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We develop some ideas that can be used to show relationships between quantum state tensors and
gravitational metric tensors. After firmly grasping the math by α and Einstein’s equation, this is
another attempt to shake it and see what goes and what stays. We introduce slightly more rigorous
definitions for some familiar objects and find an unexpected connection between the chirological
phase Φn and the quaternions q ∈ H. Torsion, the only field in string theory not already present in
the theory of infinite complexity, is integrated. We propose a solution to the Ehrenfest paradox and
a way to prove the twin primes conjecture. The theory’s apparent connections to negative frequency
resonant radiation and time reversal symmetry violation are briefly treated.

“Though the methods are old and the orig-
inal mathematics literature deeper than the
recent physics reworking, what once seemed
arcane mathematics has turned out to be a
very useful tool for the description of ob-
served strange sets, and winged expressions
like ‘f of α’ have by now become a part of
our conceptual vocabulary. ”

∼ P. Cvitanović

The symmetry of the unified field theory is expected
to be an amalgamation of four topologies: an orthogonal
group SO(3,1), and three unitary groups U(1), SU(2)L,
and SU(3). The special quality of the special subgroups
is that the operators in a special group have determi-
nant equal to one. Determinant measures something like
volume that can be a positive or negative, real or com-
plex number, in any discrete harmonic of the longitudinal
phase Φn. Specifically, Φ̂ is the null vector of the group
of all hypercomplex rotations of W , where Z is the prob-
ability that a particle will undergo certain dynamics in
the presence of a source J .

Z(J) = Z0e
iW (J) (1)

We want to isolate the dynamic sector eiW (J) and de-
fine it as a multiplex with its own dynamical structure
unrelated to J . The ensuing relationship is that between
chronos and chiros.

For clarity, unitary matrices satisfy Û−1Û = 1̂ but the
unitarity of the dynamics is ensured by det(Û) = 1. The
set {π̂, Φ̂, 2̂, î} will be labeled ontological to emphasize
that the theory of infinite complexity should be consid-
ered singular, and only invariant under a group with no
operations save 1̂. The ontological basis is a gateway to
new physics because it means states in the past and fu-
ture need not be invariant under certain operations which
are usually elements in physics’ set of immutable theo-
retical underpinnings.

It is not precisely required that the space of state vec-
tors H′ is the same object as the space of dual vectors

H′′. The most general case is when they form a topo-
logical complex in two-to-one correspondence with the
Euclidean geometric manifold H.

We will apply new operations to the dual vector alone,
leaving the quantum mechanics of state vectors in H′ un-
touched. This is allowed because the physics of the dual
vector is suppressed in the algorithm represented by the
〈bra|ket〉. Philosophically, why should a dual vector be
available for computational conjuring when specific cre-
ation operators are needed for the original vector? There
is no good reason for that.

Looking for new physics in the non-unitary sector, we
want matrices with determinant proportional to the num-
bers in the ontological basis. There are many distinct his-
tories through an algebra in which the volume of some
dynamical quantity begins as unity, deforms in a non-
volume preserving way, and is then operated upon to
produce a local object with volume unity. These objects
are π̂-sites. They relate directly to the Ehrenfest paradox
and Einstein’s original argument about non-Euclidean
geometry.

In the Ehrenfest paradox, length contraction along the
circumference of a relativistically spinning disc is coupled
with length preservation on its radius to violate π in C =
2πR. Equation (2) is a specific example of how it is useful
to view π as part of a multiplex relating two or more
dynamical quantities.

C = (R+R) π̂0 (2)

Just like in equation (1), we can hold one thing con-
stant while scaling the other with Lorentz or other trans-
forms. Is it relevant that we can also do this with the
commutator of the Gell-Mann matrices? Consider the
following vector in the (2̂ î)T basis.

[λa, λb] = fabcλc

(
i
2

)
(3)

In any case, the resolution of the Ehrenfest paradox
is to crown π with the operator symbol. Then we may
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solve the system in an operating basis whose null vector
is not just in the direction of π̂, but is π̂. Equation (2)
is also the most rigorous definition of the required map
between a diameter and a circumference [1], known from
ancient times.

Consider the above in the ontological basis
(π̂ Φ̂ 2̂ î)T .

