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Introduction: The Beal’s Conjecture was discovered by Andrew Beal 

in 1993. Later the conjecture was announced in December 1997 issue of 

the Notices of the American Mathematical Society. Yet it is still both 

unproved and un-negated a conjecture hitherto.  

Abstract   

In this article, first we classify A, B and C according to their respective 

odevity, and thereby ret rid of two kinds from AX+BY=CZ. Then affirmed 

AX+BY=CZ in which case A, B and C have a common prime factor by 

concrete examples. After that, proved AX+BY≠CZ in which case A, B and 

C have not any common prime factor by the mathematical induction with 

the aid of the symmetric law of odd numbers after the decomposition of 

the inequality. Finally, we have proved that the Beal’s conjecture does 

hold water after the comparison between AX+BY=CZ and AX+BY≠CZ 

under the given requirements.    

 

AMS subject classification: 11×××, 00A05.  

Keywords: Beal’s conjecture, mathematical induction, odevity of A, B 
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The Proof  

The Beal’s Conjecture states that if AX+BY=CZ, where A, B, C, X, Y and 

Z are positive integers, and X, Y and Z are all greater than 2, then A, B 

and C must have a common prime factor.    

We consider the limits of values of above-mentioned A, B, C, X, Y and Z 

as given requirements for hinder concerned equalities and inequalities.  

First we classify A, B and C according to their respective odevity, and 

thereby remove following two kinds from AX+BY=CZ.   

1. If A, B and C, all are positive odd numbers, then AX+BY is an even 

number, yet CZ is an odd number, so there is only AX+BY≠CZ according to 

an odd number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when AX+BY is an even number, CZ is an odd 

number, yet when AX+BY is an odd number, CZ is an even number, so 

there is only AX+BY≠CZ according to an odd number ≠ an even number.   

Thus, we continue to have merely two kinds of AX+BY=CZ under the 

given requirements, as listed below.   

1. A, B and C, all are positive even numbers.   

2. A, B and C are two positive odd numbers and a positive even number.  

For indefinite equation AX+BY=CZ under the given requirements plus 

aforementioned either qualification, in fact, it has many sets of solutions 

with A, B and C which are positive integers. Let us instance two concrete 
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equations respectively to explain two such propositions below.   

When A, B and C all are positive even numbers, if let A=B=C=2, X=Y=3, 

and Z=4, then indefinite equation AX+BY=CZ is exactly equality 23+23=24. 

Evidently, AX+BY=CZ has here a set of solution with A, B and C which 

are positive integers 2, 2 and 2, and A, B and C have common even prime 

factor 2. In addition, if let A=B=162, C=54, X=Y=3, and Z=4, then 

indefinite equation AX+BY=CZ is exactly equality 1623+1623=544. 

Evidently, AX+BY=CZ has here a set of solution with A, B and C which 

are positive integers 162, 162 and 54, and A, B and C have two common 

prime factors, i.e. even 2 and odd 3.    

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3, and Z=5, then indefinite equation 

AX+BY=CZ is exactly equality 33+63=35. Manifestly AX+BY=CZ has here a 

set of solution with A, B and C which are positive integers 3, 6 and 3, and 

A, B and C have common prime factor 3. In addition, if let A=B=7, C=98, 

X=6, Y=7, and Z=3, then indefinite equation AX+BY=CZ is exactly 

equality 76+77=983. Manifestly AX+BY=CZ has here a set of solution with 

A, B and C which are positive integers 7, 7 and 98, and A, B and C have 

common prime factor 7.  

Consequently, indefinite equation AX+BY=CZ under the given 

requirements plus aforementioned either qualification is able to hold 

water, but A, B and C must have at least one common prime factor.   
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By now, if we can prove that there is only AX+BY≠CZ under the given 

requirements plus the qualification that A, B and C have not any common 

prime factor, then we proved completely the conjecture.   

Since A, B and C have common prime factor 2 when A, B and C all are 

positive even numbers, so these circumstances that A, B and C have not 

any common prime factor can only occur under the prerequisite that A, B 

and C are two positive odd numbers and a positive even number.  

If A, B and C have not any common prime factor, then any two of them 

have not any common prime factor either, because if any two have a 

common prime factor, namely AX+BY or CZ-AX or CZ-BY have a common 

prime factor, yet another has not the prime factor, then it would lead to 

AX+BY≠CZ or CZ-AX≠BY or CZ-BY≠AX surely according to the unique 

factorization theorem of natural number.  

