (n) and the lemmas 2; 3 and 5, p
0
i (n) is a prime � 3, qi (n)

is a proper factor � 3. The �rst term s1 (n) = 2n�2, and the last sm (n) = 1
are written separately in the summation).
Since all the terms si (n), in the step n, are between the numbers 1 and
2n� 2, we have then:

Tprim (n) =
n
p
0

2 (n) ; p
0

3 (n) ; :::p
0

m (n)
o
� Pm

In the same case for the proper factors, we have:

Tfact (n) = fq2 (n) ; q3 (n) :::; qm (n)g
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with 3 � qi (n) < 2n� 2, 8i 2 f2; 3; :::;mg(according to the hyp. H (n) and
lemmas 2 and 5). Our objective at this stage is to prove that, under the
hypothesis H (n), we will have for any natural number n > 2 :

Sumhyp (n) > Sumrel (n)

In the cases 1 and 2 cited above.
The inequality Sumhyp (n) > Sumrel (n) can be written Symbolicaly in the
cases 1 and 2 as the following forms:

1rtcase :

(2n� 2) +
mX
i=2

p
0

i (n) qi (n) > 2nm�
mX
i=1

pi

2ndcase :

(2n� 2) +
m�1X
i=2

p
0

i (n) qi (n) + 1 > 2nm�
mX
i=1

pi

Note that, the �rst even term s1 (n) = 2n � p1 = 2n � 2 = 2 (n� 1) is
written separately in the sum of Sumhyp (n), because the objective of this
method is to show that there is at least one odd prime number in the se-
quence Sm (n) for all m = � (2n) with n > 2.
Note that, this study relates to the �nite case and not to the asymptotic.
That is, for each natural number n > 2; there is a �nite number m = � (2n)
of prime numbers and consequently the �nite sequences Pm (n) and Sm (n)
that are being considered, for each n, when the variable n runs over N.
The functions or expressions Sumrel (n), Sumhyp (n) are depending on the
natural variable n > 2. To this end, we apply the mathematical induc-
tion over N to ensure that if the condition Sumhyp (n) > Sumrel (n) is
valid or not for any natural number n > 2. It is noted here that the use
of induction on the integer variable n does not a¤ects the prime factors
of si (n) = 2n � pi = p

0
i (n) qi (n) at the step n, and those of the term

si (n+ 1) = 2 (n+ 1)� pi = p0i (n+ 1) qi (n+ 1) at the step n+ 1, which are
assumed to be given according to the hypothesis H (n). We simply want to
ensure that if it will be or not Sumhyp (n+ 1) > Sumrel (n+ 1) at the step
n+ 1 given that we have Sumhyp (n) > Sumrel (n) valid at the step n.
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Veri�cation over the set N� f1; 2g the veracity of condition
"8n > 2; Sumhyp (n) > Sumrel (n) "

1.Veri�cation if n = 2 can be taken as the basis for the recurrence.
For n = 2 we have 2n = 4 and then:
m = � (2n) = � (4) = 2 = jfp1; p2gj = jf2; 3gj,
and consequently
Sumrel (2) = 2nm� (p1 + p2) = 2� 2� 2� (2 + 3) = 8� 5 = 3.
In the other hand, since p2 = 3 = 2� 2� 1, therefore the 2ndcase which will
be used to calculte Sumhyp (2). We have:
s1 (2) = 2� 2� 2 = 2� 1 (the even term),
s2 (2) = 2� 2� 3 = 1 (the last term).
And then, Tprim (2) = Tfact (2) = ; (because there isn�t any odd terms � 3
assumed to be a composite number according to the hypothesisH (2)). Then,
Sumhyp (2) = s1 (2) + s2 (2) = 2� 1 + 1� 1 = 3,
therefore Sumrel (2) = Sumhyp (2) = 3 (this situation happened only for
the case n = 2, that is due to non-existence of the presumed factors si (2) � 3
by the hypothesis H (2)). But, evidently we have 4 = 2 + 2
Veri�cation for the integer n = 3.
On the one hand, we have 2n = 6 and then:
m = � (2n) = � (6) = jfp1; p2; p3gj = jf2; 3; 5gj = 3 with (2 + 3 + 5) = 10
and consequently, Sumrel (3) = 2nm� 10 = 2� 3� 3� 10 = 8.
On the other hand, since p3 = 5 = 2n�1 = 2�3�1, then the 2ndcase which
it will be used to calculate Sumhyp (3). We have:
s1 (3) = 6� 2 = 4 (the even term),
s2 (3) =