C = R


2
0
π
0

 (4)

[λa, λb] = fabcλc


0
0
i
2

 (5)

The plane spanned by chronos and chiros is illustrated
in figure 1. Progression from ℵ, through H, to Ω marks
the direction of increasing chiros and the vertical axis is
chronos. Any set of four independent vectors naturally
span O(4) and the topology of the ontological basis is
also O(3,1) which is great because that is the topology
of spacetime. The relationship between the rational real
number 2 and the irrational real numbers π and Φ mirrors
that between Ĵx and Ĵy in the Ĵz eigenvector basis. Two
can be known exactly but there is inherent uncertainty
in π and Φ.

Note î is rigorously unitary and 2̂ is pseudo-unitary, so
they can both contribute to the overall unitary character
of the probability interpretation of histories defined in
the chronological past in the lower half-plane. Φ̂ and π̂
share the half-plane of positive chronos and should be
associated with non-unitary, turbulent, real dynamics.

If we want the ontological basis to define a quantum
theory, its elements better not commute! Of course num-
bers do commute so we need to consider other pictures.
Exponentiated operators can be interpreted as vectors
or matrices so we must consider both cases. This con-
sideration defines a new sector because when {π̂, Φ̂, 2̂, î}
take on purely numerical values as in equations (6-9),
the space of all possible operations is not limited to the
binary vector-matrix correspondence.

π̂2ψ = π2ψ (6)

Φ̂2ψ = Φψ + ψ (7)

2̂2ψ = ψ + ψ + ψ + ψ (8)

î2ψ = −ψ (9)

The above is mostly unremarkable, but consider the
application to increasing entropy. If the action of 2̂ on
ψ is always to split it into two terms, each carrying a
qubit, then entropy will increase as 2̂ is applied. Φ̂ is

FIG. 1. A lattice is defined on three points where cosmological
state tensors are diagonal and torsionless. Given three points,
it always possible to calculate a cubic spline function. In
turn, the spline can be sampled to gain information about
physics in higher than four dimensions. The essence of the
interpretation is that π̂ is local in the first quadrant, Φ̂ is
timelike and the null vector of the Hamiltonian, 2̂ is spacelike
and computational, and possibly also a null vector of Ĥ, and
î is imaginary in the mercurial third quadrant. Relating to
the new spacelike vector 2̂, recall that the differential element
of the surface of Minkowski space at spacelike infinity is a
two-form. [2, 3]

interesting in this sense because it may not split ψ in a
linear application, but only when the operator appears
as Φ̂2. Another possibility is that Φ̂2 makes a big copy
through Φ2 = Φ+1 and Φ̂ makes a smaller copy through
Φ = 1 + ϕ.

Quantum theory differs from classical in its utilization
of complex probability amplitudes on which one must
operate with the 〈bra|ket〉 to obtain real numbers. The
〈bra|ket〉 takes complex numbers and returns a purely
real number for comparison with experiment. Here, the
output of the 〈bra|ket〉 is modified as follows when ψ is
a Dirac vector.

old→

{
ψ : R3 → H

〈ψ|ψ〉 : H→ R
(10)

new→


ψ : R3 → H
〈ψ|ψ〉 : H→ R⊗ ℵ
π̂ : R⊗ ℵ → R′

(11)

Taking a step back, let’s reexamine the continuum. To
an observer, points representing lattice sites seem like
they are adjacent and form a continuum R. Being cre-
ative individuals, there is no reason we can’t transport
the real line to an imaginary space, make all the points
discrete, and then define new functions on the possibly
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continuous set of imaginary points between adjacent ele-
ments of R.

Note the density of points in R does not have to equal
that in R′. In fact, it might be that the tensor prod-
uct with infinity in definition (11) washes out the point
density function on R so that it is no longer recoverable
after projection into R′. It is further possible that there
is complex hyperstructure encoded on the point density
function (which can always be operated upon as a field
potential) and that structure manifests observably as the
information current. With hyperstructure defined every-
where (via the continuum’s point density function) it is
possible to have infinite localized point densities and still
preserve physics by using a window functional measure
that will integrate over exactly ℵ0 little elements dx0 as
if they were in a continuum. This despite the infinitude
of other points between them, as in the ε-δ proof. We
mention this because a varying point density is closely
connected to the varying number of points that unilater-
ally violates conservation of information. Lastly, without
infinite point densities there is no infinite self-similarity.