Since it is so, if we can prove AX+BY≠CZ under the given requirements 

plus the qualification that A, B and C have not any common prime factor, 

then the Beal’s conjecture is surely tenable, otherwise it will be negated.  

Unquestionably, let following two inequalities add together, are able to 

replace completely AX+BY≠CZ under the given requirements plus the 

qualification that A, B and C are two positive odd numbers and a positive 

even number without a common prime factor.    

1. AX+BY≠2ZG Z under the given requirements plus the qualifications that 

A and B are two positive odd numbers, G is a positive integer, and A, B 
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and 2G have not any common prime factor.  

2. AX+2YDY≠CZ under the given requirements plus the qualifications that 

A and C are two positive odd numbers, D is a positive integer, and A, C 

and 2D have not any common prime factor.   

For AX+BY≠2ZGZ, when G=1, it is exactly AX+BY≠2Z. When G>1: if G is 

a positive odd number, then the inequality changes not, namely it is still 

AX+BY≠2ZG Z; if G is a positive even number, then the inequality is 

expressed by AX+BY≠2W or AX+BY≠2WHZ, where H is an odd number ≥3, 

and W > Z.    

Undoubtedly, AX+BY≠2W can represent AX+BY≠2Z, and AX+BY≠2WHZ 

can represent AX+BY≠2ZGZ, where H is an odd number ≥3, and W ≥ Z. 

So express AX+BY≠2ZGZ into two inequalities as the follows.  

(1) AX+BY≠2W, where A and B are positive odd numbers without a 

common prime factor, and X, Y and W are integers ≥3.  

(2) AX+BY≠2W HZ, where A, B and H are positive odd numbers without a 

common prime factor, X, Y and Z are integers ≥3, W ≥ Z, and H ≥3.  

For AX+2YDY≠CZ, when D=1, it is exactly AX+2Y≠CZ. When D>1: if D is 

a positive odd number, then the inequality changes not, namely it is still 

AX+2YDY≠CZ; if D is a positive even number, then the inequality is 

expressed by AX+2W≠CZ or AX+2WRY ≠CZ, where R is an odd number ≥3, 

and W >Y.  



 

 6 

Undoubtedly, AX+2W≠CZ can represent AX+2Y≠CZ, and AX+2WRY≠CZ 

can represent AX+2YDY≠CZ, where R is an odd number ≥3, and W ≥ Y. So 

express AX+2YDY≠CZ into two inequalities as the follows.  

(3) AX+2W≠CZ, where A and C are positive odd numbers without a 

common prime factor, and X, W and Z are integers ≥3.  

(4) AX+2WRY≠CZ, where A, R and C are positive odd numbers without a 

common prime factor, X, Y and Z are integers ≥3, W ≥Y, and R ≥3.  

Hereinafter, we regard values of A, B, C, H, R, X, Y, Z and W in 

aforementioned four inequalities, added to their co-prime relation in each 

inequality, as known requirements for hinder concerned inequalities.   

 Thus it can be seen, proving AX+BY≠CZ under the given requirements plus 

the qualification that A, B and C have not any common prime factor is 

changed to prove the existence of the above-listed four inequalities under 

the known requirements. Such being the case, we shall first prove 

AX+BY≠2W and AX+BY≠2WHZ. For this purpose, we must expound certain 

circumstances relating to the first proof.    

Let us divide all positive odd numbers into two kinds of Α plus Ε, namely 

the form of Α is 1+4n, and the form of Ε is 3+4n with n≥0. From small to 

large odd numbers of Α & Ε arrange as the follows respectively.   

Α: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61…1+4n …  

Ε: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63…3+4n …  



 

 7 

We use Α or Ε to denote each in sequence of two kinds’ odd numbers too. 

Next, we list from small to large positive odd numbers and even numbers 

2WHZ with H≥1 where W≥3 and Z≥ 3, also label a belongingness of each 

of odd numbers on the right side of itself.  