(under H(3))
p02 (3) q2 (3) = 3 � q2 (3), with the presumed proper factor

q2 (3) is between 4 > q2 (3) � 3 under the hypothesis H (3).
s3 (3) = 6� 5 = 1.
We have Tprim (3) = f3g and Tfact (3) = fq2 (3) = 4 > q2 (3) � 3g.
For n = 3, we have then:
Sumhyp (3) = (2� 3� 2)+3� q2 (3)+1 = 4+3� q2 (3)+1 = 5+3� q2 (3),
with 4 > q2 (3) � 3. And consequently,
Sumhyp (3) = 5 + 3� q2 (3) � 14 > 8 = Sumrel (3).
Therefore Sumhyp (3) > Sumrel (3) and then the base case for the induction
is, the natural number 3.
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Veri�cation again for the integer n = 4.
On the one hand, we have 2n = 8 and then:
m = � (2n) = � (8) = jfp1; p2; p3; p4gj = jf2; 3; 5; 7gj = 4 with
(2 + 3 + 5 + 7) = 17 and consequently,
Sumrel (4) = 2nm� 17 = 2� 4� 4� 17 = 15.
On the other hand, since p4 = 2 � n � 1 = 2 � 4 � 1 = 7, then the 2ndcase
which will be used to calculate Sumhyp (4).We have:
s1 (4) = 8� 2 = 6 (the even term),
s2 (4) =

(under H(4))
p02 (4) q2 (4) = 5� q2 (4),

with the presumed factor q2 (4) is between 6 > q2 (4) � 3 under the hypoth-
esis H (4))
s3 (4) =

(under H(4))
p03 (4) q3 (4) = 3� q3 (4),

with the presumed factor q3 (4) is between 6 > q3 (4) � 3 under the hypoth-
esis H (4))
s3 (4) = 8� 7 = 1. We have then:
Tprim (4) = f5; 3g and Tfact (4) = fq2 (4) ; q3 (4) = 6 > q2 (4) ; q3 (4) � 3g.
Then for n = 4,
Sumhyp (4) = (2� 4� 2) + 5� q2 (4) + 3� q3 (4) + 1
= 6 + 5� q2 (4) + 3� q3 (4) + 1 = 7 + 5� q2 (4) + 3� q3 (4)
with 6 > q2 (4) ; q3 (4) � 3. And consequently,
Sumhyp (4) = 7 + 5� q2 (4) + 3� q3 (4) � 7 + 5� 3 + 3� 3 = 7 + 15 + 9 =
31 > 15 = Sumrel (4),
this shows that we have also the inequality Sumhyp (4) > Sumrel (4) it is
satis�ed.

2. veri�cation if we will have Sumhyp (n+ 1) > Sumrel (n+ 1) at
the step n+ 1, given that we have Sumhyp (n) > Sumrel (n) satis�ed
at the step n.
Recall that we have two cases to consider at the step n+ 1.
- If the prime pm+1 6= 2n + 1, in this case pm+1 > 2n + 2 and consequently
we have � (2n) = � (2n+ 2) = m, this shows that we are in the 1ercase with
sm (n+ 1) = 2 (n+ 1) � pm � 3 because pm < 2n, and consequently the se-
quence S at the step n+1 will have also m terms, with each term si (n+ 1),
according to H (n+ 1) and lemmas 2 and 5, is a composite odd natural num-
ber for each i 2 f2; :::;mg, with the even term s1 (n+ 1) = 2 (n+ 1)� 2 it is
given a composite number from the start.
- If the prime pm+1 = 2n+1, in this case � (2n+ 2) = m+1, this shows that
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there is m+1 terms with sm+1 (n+ 1) = 1(the factor sm+1 (n+ 1) = 1 is non
composite and not prime and all the others terms si (n+ 1) are composite
according to the hypothesis H (n+ 1), for all i 2 f2; :::;mg, with the even
term s1 (n+ 1) = 2 (n+ 1)� 2 is given a composite number from the start).
Let be the following factorization of the sequence Sm (n) = (si (n))i2f1;:::;mg
with Sumhyp (n) > Sumrel (n) it is given true at the step n.
s1 (n) = 2n� p1 = 2n� 2,
s2(n) = 2n� p2 = 2n� 3 =

(under H(n))
p02 (n) q2 (n),

s3 (n) = 2n� p3 = 2n� 5 =
(under H(n))

p03 (n) q3 (n),
.
si (n) = 2n� pi =

(under H(n))
p0i (n) qi (n),

.