Consider the π̂ component of some quantity decom-
posed into figure 1’s pictured basis. That component
can be further decomposed on the basis, and on and on,
implying all real numbers have an imaginary component
because î is part of the basis. Observables can always be
represented by real numbers but what is the imaginary
component of an observable quantity? We hypothesize it
is each particular observable’s interaction with the infor-
mation current.

ψ :=
√
i ⇒ Im〈ψ|ψ〉 6= 0 (12)

CHRONOS & CHIROS

The TOIC allows for distinct modes in real, continu-
ous time and a discrete psychological time in which man
attempts to catch the present moment but never does,
thereafter observing quantized phenomena. To clarify
usage in this paper, π̂ relates to the chronological time
and {Φ̂, 2̂, î} relate to the chirological future, present, and
past respectively. Consider the identity and how column
vectors representing {Φ̂, 2̂, î} are combined into one ten-
sor state.

ψ 1̂ =

(
1

4π
ψ

)
π̂ +

(ϕ
4
ψ
)

Φ̂ +

(
1

8
ψ

)
2̂−

(
i

4
ψ

)
î (13)

ψπ :=
1

4π
ψ (14)

ψΦ :=
ϕ

4
ψ (15)

ψ2 :=
1

8
ψ (16)

ψi := − i
4
ψ (17)

Chronos → 1

4π
ψ(xµ) ≡ |ψ;π0〉 (18)

|ψ; Φ〉 ≡
(
ψΦ 0 0

)T
= ψΦ(xµ+) (19)

|ψ; 2〉 ≡
(
0 ψ2 0

)T
= ψ2(xµ) (20)

|ψ; i〉 ≡
(
0 0 ψi

)T
= ψi(x

µ
−) (21)

ψij =

ψΦ 0 0
0 ψ2 0
0 0 ψi

 (22)

Chiros → det(ψij) ≡ 〈ψ;π1| (23)

A dual vector inH′′ shall be the output of an operation
on a tensor and the tensorial quality of the “dual vector”
is a topological complex on the gravitational manifold
H. Note equations (19-21) are also the QCD color basis
that we want to integrate with gravity and electroweak
physics.

A stationary chirological state is one in which the phase
is scaled up by Φ in the future and down by ϕ in the past.

ψΦ := eiπΦ (24)

ψ2, ψπ := eiπ (25)

ψi := eiπϕ (26)

An intuitive interpretation of the above is that 2 and π
are related to transverse phase in the present, and Φ and i
define longitudinal phase in the lattice. In the 3D system
{π̂, Φ̂, î} it was sufficient to derive a chronological state
from the inner product of two chirological ones [4]. Now
there are three chirological states and a triple product is
needed.

det(ψij) = ψΦψ2ψi = e2iπΦ (27)

This doesn’t look like the dual vector to eiπ but we
will return to that later. Instead, note the determinant
of the chirological state tensor is equal to the quaternion
rotation of the chronological state by Φ radians.
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det(ψij) = euΦψπe
−uΦ (28)

Consider rotations of the half-integer spin vector in the
lab. When the observer takes consecutive measurements
of the spin, the vector remains stationary. Now let the
observer make repeated observations of the same system
while the experimental apparatus is rotated in a way such
that the spin vector sweeps out a plane. After completing
a full lab rotation through 2π radians, the spin vector
will only have rotated from zero to π radians. Such is
the mystery of spin; the observable lag under rotations
is an outstanding example of quaternion mathematics in
action.

AN ASIDE

Groups are useful for theory because they make it plain
exactly what kind of things can happen to a state in the
space in which it lives. It’s understood a QCD state
can be physically operated upon by the group of SU(3)
matrices, and then it is only left up to physicists to find
out the amplitudes for different ones. Another example is
Lorentz invariance in relativity. It means 4-vectors have
to be invariant under 3D rotations and 1D boosts.

A universal fact of rotation matrices is that they rotate
about an origin and the main approach to physics has
involved only one measly little origin of coordinates. The
TOIC has three origins in Σ± and H, and this leads to
exciting mathematical novelty.

The operator M̂3 rotates a state through π/2 radians
in the complex plane to return the critical value iπΦ2

[5, 6]. The continuous phase of observables should be
periodic in 2nπ and it contrasts Φn which is discrete and
not related to observables. M̂12 is required to sweep out
the complex plane so through its returned value π4Φ8,
the complex plane spans eight discrete levels of harmonic
phase. In reference [7] we suggested the eight phases
could generate SU(3) since it has eight generators. How-
ever, consider the following.