1Z∊Α; 3∊Ε; 5∊Α; 7∊Ε; (23); 9∊Α; 11∊Ε; 13∊Α; 15∊Ε; (24); 17∊Α; 19∊Ε; 

21∊Α; 23∊Ε; 25∊Α; 33∊Ε; 29∊Α; 31∊Ε; (25); 33∊Α; 35∊Ε; 37∊Α; 39∊Ε; 

41∊Α; 43∊Ε; 45∊Α; 47∊Ε; 49∊Α; 51∊Ε; 53∊Α; 55∊Ε; 57∊Α; 59∊Ε; 61∊Α; 

63∊Ε; (26); 65∊Α; 67∊Ε; 69∊Α; 71∊Ε; 73∊Α; 75∊Ε; 77∊Α; 79∊Ε; 34∊Α; 

83∊Ε; 85∊Α; 87∊Ε; 89∊Α; 91∊Ε; 93∊Α; 95∊Ε; 97∊Α; 99∊Ε; 101∊Α; 

103∊Ε; 105∊Α; 107∊Ε; 109∊Α; 111∊Ε; 113∊Α; 115∊Ε; 117∊Α; 119∊Ε; 

121∊Α; 123∊Ε; 53∊Α; 127∊Ε; (27); 129∊Α; 131∊Ε; 133∊Α; 135∊Ε; 137∊Α; 

139∊Ε; 141∊Α; 143∊Ε; 145∊Α; 147∊Ε; 149∊Α; 151∊Ε; 153∊Α; 155∊Ε; 

157∊Α; 159∊Ε; 161∊Α; 163∊Ε; 165∊Α; 167∊Ε; 169∊Α; 171∊Ε; 173∊Α; 

175∊Ε; 177∊Α; 179∊Ε; 181∊Α; 183∊Ε; 185∊Α; 187∊Ε; 189∊Α; 191∊Ε; 

193∊Α; 195∊Ε; 197∊Α; 199∊Ε; 201∊Α; 203∊Ε; 205∊Α; 207∊Ε; 209∊Α; 

211∊Ε; 213∊Α; 215∊Ε; (23×33); 217∊Α; 219∊Ε; 221∊Α; 223∊Ε; 225∊Α; 

227∊Ε; 229∊Α; 231∊Ε; 233∊Α; 235∊Ε; 237∊Α; 239∊Ε; 241∊Α; 35∊Ε; 

245∊Α; 247∊Ε; 249∊Α; 251∊Ε; 253∊Α; 255∊Ε; (28); 257∊Α; 259∊Ε; 

261∊Α; 263∊Ε; 265∊Α; 267∊Ε; 269∊Α; 271∊Ε; …  

Thus it can be seen, that permutations of from small to large seriate 

positive odd numbers are infinitely many cycles of Α & Ε, to wit Α, Ε, Α, 

Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε …   
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We list seriate kinds of odd numbers which have a common odd base 

number, and label a belongingness of each of them on the right of itself:   

11∊Α;   31∊Ε;   51∊Α;   71∊Ε;    91∊Α;     111∊Ε;  

12∊Α;   32∊Α;   52∊Α;   72∊Α;    92∊Α;     112∊Α; 

13∊Α;   33∊Ε;   53∊Α;   73∊Ε;    93∊Α;     113∊Ε;  

14∊Α;   34∊Α;   54∊Α;   74∊Α;    94∊Α;     114∊Α;  

15∊Α;   35∊Ε;   55∊Α;   75∊Ε;    95∊Α;     115∊Ε; 

16∊Α;   36∊Α;   56∊Α;   76∊Α;    96∊Α;     116∊Α;  

…      …       …       …      …        …  

131∊Α;   151∊Ε;   171∊Α;   191∊Ε;   211∊Α;   231∊Ε; … 

132∊Α;   152∊Α;   172∊Α;   192∊Α;   212∊Α;   232∊Α; …  

133∊Α;   153∊Ε;   173∊Α;   193∊Ε;   213∊Α;   233∊Ε; …   

134∊Α;   154∊Α;   174∊Α;   194∊Α;   214∊Α;   234∊Α; …   

135∊Α;   155∊Ε;   175∊Α;   195∊Ε;   215∊Α;   235∊Ε; …   

136∊Α;   156∊Α;   176∊Α;   196∊Α;   216∊Α;   236∊Α; …   

…       …       …       …        …        …         

From above-listed various kinds of odd numbers, we are not difficult to 

see, all odd numbers whereby each of Α to act as a base number belong 

still within Α; odd numbers which even power of Ε forms belong Α; and 

odd numbers which odd power of Ε forms belong Ε, i.e. ΑX∊Α, Ε2n∊Α 

and Ε2n-1∊Ε where n≥1. Or all odd numbers whose exponents are even 

numbers belong Α, odd numbers which odd power of Α forms belong Α, 
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and odd numbers which odd power of Ε forms belong Ε.  

Besides, two adjacent positive odd numbers which have either a common 

odd base number >1 or an identical exponent are an even number apart. 