.
sm (n) = 2n� pm =

(under H(n))
p0m (n) qm (n).

At the step n+ 1, in the 1ercase when pm+1 6= 2n+ 1, we have:
On the one hand,

Sumrel (n+ 1) =
mX
i=1

(2 (n+ 1)� pi) =
mX
i=1

((2n� pi) + 2)

=
mX
i=1

(2n� pi) + 2m = Sumrel (n) + 2m.

On the other hand,
s1 (n+ 1) = 2 (n+ 1)� p1 = 2 (n+ 1)� 2,
s2 (n+ 1) = 2 (n+ 1)� p2 = 2 (n+ 1)� 3 =

(under H(n+1))
p02 (n+ 1) q2 (n+ 1),

s3 (n+ 1) = 2 (n+ 1)� p3 = 2 (n+ 1)� 5 =
(under H(n+1))

p03 (n+ 1) q3 (n+ 1),
.

si (n+ 1) = 2 (n+ 1)� pi =
(under H(n+1))

p0i (n+ 1) qi (n+ 1),
.
.
sm (n+ 1) = 2 (n+ 1)� pm =

(under H(n+1))
p0m (n+ 1) qm (n+ 1).

With for all i 2 f2; 3; :::;mg, 2 (n+ 1)� 2 > p0i (n+ 1) ; qi (n+ 1) � 3.
But, we have also for all i 2 f2; 3; :::;mg,
si (n+ 1) = p

0
i (n+ 1) qi (n+ 1) = 2 (n+ 1)� pi =

= 2n+ 2� pi = (2n� pi) + 2 = si (n) + 2 = p0i (n) qi (n) + 2,
and then:

14



Sumhyp (n+ 1) =
mX
i=1

si (n+ 1) = s1 (n+ 1) +

mX
i=2

si (n+ 1)

= 2 (n+ 1)� 2 +
mX
i=2

(si (n) + 2) = (2n� 2) + 2 +
mX
i=2

si (n) + 2 (m� 1)

=

 
(2n� 2) +

mX
i=2

si (n)

!
+ 2m = Sumhyp (n) + 2m.

Since the condition Sumhyp (n) > Sumrel (n) it is given valid at the step n,
we obtain then
Sumhyp (n+ 1) = Sumhyp (n)+2m > Sumrel (n)+2m = Sumrel (n+ 1)

and consequently Sumhyp (n+ 1) > Sumrel (n+ 1).
We conclude then the condition it is true in the 1rtcase:

8n > 2; Sumhyp (n) > Sumrel (n)
2ndcase if pm+1 = 2n+ 1:
On the one hand we have

Sumrel (n+ 1) =
m+1X
i=1

si (n+ 1) =
mX
i=1

(2 (n+ 1)� pi) + sm+1 (n+ 1) =
mX
i=1

((2n� pi) + 2) + 1 =
mX
i=1

(2n� pi) + 2m+ 1 = Sumrel (n) + 2m+ 1.

On the other hand,

Sumhyp (n+ 1) =
m+1X
i=1

si (n+ 1) = s1 (n+ 1) +
mX
i=2

si (n+ 1) + sm+1 (n+ 1)

= 2 (n+ 1)�2+
mX
i=2

(si (n) + 2)+1 = (2n� 2)+2+
mX
i=2

si (n)+2 (m� 1)+1

= (2n� 2)+
mX
i=2

si (n)+2 (m� 1)+3 =
 
(2n� 2) +

mX
i=2

si (n)