(Φ̂2)2 = Φ̂4 (Φ̂2)3 = Φ̂6 (Φ̂2)4 = Φ̂8 (29)

(Φ̂3)2 = Φ̂6 (30)

(Φ̂4)2 = Φ̂8 (31)

We present a possible explanation for why QCD is such
a difficult theory with interacting gluons while QED and
weak nuclear physics are so much more highly utile. Φ8 is
a convenient symmetry but it is not irreducible or “on-
tological.” If the physics of M̂12 was truly SU(3), the
generators would be independent and not factorizable.

True SU(3) is defined on eight prime number harmonics,
specifically up to Φ13 with M̂20.

One case is that Φ8 is not related to QCD. Another is
that the strong force is self-interacting because the QCD
group generators seem independent but three of them
technically are not.

Consider an application in pure mathematics. The
past, present, and future are defined on three sequen-
tial integer powers of the golden ratio which are always
related by equation (32).

ΦN+1 = ΦN + ΦN−1 (32)

Anomalous contributions to physics in π̂ (from differ-
ent powers of Φ representing temporally non-local levels
of ℵ [4]) are related to quantum oddities but physics is
independent of the absolute phase N . Consider the case
when a thorough accounting of all the physics implies
that all non-local contributions to physics in the present
are scaled as the inverse prime numbers. This is a condi-
tion on equation (32) that N ± 1 are always primes sep-
arated by an arbitrary integer N . They are twin primes.

If it is possible to use the golden ratio to prove that
the spiral lattice structure [4] never collapses because it
is perfectly self-similar, and it is shown that there is a
harmonic spectrum related to the prime numbers, then
that will prove the twin primes conjecture.

Consider twin prime cases of equation (32).

Φ7 = Φ6 + Φ5 (33)

Φ139 = Φ138 + Φ137 (34)

Φ−5 = Φ−6 + Φ−7 (35)

Φ−137 = Φ−138 + Φ−139 (36)

Φ = 1 + ϕ (37)

137Φπ = 726... (38)

How do prime numbers relate to negative numbers?
What is the special case of equation (37)? In the quan-
tum sector, the Fibonacci sequence should be more fun-
damental than the golden spiral so might this define a
kernel on the consecutive ones at the beginning of that
– thereafter monotonically increasing – sequence? Could
the kernel be the intersection of two spirals [4], one in-
side the unit circle and one out, as in equations (33) and
(35)? Is the 2D unit circle somehow implied by the two
unit entries at the beginning of the Fibonacci numbers
1,1,2,3,5,8,13,21...?
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TOPOLOGY CHANGE

Consider a general relativistic stress energy tensor T νµ .

T νµ =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (39)

Note pressure p is directly observable while density ρ is
not. Mass can be measured on a balance, and volume can
be found by optical approximation or fluid displacement,
etc. Pressure is directly observable with a barometer
but density is always calculated as per Archimedes. T 0

0

evaluates to a negative number so it cannot be directly
associated with observables or – by proxy of quantum
mechanics – Hermitian matrices in Hilbert space.

Hamiltonian physics is nice because once an interested
party has any two of a system’s dynamical variables,
here density and pressure, it is possible to label them
p and q and formulate the equations of motion with the
Hamiltonian H. Given H, all other physical properties
become calculable. Consider the case when an experi-
menting physicist knows the mass m of an object O. He
wants to know if T νµ is right by using it to compute m′

and comparing to m.
The topology of the theory can’t depend on the shape

of the object so we can let O be spherical and centered at
the origin, and still have an instructive exercise. Consider
the case of ρ = βr−γ with γ > 2.

V =

∫∫∫
r2 sin(φ)drdθdφ

=

(∫ π

0

sin(φ)dφ

)(∫ 2π

0

dθ

)(∫ r

0

r′2dr′
)

(40)

m′ = −
∫
T 0

0 dV

= β

∫∫∫
sin(φ) dθdφdr′′

|~r′ − ~r′′|γ−2
(41)

Note V takes the form of a triple product. Before con-
tinuing with m′, consider the chirological triple product
modeled on equation (40). The definite integral form
exhibits further behavior.

V ′ =

(∫
ψΦdπ

)(∫
ψ2dπ

)(∫
ψidπ

)
(42)

= ie2iπΦ

The only effect of this – possibly meaningless – formu-
lation is a complex phase shift by π/2 but we digress.