But also such even numbers are getting greater and greater along which 

their base numbers or exponents are getting greater and greater.    

Altogether, odd numbers which have an odd exponent and odd numbers 

which have an even exponent composed all odd numbers, i.e. Α and Ε. 

Yet odd numbers whose exponents are greater than 2 are merely a part in 

them, and this part is included and dispersed within odd numbers of Α and 

Ε, thus they conform to the symmetric law of odd numbers we shall 

define as the follows.    

We add even numbers 2W-1HZ among the sequence of odd numbers, and 

regard 2W-1HZ as a center of symmetry of odd numbers, where H is an odd 

number ≥1, W≥3, and Z≥3, similarly hereinafter. Then odd numbers on 

the left side of 2W-1HZ and odd numbers near 2W-1HZ on the right side of 

2W-1HZ are one-to-one bilateral symmetries.  

For example, if we regard 2W-1 as a symmetric center, then 2W-1-1∊Ε and 

2W-1+1∊Α, 2W-1-3∊Α and 2W-1+3∊Ε, 2W-1-5∊Ε and 2W-1+5∊Α, 2W-1-7∊Α and 

2W-1+7∊Ε etc are one-to-one bilateral symmetry respectively.  

We regard one-to-one bilateral symmetries between odd numbers of Α 

and odd numbers of Ε for symmetric center 2W-1HZ as the symmetric law 

of odd numbers. At the number axis, it is exactly that one-to-one bilateral 
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symmetries between odd points of Α and odd points of Ε for symmetric 

center’s point 2W-1HZ.  

Manifestly the symmetric law of odd numbers indicates that it can only 

symmetrize one of Α and one of Ε for symmetric center 2W-1HZ, yet can 

not symmetrize either two of Α or two of Ε.  

After regard 2W-1HZ as a symmetric center, leave from 2W-1HZ, there are 

both finitely many cycles of Ε & Α leftwards until Ε=3 plus Α=1, and 

infinitely many cycles of Α & Ε rightwards.  

According to the symmetric law of odd numbers, two distances from a 

symmetric center to bilateral symmetric Α and Ε are possessed of the 

equal length at the number axis.  

In addition, at the number axis, each and every integer’s point expresses 

an integer, also the large or the small of an integer depends on the length 

of a line segment between zero and the integer’s point.    

Consequently, on the one hand, a sum of two each other’s symmetric odd 

numbers Α and Ε is equal to the double of even number which the 

symmetric center expresses. On the other hand, a sum of two 

non-symmetric odd numbers is absolutely unequal to the double of even 

number which the symmetric center expresses. In other words, let 2W-1HZ 

as a symmetric center, not only Α and Ε whose sum equals 2WHZ are just 

the bilateral symmetry, but also 2WHZ as the sum of two odd numbers can 

only obtain from the addition of bilateral symmetric Α and Ε.   
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Before making the proof concerned, we give a stipulation that for an 

integer, if its exponent is greater than or equal to 3, then the integer is 

called an integer of the greater exponent; if its exponent is equal to 1 or 2, 

then the integer is called an integer of the smaller exponent.  

Pursuant to preceding basic concepts, thereinafter, we set to prove the 

existence of aforementioned four inequalities, one by one.   

Firstly, Prove AX+BY≠2W under the known requirements.   

Let us regard 2W-1 as the symmetric center of odd numbers to prove 

AX+BY≠2W under the known requirements by the mathematical induction 

with the aid of the symmetric law of odd numbers.   

(1) When W-1=3, each other’s symmetric odd numbers on two sides of 

symmetric center 23 are listed below.   

13, 3, 5, 7, (23), 9, 11, 13, 15   

To wit: Α, Ε, Α, Ε, (23), Α, Ε, Α, Ε    

It is clear at a glance, that there are not two odd numbers of the greater 

exponents altogether on two odd places of every bilateral symmetry for 

symmetric center 23. So we get AX + BY ≠ 24.  

When W-1=4, each other’s symmetric odd numbers on two sides of 

symmetric center 24 are listed below.  

14, 3, 5, 7, 9, 11, 13, 15, (24) 17, 19, 21, 23, 25, 33, 29, 31   

To wit: Α4, Ε, Α, Ε, Α, Ε, Α, Ε, (24), Α, Ε, Α, Ε, Α, Ε3, Α, Ε    

Evidently, there are not two odd numbers of the greater exponents 
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altogether on two odd places of every bilateral symmetry for symmetric 

center 24. So we get AX + BY ≠ 25.  