!
+2m+1 =

Sumhyp (n) + 2m+ 1.
Since we have Sumhyp (n) > Sumrel (n) at the step n, then:
Sumhyp (n+ 1) = Sumhyp (n)+2m+1 > Sumrel (n)+2m+1 = Sumrel (n+ 1),
which shows that we have also the condition veri�ed at the step n+ 1,

8n > 2; Sumhyp (n+ 1) > Sumrel (n+ 1)
From the cases 1 and 2, we conclude then:

8n > 2; Sumhyp (n) > Sumrel (n)
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In conclusion, we obtain then according the hypothesis H (n),
Sumhyp (n) > Sumrel (n) for all n > 2.
This results shows that there isn�t any natural number n > 2 such that
we will have Sumhyp (n) = Sumrel (n) under the hypothesis H (n). In
other words, the hypothesis conduct or forces the inequality between the
quantities Sumrel (n) and Sumhyp (n) which represents normally the same

value, this is a mathematically absurd. The sum
mX
i=1

si (n) is equal to one

integer value depending on the natural number n > 2. The consideration
of this assumption, i.e., the hypothesis H (n), for n > 2, conduct to the

contradiction and the impossibility (the same integer expression
mX
i=1

si (n)

with two di¤erent values, absurdity), and therefore the categorical refutation
of the hypothesis H (n), for all n > 2. Consequently for each n > 2, there
is at least one odd prime number sr (n) 2 Sm (n). Note that, the inequality
between Sumrel (n) and Sumhyp (n) is due to the fact that the hypothesis
H (n) forces only every proper factor qi (n) of each term si (n) = p

0
i (n) qi (n)

to be greater or equal to 3, for i 2 f2; 3; :::mg if pm 6= 2n � 1 otherwise
i 2 f2; 3; :::m� 1g if pm = 2n � 1. The existence of the prime p0i (n) as
factor � 3 is provided by the lemma 2 with or without the hypothesis H (n).
Since we have isolated, from our comparaison, the �rst term s1 (n) and the
last term sm (n) in the case when sm (n) = 1, and to have this necessary
equality between Sumhyp (n) and Sumrel (n), for all n > 2, it is necessary
then that some factor, at least one, qi (n) must be strictly less than the
natural number 3. And since this factor qi (n) cannot be even equal to 2
(otherwise, the term si (n) would be also even, but we have all the terms
are odd numbers except the �rst term), and therefore, this factor must be
equal to the natural number 1(i.e., qi (n) = 1). In conclusion, it is necessary
then the existence of at least one term sr (n) = p

0
r (n) qr (n) 2 Sm (n) with

qr (n) = 1 and consequently, we have sr (n) = p
0
r (n) qr (n) = p

0
r (n) � 1 =

p
0
r (n) 2 Tprim (n) =

�
p
0
2 (n) ; p

0
3 (n) ; :::p

0
m (n)

	
� Pm and then sr (n) is a

prime number. Thus, we obtain for each n > 2, an odd prime number sr (n)
claimed by the theorem.

Note that, in the �rst proof of theorem 6, the hypothesis which it is
taken into contradiction using the induction on the natural number n 2 N
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is H (n) := "9 n2 N; 8 i 2 f1; 2; 3; :::mg : si (n) is not a prime number" the

negation of H (n) is "8 n2 N; 9 i 2 f1; 2; 3; :::mg such that the term si (n)

of the sequence Sm (n) is a prime number", is proved using the induction on
the natural n 2 N. In this subsection, we give another indirect proof without
the induction of the hypothesis H2 (n) : " For any naturel number n > 2;
9i 2 f1; 2; 3; :::mg such that the term si (n) of the sequence Sm (n) is a prime
number".

4.1 Second Proof of existence of prime in the sequence
Sm (n) = (si (n))i2Im, for all natural number n > 2

with m = � (2n)

(Indirect proof without the recurrence).