To compute m′ one must choose the origin of the dou-
ble primed integration variables away from the center of

O else the integral will explode due to |~r′ − ~r′′|. Even
when that origin is far from O, the arrangement is only
a kludge because the equations of motion still have to
work if O moves to the double primed origin. The the-
ory varies from place to place between real and undefined
so it is not invariant under translations. The defect is
hard coded into the topology and it is where the physics
that everyone already knows is connected to new physics.
Much like a diverging diamond is topologically equivalent
to a roundabout, or the standard example of a coffee mug
always having a hole in it, there is always a part of the
theory that can’t be computed.

Consider that workhorse of modern physics, ye olde
photon propagator and the odious factor iε that has res-
olutely no business in the denominator (other than that it
generates predictions that agree with experiment.) The
sudden appearance of the dual vector for the 〈bra|ket〉 is
dubious but that word is not adequate to describe iε.

−igµν
~k2 + iε

=
−i

~k2 + iε


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (43)

The term is inserted to smudge over the topological
defect in the Hamiltonian space. Otherwise physics will
explode in the reference frame where ~k is zero. Physics
must never explode!

The connection to the TOIC “big picture” is clear
when the Feynman propagator is one of two possible com-
binations of the advanced and retarded propagators that
sidestep the defect in the upper and lower complex half-
planes.

Quantum models of topology change, such as those
needed to move the defect around, are well developed
and can almost always be reduced to changing boundary
conditions on Hilbert space [8–10]. The approach here is
to begin with standard laboratory observables and then
develop topology change in a way that never disrupts the
useful, real output of the historical theory. Specifically
we seek to complexify the global topology by introducing
multiplex-valued boundary conditions on Hilbert space.
We introduce the information current by assigning dif-
ferent BCs to H′ and H′′.

Consider the following congruence.

x 0 0
0 y 0
0 0 z

 ∼= ( eiθx ieiθz

ie−iθz eiθy

)
(44)

As a working definition we can say orthogonal matri-
ces are diagonalizable and have parameter elements, and
unitary matrices have exponentiated parameter elements
(satisfying Û−1Û = 1̂). As an example, consider the map
from Minkowski space to modified spacetime where time
is wrapped around a cylinder.
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FIG. 2. Four models of topology change. On top, the
model that motivated the original acronym MCM in refer-
ences [1, 11]. The next two are variations on the same model
of topology change from references [8] and [9] respectively.
Fourth is the model of topology change suggested here.

(
−c2t 0

0 xi

)
7→
(
e−ic

2θt 0
0 xi

)
(45)

This is pictured in figure 2a which first appeared in ref-
erence [11]. As the simplest conceivable model of topol-
ogy change, it is no surprise that the same demonstrative
example appears in references [8] and [9], shown here as
figures 2b and 2c respectively. The model in 2a was com-
plete in reference [11] but it wasn’t until reference [1] that
we specifically identified the state in the present. Such
was in response to one of “the most important questions
any quantum cosmology theory should address” listed in
reference [12]: “Can we extract, from the arguments of
the wavefunction, one variable which can serve as emer-
gent time with respect to which the other arguments
‘evolve’?”

The answer is yes. It is possible to extract that as the
superposition of the positive and negative time compo-
nents [1]. This is the same mechanism by which quantum
computing is expected to replace conventional, binary-bit
computing.

Consider an operational difference between figures 2a
and 2b. Where they define boundary conditions on the
endpoints, the TOIC considers a wavepacket moving with
a certain wave vector, far from the endpoints. Those
points represent the earliest past of existence and its
deepest future [1, 11], so things that are local to the
endpoints probably don’t affect the wavepacket. Said an-
other way, the second model’s circumference is of an in-
determinate length (probably less than one meter) where
2a has a circumference at least on the order of dozens of
billions of light years. Since the endpoints are not local
to the wave, we are motivated to move the topological de-
fect to the endpoints of the timelike interval in the final
phase of figure 2d. When the endpoints are at past and
future infinity, we have a theory that is locally invariant
under all finite translations.

A point from time is spliced into the null point at the
origin of space, and the source and sink of the information
current are moved to the the ends of time. We have
already shown that the topology of the quantum phase
U(1) should be modified to include a null point [3, 4] and
that motivates the one in the circle at the beginning of
figure 2d. Without it, there wouldn’t be a unique interval
with two null endpoints allowing us to specify one of the
four segments as temporal.