When W-1=5 and W-1=6, each other’s symmetric odd numbers on two 

sides of symmetric center 26 including 25 are listed below.    

16, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 33, 29, 31, (25), 33, 35, 37, 39, 

41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (26), 65, 67, 69, 71, 73, 75, 

77, 79, 34, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 

113, 115, 117, 119, 121, 123, 53, 127  

To wit: Α6, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε3, Α, Ε, (25), Α, Ε, Α, Ε, Α, 

Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, (2
6), Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α4, Ε, Α, Ε, Α, 

Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α, Ε, Α3, Ε  

Likewise there are not two odd numbers of the greater exponents 

altogether on two odd places of every bilateral symmetry for symmetric 

center 26 or 25. So we get AX + BY ≠27 and AX + BY ≠26.    

(2) Suppose that when W-1=K with K ≥ 6, there are not two odd numbers 

of the greater exponents altogether on two odd places of every bilateral 

symmetry for symmetric center 2K. So we get AX+BY≠2K+1 under the 

known requirements, where K ≥ 6.   

(3) Prove that when W-1=K+1, there are not two odd numbers of the 

greater exponents altogether either on two odd places of every bilateral 

symmetry for symmetric center 2K+1. Namely it needs us to prove AX+BY 

≠2K+2 under the known requirements.    
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Proof * We known that permutations of odd numbers on two sides of 

2W-1 including 2K plus 2K+1 conform to the symmetric law of odd numbers, 

also odd numbers on two sides of 2K and of 2K+1 arrange as the follows.  

Α, Ε, Α, Ε, …Α, Ε, Α, Ε, (2K), Α, Ε, Α, Ε, …Α, Ε, Α, Ε, …Α, Ε, Α, Ε, 

(2K+1), Α, Ε, Α, Ε, …Α, Ε, Α, Ε, …Α, Ε, Α, Ε, Α, Ε, Α, Ε,…Α, Ε, Α, Ε.  

Now that one-to-one bilateral symmetric odd numbers for symmetric 

center 2W-1 are only Α and Ε, then two distances that bilateral symmetric 

Α and Ε away from 2W-1 are equivalent to the length of an odd number.  

Actually, all odd numbers of bilateral symmetries for symmetric center 2K 

are exactly all odd numbers on the left side of 2K+1. Thus for odd numbers 

of bilateral symmetries for symmetric center 2K+1, their a half on the left 

side of 2K+1 retained still original places, while another half on the right 

side is formed from 2K+1 plus each of odd numbers on two sides of 2K.    

Suppose that AX and BY are any pair of bilateral symmetric odd numbers 

for symmetric center 2K, then we have AX+BY=2K+1. In AX+BY=2K+1, we 

regard A as one of Α, then AX is one of Α too, yet BY can only be one of Ε 

according to the preceding conclusion drawn.  

Since there are not two odd numbers of the greater exponents altogether 

on two odd places of every bilateral symmetry for symmetric center 2K 

according to second step of the mathematical induction, so let AX as an 

odd number of the greater exponent, and let BY as an odd number of the 

smaller exponent, i.e. let X ≥ 3 and Y < 3.   
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By now, let BY plus 2K+1 makes BY+2K+1, then BY+2K+1 is still one of Ε.  

Please, see a simple illustration at the number axis as follows.    

                                        AX+2K+1              BY+2K+1           

1, 3...    AX      2K      BY      2K+1     2K+2-BY      3ⅹ2K        2K+2-AX       2K+2   

 

Since where X≥3 and Y<3, there is AX+BY=2K+1, then BY+2K+1=AX+2BY, 

and AX+2BY=2K+1+BY=2K+1+(2K+1-AX)=2K+2-AX, so there is BY+2K+1= 

AX+2BY =2K+2-AX.   

Manifestly, when X ≥ 3 and Y < 3, AX and 2K+2-AX (or BY+2K+1, AX+2BY) 

are bilateral symmetric odd numbers for symmetric center 2K+1, so there is 

AX+2K+2-AX= AX+( BY+2K+1)= AX+( AX+2BY) =2K+2.   

But then, when X≥3 and Y≥3, there is AX+BY≠2K+1 according to second 

step of the preceding supposition, so has AX+ [AX+2BY] =2[AX+BY] ≠2K+2. 

That is to say, when X≥3 and Y≥3, AX and BY+2K+1 (or AX+2BY, 2K+2-AX) 

are not bilateral symmetric odd numbers for symmetric center 2K+1.   