Proof. For the natural number n > 2, we consider the �nite sequence
of primes Pm := (p1 = 2 < p2 = 3 < :::: < pm) with m = � (2n) and let
Sm (n) = (si (n))i2Im be the �nite sequence of natural numbers de�ned by
si (n) = 2n�pi, where pi is the ith prime of Pm. Let H2 (n) be the hypothesis
de�ned by:
H2 (n) : " For any naturel number n > 2; 9i 2 f1; 2; 3; :::mg such that: the
term si (n) of the sequence Sm (n) is a prime number".
Suppose that the hypothesisH2 (n) is false, there exists then a natural n0 > 2,
such that: 8i 2 f1; 2; 3; :::mg the natural number si (n0) is not a prime num-
ber with m = � (2n0). This negation of this hypothesis is equivalent to :
9 n0 > 2 such that: 8 i 2 f1; 2; 3; :::mg, with m = � (2n0), the natural num-
ber si (n0) is a composite number.
We show in this, we will have Sumhyp (n0) > Sumrel (n0) for n0 > 6, and
we obtain then a contradiction. This result asserts then that, the hypothesis
H2 (n) it is never false.
On the one hand we have:

Sumrel (n0) =
mX
i=1

si (n0) =
mX
i=1

(2n0 � pi) = 2n0m �
mX
i=1

pi. Since we have

p1 = 2 < p2 = 3 < p3 = 5 < ::: < pi::: < pm then p1 = 2 = minPm =
min (pi)i2Im. This shows that we have:

Sumrel (n0) = 2n0m�
mX
i=1

pi � 2n0m� 2m = 2m (n0 � 1).
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On the other hand, we have to consider for Sumhyp (n) two cases: the case
if pm 6= 2n� 1 and the case if pm = 2n� 1.
If pm 6= 2n� 1 then:

Sumhyp (n0) = (2n0 � 2) +
mX
i=2

p
0
i (n0) qi (n0)

with 3 � p0i (n0) ; qi (n0) < 2n0 � 2, 8i 2 f2; 3; :::;mg.

This shows that we have Sumhyp (n0) � (2n0 � 2) +
mX
i=2

9 = (2n0 � 2) +

9 (m� 1). Then we have:

Sumhyp (n0)� (2n0 � 2) +
mX
i=2

9 =

= (2n0 � 2) + 9 (m� 1) > 2m (n0 � 1) � Sumrel (n0) for n0 > 6. In fact,
(2n0 � 2)� 2m (n0 � 1) > �9 (m� 1)()
2 (n0 � 1)� 2m (n0 � 1) > �9 (m� 1)()
2 (n0 � 1) (1�m) > �9 (m� 1)()
(n0 � 1) > �9(m�1)

2(1�m) = 9=2 =) n0 > [9=2 + 1] = 6.
In the same manner, if pm = 2n � 1 then Sumhyp (n0) = (2n0 � 2) +
m�1X
i=2

p
0
i (n0) qi (n0)+1� (2n0 � 2)+9 (m� 2)+1 > 2m (n0 � 1)� Sumrel (n0)

for n0 > 5. The above results shows that, with large negligence of real terms
mX
i=2

p
0
i (n0) qi (n0) normally added to Sumhyp (n0) and

mX
i=1

pi subtracted to

Sumrel (n0), the non-existence of such natural number n0 and consequently
there isn�t any natural number n0 > 2 such that: the hypothesis H2 (n0) it
is false. This result asserts that the hypothesis H2 (n) is true for all natural
number n > 2. Finally, we obtain then the existence of a prime number in
the sequence Sm (n) for all n > 2.

Theorem 7 Every even integer 2n � 4, with n � 2, is the sum of two
primes.

Proof. If n = 2 then 4 = 2 + 2. If the natural number n > 2, consider
then the �nite sequence of primes Pm := (p1 = 2 < p2 = 3 < :::: < pm) with
m = � (2n) and let Sm (n) = (si (n))i2Im be the �nite sequence of natural
numbers de�ned by si (n) = 2n � pi, where pi is ith prime of Pm. From the
theorem 6 there exists at least one prime number sr (n) 2 Sm (n). As we have
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sr (n) = 2n� pr with pr is the rth prime number of sequence Pm. Therefore
we have s = sr (n) = 2n � pr and consequently 2n = pr + s. It follows that
the Goldbach�s conjecture is e¤ectively a theorem of number theory.
As consequence of this results, given an even natural number 2n � 4 with

n � 2 to �nd the pair of prime numbers (p; s) such that 2n = p + s, it suf-
�ces that the algorithm run through the �nite sequence Sm (n) = (si (n))i2Im
which contains, at least one, solution claimed.
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