On the null point, consider congruence (44). The
Cartesian coordinates {x, y, z} are not periodic but
{θx, θy, θz} are. Analytic functions are single-valued,
one-to-one maps between a domain and a range so when
the time axis is wrapped around a cylinder, to preserve
analyticity, and therefore physicality, the interval must
be scaled so that it is not periodic on the cylinder. This
is an important point and we will return to it below.
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Figure 2a has the entire real line encoded on it twice,
once for each universe [1, 11]. The topology change that
was the foundation of the MCM and this entire course
of research is a map from the infinite to the finite R 7→
π. This is the standard conformal rescaling that is so
prevalent in Penrose diagrams and many other places in
physics. It also describes the new map R⊗ ℵ 7→ R′.

Consider the structure of the higher dimensional spaces
where we let chiros be timelike in Σ+.

g±AB

∣∣∣∣
ℵ,Ω

=

(
gµν 0
0 ∓Φ±1

)

=


−c2 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ∓Φ±1

 (46)

After accounting for general relativity in four dimen-
sions, the 5D tensor has eight components left which look
like a vector and a dual vector.

g±AB =

(
gµν gµ±
g±ν ∓Φ±1

)

=


−c2 0 0 0 g0

±
0 1 0 0 g1

±
0 0 1 0 g2

±
0 0 0 1 g3

±
g±0 g±1 g±2 g±3 ∓Φ±1

 (47)

Recall that the off-diagonal components of g±AB need
not be zero away from the lattice sites. The object
considered here is constructed for simplified analysis of
the fifth dimension. In general, the 4D upper-left space
will contain ten arbitrary symmetric components and six
equally arbitrary anti-symmetric components.

To make each quadrant its own self-similar space as in
figure 1, a 9D matrix is needed.

FIG. 3. The π̂0-site refers to the region (−π/2, π/2) and
π̂1 ∈ (π/2, 3π/2). The object moving to the right on the
chirological worldline must be moving faster than the speed
of light else its future light cone will pierce the topological
obstruction at ξ4 = 0.

g′ =



−c2 0 0 0 g0
+ 0 0 0 0

0 1 0 0 g1
+ 0 0 0 0

0 0 1 0 g2
+ 0 0 0 0

0 0 0 1 g3
+ 0 0 0 0

g+
0 g+

1 g+
2 g+

3 ∓Φ±1 g−5 g−6 g−7 g−8
0 0 0 0 g5

− 0 0 0 0
0 0 0 0 g6

− 0 0 0 0
0 0 0 0 g7

− 0 0 0 0
0 0 0 0 g8

− 0 0 0 0


(48)

Where the Dirac matrices can be represented as 2D
matrices with Pauli matrix elements, we find a similar
opportunity for dimensional reduction between a 9D ob-
ject like g′ and the 3D rotation matrices. Also note: a
matrix whose elements are themselves matrices is almost
the definition of a fractal matrix.

The so(3) algebra of rotations must define the topol-
ogy of the xi subspace of string theory’s 10D space.
The remaining six spatial dimensions xi± are encoded
with space in the past and future so they must also
independently share the SO(3) topology. Therefore we
should define the 6D space as SO(3)⊗SO(3). Further-
more, the 11D space of M-theory appears conveniently
as Rt ⊗ Rξ ⊗ R3

H ⊗ R3
Ω ⊗ R3

ℵ. The TOIC diverges from
M-theory in the topological obstruction between R and
R′.

The algebra of quaternions H can be decomposed into
left and right rotational subgroups S3

R and S3
L. Let us

include only left isoclinic rotations to give the chirality
required by the standard model. Non-unitary operations
in Σ+ will be scaled with respect to the same operations
in Σ− implying an added shear component when both
are considered simultaneously. That will create a shear
plane where Σ± approach H at ξ4 = 0. The shear plane
is immediately identifiable as the topological obstruction
that is the TOIC’s new boundary condition. It also tells
us about physics in higher dimensions.