Thus it can be seen, when AX and B change not, AX+2BY expresses two 

each other’s- disparate odd numbers due to Y<3 or Y≥3.  

So let AX+2BY=Εε with Y<3 plus ε<3, and let AX+2BY=FP with Y≥3, 

where X≥3, F is an odd number≥1 and P is an integer≥1. After that, get 

AX+ Εε =2K+2 and AX+FP≠2K+2 according to aforesaid got AX+(AX+2BY) 

=2K+2 with Y<3 and AX+(AX+2BY)≠2K+2 with Y≥3, where X≥3.     

After change F of FP as Ε like the base number of Εε, the both exponents 

are not alike surely. So let FP=ΕM, then M of ΕM is greater than ε of Εε, i.e. 

M ≥3, and M is a real number. After that, we get AX+ΕM >2K+2, of course  
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has AX+ΕM ≠2K+2, in addition, has got AX+ Εε =2K+2.  

If further change M of ΕM and ε of Εε as an identical exponent Y, then 

there are AX+ΕY=2K+2 with Y<3 and AX+ΕY ≠2K+2 with Y ≥ 3, such being 

the case values which AX and Ε in the equality and the inequality express 

are just the same respectively.   

Then you should discover that ΕY in AX+ΕY =2K+2 is one of Ε, yet for ΕY in 

AX+ΕY ≠2K+2, we can only define what it is a positive odd number.  

Since Ε of ΕY in AX+ΕY =2K+2 with Y<3 and B of BY in AX+BY=2K+2 with 

Y<3 are one and the same, also Ε of ΕY in AX+ΕY =2K+2 with Y<3 and Ε of 

ΕY in AX+ΕY ≠2K+2 with Y≥3 are one and the same, therefore can substitute 

B for Ε in AX+ΕY =2K+2 plus AX+ΕY ≠2K+2.   

Thus we can substitute AX+BY=2K+2 for AX+ΕY =2K+2 with Y<3, and 

substitute AX+BY≠2K+2 for AX+ΕY ≠2K+2 with Y≥3, where X≥3. This shows 

that we have proven AX+BY≠2K+2 such being the case AX alone is an odd 

number of the greater exponent.  

In preceding proof, if let BY as an odd number of the greater exponent, 

then AX is surely an odd number of the smaller exponent. From this, 

concluded a conclusion via the inference like the above is one and the 

same with the preceding conclusion.    

If AX and BY are two odd numbers of the smaller exponents, after either AX 

or BY plus 2K+1 makes a greater odd number, then the greater odd number 

and un-incremental one in AX plus BY are bilateral symmetry for symmetric 
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center 2K+1 too, but at least one in both of them is not possessed of the 

greater exponent.   

To sum up, we have proven that when W-1=K+1 and K≥6, there is only 

AX+BY≠2K+2 under the known requirements. In other words, there are not 

two odd numbers of the greater exponents altogether on two odd places of 

every bilateral symmetry for symmetric center 2K+1.  

Apply the preceding way of doing, we can continue to prove that when 

W-1=K+2, K+3, … up to every integer ≥2, there are entirely AX+BY≠2K+3, 

AX+BY≠2K+4, … up to AX+BY≠2W under the known requirements.     

Secondly, Let us successively prove AX+BY≠2WHZ under the known 

requirements, and point out H ≥3 in them at here emphatically.   

We shall set to prove AX+BY≠2WHZ under the known requirements by the 

mathematical induction, thereinafter.  

(1) When H=1, 2W-1HZ to wit 2W-1, we have proven AX+BY≠2W under the 

known requirements in the preceding section. Namely there are not two 

odd numbers of the greater exponents altogether on two odd places of 

every bilateral symmetry whereby 2W-1 to act as the center of the symmetry.  

(2) When H=J, 2W-1HZ to wit 2W-1JZ, suppose AX+BY≠2WJZ under the 

known requirements, where J is an odd number ≥1. Namely suppose that 

there are not two odd numbers of the greater exponents altogether on two 

odd places of every bilateral symmetry whereby 2W-1JZ to act as the center 

of the symmetry, where J is an odd number ≥1.  
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(3) When H=K, 2W-1HZ to wit 2W-1KZ, prove AX+BY≠2WKZ under the 

known requirements, where K=J+2. Namely prove that there are not two 

odd numbers of the greater exponents altogether on two odd places of 

every bilateral symmetry whereby 2W-1KZ to act as the center of the 

symmetry, where K=J+2.  

Proof * Since after regard 2W-1JZ as a symmetric center, a sum of every 

two bilateral symmetric odd numbers is equal to 2WJZ, yet a sum of any two 

odd numbers of no symmetry is unequal to 2WJZ absolutely.   

In addition, there are not two odd numbers of the greater exponents 

altogether on two odd places of every bilateral symmetry for symmetric 

center 2W-1JZ according to step 2 of the preceding mathematical induction.  

Thus we suppose that AX and BY are bilateral symmetric odd numbers for 

symmetric center 2W-1JZ, and let X<3 and Y≥3, then there is AX+BY=2WJZ.  

Regard 2W-1KZ as a symmetric center, then 0 and 2WKZ, BY and 2WKZ-BY 

are the bilateral symmetry respectively, and there is BY+(2WKZ-BY) =2WKZ.   

By now, let AX plus 2W (KZ-JZ) makes AX+2W(KZ-JZ), then AX+2W(KZ-JZ) 

=AX+2WKZ-2WJZ=2WKZ-(2WJZ-AX) =2WKZ-BY due to AX+BY=2WJZ, where 

X<3 and Y≥3.  

Now that AX+2W(KZ-JZ)=2WKZ-BY, also for symmetric center 2W-1KZ, BY 

and 2WKZ-BY are bilateral symmetry, then BY and AX+2W(KZ-JZ) are 

bilateral symmetry too. So we get BY+[AX+2W(KZ-JZ)] =2WKZ, where X<3 

and Y≥3.   
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Since BY+[AX+2W(KZ-JZ)]=[AX+BY]+2W(KZ-JZ) & supposed AX+BY≠2WJZ, 

so get BY+[AX+2W(KZ-JZ)]=[AX+BY]+2WKZ-2WJZ≠2WKZ, where X≥3, Y≥3.  

But then, there is AX+BY≠2WJZ, where X≥3 and Y≥3. Now that for 

symmetric center 2W-1KZ, BY and AX+2W (KZ-JZ) with X<3 are bilateral 

symmetry, then BY and AX+2W (KZ-JZ) with X≥3 are not bilateral symmetry, 

where Y≥3, so there is BY+[AX+2W(KZ-JZ)] ≠2WKZ, where X≥3 and Y≥3, 

according to the preceding conclusion got.  

Thus it can be seen, AX+2W(KZ-JZ) expresses two each other’s- disparate 

odd numbers due to X<3 or X≥3.   

So let AX+2W(KZ-JZ)=Αε with ε < 3, and let AX+2W(KZ-JZ)=ΑM with M≥3. 

After that, get BY +Αε =2WKZ and BY+ΑM≠2WKZ according to aforesaid got 

BY+[AX+2W(KZ-JZ)]=2WKZ with X<3 and BY+[AX+2W(KZ-JZ)]≠2WKZ with 

X≥3, where Y≥3.     

Let us change ε of Αε and M of ΑM as an identical exponent X, then there 

are BY+ΑX =2WKZ with X<3 and BY+ΑX≠2WKZ with X≥3, where Y≥3.  

Evidently, ΑX in BY +ΑX =2WKZ and AX in AX +BY =2WKZ are one and the 

same, where X<3 and Y≥3.  

Like that, ΑX in BY +ΑX ≠2WKZ and AX in AX +BY ≠2WKZ are one and the 

same, where X≥3 and Y≥3.    

Thus we can substitute AX+BY=2WKZ for BY+ΑX =2WKZ with X<3, and 

substitute AX+BY ≠2WKZ for BY+ΑX ≠2WKZ with X≥3, where Y≥3. This 

shows that we have proven AX+BY≠2WKZ such being the case BY alone is 
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an odd number of the greater exponent.  

In preceding proof, if let AX as an odd number of the greater exponent, 

then BY is surely an odd number of the smaller exponent. From this, 

concluded a conclusion via the inference like the above is one and the 

same with the preceding conclusion.   

If AX and BY are two odd numbers of the smaller exponents, after either AX 

or BY plus 2W(KZ-JZ) makes a greater odd number, then the greater odd 

number and un-incremental one in AX plus BY are bilateral symmetry for 

symmetric center 2W-1KZ too, but at least one in both of them is not 

possessed of the greater exponent.   

To sum up, we have proven AX+BY≠2WKZ under the known requirements, 

where K=J+2. Namely when H=J+2, there are not two odd numbers of the 

greater exponents altogether on two odd places of every bilateral symmetry 

whereby 2W-1(J+2) Z to act as the center of the symmetry.  