Let something go into the future by leaving the shear
plane the positive ξ4-direction as in figure 3. If the ve-
locity is less than c, the future light cone will pierce the
topological obstruction, meaning it is not actually an ob-
struction at all. If it is moving at c, the edge of the
light cone will be on the boundary of the unallowed re-
gion, and that is also not allowed because Σ± do not
include the boundary at ξ4 = 0 [3]. Therefore, granted
many assumptions, we may conclude that only tachyons
propagate on ξ4. Also, ξ4 is periodic so we can define its
topology as the broken U(1) interval with the chronologi-
cal worldline going through the null point in the direction
perpendicular to the plane of the circle.

Consider the connection to spin. Arguments against
spin arising from actual mechanical rotations rely on the
expected rate of rotation being greater than the speed of
light but now that is allowed. Reference [13] states that
even without reliance on superluminal rotations, spin still



8

has a classical analog in the angular momentum of a cir-
cularly polarized wave. The author describes earlier work
by Belinfante and others showing that the electron’s spin
and magnetic moment can arise from a “circulating flow
of energy” and a “circulating flow of charge” in the elec-
tron’s wave field. All of this strongly agrees with the
TOIC spin mechanism which also states that spin must
have a classical analog [14].

On the rarefied plane H, consider the following from
reference [10].

“There are indications from theoretical
considerations that spatial topology in quan-
tum gravity can not be a time-invariant at-
tribute, and that its transmutations must
be permitted in any eventual theory. [sic]
The best evidence for the necessary topol-
ogy change comes from the examination of
the spin-statistics theorem for the so-called
geons. Geons are solitonic excitations caused
by twists in spatial topology.”

Note the connection to the spin-statistics theorem.
It has been argued that the TOIC prediction for new
spin-1 particles [14] has already been ruled out due to
the Landau-Yang theorem which depends heavily on the
spin-statistics theorem. It is noteworthy that the geon,
which here describes the universe and therefore all ob-
servables, is a special case of spin-statistics.

QUATERNION ROTATION

This section leaves many unanswered questions due to
its narrow scope. We focus on how quantum mechan-
ics’ ordinary non-abelian rotation dependency in three
dimensions can be morphed into a 4D hypercomplex
quaternion dependency. Below we will refer to a possible
modification of the group of quaternions as H′. How-
ever, it may be that H′ does not exist and the ordinary
quaternions H, being inseparable from 4D rotation, will
perform all the requisite operations.

Consider a quaternion q.

q = a1 + bi+ cj + dk (49)

x 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

(50)

We want to study how this relates to the following,
which may or may not be a quaternion. Consider ψq
and an arbitrary example algebra.

ψq = ψππ + ψΦΦ + ψ22− ψii (51)

x 2 i Φ π

2 2̂ + 2̂ î2̂ Φ̂2̂ π̂2̂

i î+ î î2 −Φ̂π̂ π̂î

Φ Φ̂ + Φ̂ îΦ̂ Φ̂2 −π̂Φ̂

π π̂ + π̂ −îπ̂ Φ̂π̂ π̂2

(52)

A unit quaternion has real coefficients so ψi needs spe-
cial accommodation in H′. There are three operations
on quaternions: addition, multiplication, and quater-
nion multiplication. The quaternion product of two ele-
ments of H depends on the choice of basis so it might be
possible to choose a “second quantized” basis such that
i := (0

√
i 0 0)T . In that case all the î’s in table (52) need

to be modified and notably the ii component becomes
just î.

In H, j and k are taken to be some square roots of
−1 other than i so what is their relationship to π and
Φ? π and Φ are themselves incalculable, so what is the
number that is their square? As demonstrated above, it
is indisputably possible to write down an algebra relating

i2 ∼= j2 ∼= k2 = −1 to
√
i
2 ∼= Φ2 ∼= π2 = i. Can irra-

tionality be substituted for imaginarity? It is impossible
to digitize an irrational number one time much less twice
as needed for multiplication so it is not unreasonable to
define the square as imaginary.

Consider the investment-grade isomorphism between√
i and Φ̂8. The quantum mechanical phase is periodic in

i4 so C2 spans eight longitudinal phases and also happens
to be periodic in (

√
i)8.

We want to generalize QM to 4D quaternion rotations
in the O(4) space spanned by the ontological basis. To
that end, consider a 3D rotation through θ radians about
the n̂-direction.