Apply the above-mentioned way of doing, we can continue to prove that 

when H=J+4, J+6 … up to every odd number ≥1, there are AX+BY≠ 

2W(J+4)Z, AX+BY≠2W(J+6)Z… up to AX+BY≠2WHZ under the known 

requirements, and point out H≥3 in them at here emphatically.   

Thirdly, we shall proceed to prove AX+2W≠CZ under the known 

requirements below.    

Proof* Since we have proven AX+BY≠2W under the known requirements, 

thereby can affirm EP+CZ≠2M, where E and C are positive odd numbers 
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without a common prime factor, P, Z and M are integers ≥3.  

Since E and C have not a common prime factor, then get EP≠CZ according 

to the unique factorization theorem of natural number, so let CZ >EP.   

Since there is 2M =2M-1+2M-1, then we deduce EP+CZ >2M-1+2M-1 or EP+CZ < 

2M-1+2M-1 from EP+CZ ≠2M.  

Namely there is CZ-2M-1 >2M-1-EP or CZ-2M-1 <2M-1-EP.   

Besides, AX+EP≠2M-1 exists objectively according to proven AX+BY≠2W 

under the known requirements, where A and E are positive odd numbers 

without a common prime factor, and X, P and M-1 are integers ≥3.   

Thus we deduce 2M-1-EP >AX or 2M-1-EP <AX from AX+EP ≠2M-1.   

Therefore there is CZ-2M-1 >2M-1-EP >AX or CZ-2M-1 <2M-1-EP <AX.   

Consequently there is CZ-2M-1 >AX or CZ-2M-1 < AX.   

In a word, there is CZ-2M-1 ≠AX, i.e. AX+2M-1 ≠ CZ.  

For AX+2M-1≠CZ, let 2M-1 =2W, we obtain AX+2W ≠CZ under the known 

requirements.   

Fourthly, let us last prove AX+2WRY≠CZ under the known requirements, 

and point out R≥3 in them at here emphatically.   

Proof* Since we have proven AX+BY≠2WHZ under the known 

requirements, of course can get FS+CZ≠2NRY too, where F, C and R are 

positive odd numbers without a common prime factor, S, Z and Y are 

integers ≥3, N=Y+PY, P≥0, and R≥3.  

Since F and C have not any common prime factor, so get FS≠CZ according 
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to the unique factorization theorem of natural number, and let CZ > FS.   

Since 2NRY=2N-1RY+2N-1RY, then deduce FS+CZ >2N-1RY+2N-1RY or FS+CZ 

<2N-1RY+2N-1RY from FS+CZ≠2NRY.  

Namely there is CZ-2N-1RY >2N-1RY-FS or CZ-2N-1RY< 2N-1RY-FS.   

In addition, according to proven AX+BY≠2WHZ under the known 

requirements, we can get AX+FS≠2N-1RY, where A, F and R are positive odd 

numbers without a common prime factor, X, S and Y are integers ≥ 3, 

N-1=Y+DY, D≥0, and R≥3.     

So we deduce 2N-1RY-FS >AX or 2N-1RY-FS<AX from AX+FS ≠2N-1RY.   

Thus there is CZ-2N-1RY >2N-1RY-FS >AX or CZ-2N-1RY<2N-1RY-FS <AX.   

Consequently there is CZ-2N-1RY >AX or CZ-2N-1RY <AX.   

In a word, there is CZ-2N-1RY ≠ AX, i.e. AX+2N-1RY ≠CZ.    

For AX+2N-1RY≠CZ, let 2N-1=2W, we obtain AX+2WRY≠CZ under the known 

requirements, and point out R≥3 in them at here emphatically.   

To sun up, we have proven every kind of AX+BY≠CZ under the given 

requirements plus the qualification that A, B and C have not a common 

prime factor.   

In addition, previously we have proven that AX+BY=CZ under the given 

requirements plus the qualification that A, B and C have at least a common 

prime factor has certain sets of solutions with A, B and C which are 

positive integers.    

After pass the comparison between AX+BY=CZ and AX+BY≠CZ under the 
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given requirements, we have reached inevitably the conclusion that an 

indispensable prerequisite of the existence of AX+BY=CZ under the given 

requirements is that A, B and C must have a common prime factor.  

The proof was thus brought to a close. As a consequence, the Beal 

conjecture does hold water.   
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