Û = e−iθn̂·Ĵ
i

(53)

ψ′3 = Ûψ (54)

Quaternions are associated with rotations in O(3)
when the identity operator is stripped of its operator
properties in a transmogrified quaternion “equation.”

q? = a+ b̂i+ cĵ + dk̂ (55)

= v0 + ~v

This is very interesting for a few reasons. First is that
one should not add a scalar and a vector. Second, it
motivates the algebra of the 3-vector cross product which
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is easily verified as a subspace of H. Third, it contradicts
our definition of the Euclidean unit vectors as renamed
versions of 1̂ [6].

The hatted vectors in equation (55) are written that
way to show the application to 3D rotations but they are
still quaternions: i ≡ î, j ≡ ĵ, k ≡ k̂. Such numbers
are like the imaginary number with a hat on it, not the
number one with a hat on it. Therefore, redefining a
scalar as a vector pointing along an unspecified number
line may not be a universal identity operation. However,
the following identities sufficiently connect î and 1̂ so that
the specifics can be set aside for now.

|i| =
√
i |̂i| = i |i| = 1 (56)

In reference [7] we introduced the operator Υ̂ ≡ Û+M̂3

and instructed the reader to ignore the difficulty associ-
ated with adding a tensor operator M̂3 to the vector
operator Û . The following is a better definition.

Υ̂ψ =
1

4π
|ψ;π〉+ det(ψij) (57)

Ûψ ∼= ~ψ · π̂ (58)

M̂3ψ ∼= det(ψij) (59)

It may prove useful to define the following tensor-
vector sum as a rank-two quaternion.

ψ′q = ψ + ψij (60)

This doesn’t look like a quaternion or an octonion and
that implies a possible new normed algebra H′.

Consider the exponent in equation (53). The imagi-
nary number is present, a parameter θ, a vector of gener-
ators Ĵ i, and the null vector n̂ that selects from Ĵ i. This
scales up to 4D by taking the full quaternion rotation
from the left and right into account.

Q̂L = euθ (61)

Q̂R = e−uθ (62)

ψ′4 = Q̂LψQ̂R (63)

The unit quaternion u plays the role of both the imag-
inary number and the generator in the 3D rotation op-
erator. Since the 3D generator is the product of Ĵ i and
n̂, it should also be possible to define the generator of
quaternion rotations as the output of the product of a
null quaternion and a quaternion of generators. Let the
hat denote the null object.

Q̂L = eû1·u2θ (64)

Permutations on u as the generator and u as the null
vector are a convenient source of fractal structure. One
possible application is to say that in the π̂ basis, the null
vector is on the left and in the Φ̂ basis it is on the right.
This is not a far stretch because we already have behavior
whereby a vector’s assigned manifold is specified by the
ontological basis.

π̂ : Q̂L = eû1·u2θ (65)

Φ̂ : Q̂L = eu1·û2θ (66)

It should be further possible to define asymmetric
“quaternion rotations” involving four unit quaternions
with two in Q̂L, and two in Q̂R. Each u has four inde-
pendent components, so there are sixteen elements con-
tributing to the following operation.

ψ′4 = eu1·u2θψe−u3·u4θ (67)

On a related note, the Dirac vector is a 4-vector, and
we add a multiplex to each component so the term ψ̄ψ
has sixteen independent components. A fractal multiplex
on ψ means there are actually infinity independent com-
ponents, but we can consider a “first tier” of the sixteen
discussed here. Different scalar, vector, tensor, and pos-
sibly other states and/or operations can be defined on
different permutations of the multiplectic algebra.

The golden ratio entered the study to motivate parity
violation [1] and the physics described here strongly re-
inforces that idea. The amplitudes for parity violating
processes are small because the Φ component in the fu-
ture and the −ϕ component in the past don’t quite sum
to one. In a perfect world it would always be true that
Φ − ϕ = 1 but here everything has an unpaired term at
infinity which is a qubit of unspecified topology, depend-
ing on the term’s history. An irrational residue filtering
through the dynamics as the information current gives
Φ − ϕ = 1 + dℵ. In this picture, the cross-sections for
parity violating processes in colliders measure the typ-
ical asymmetry between the qubits at past and future
computational infinity.

Consider a general parity violating matrix where c1 is
the cosine of the first variable etc.

K =

 c1 −s1c3 −s1s3

s1c2 [c1c2c3−s2s3e
iδ] [c1c2s3+s2c3e

iδ]
s1s2 [c1s2c3−c2s3e

iδ] [c1s2s3−c2c3eiδ]

 (68)

The non-parity violating version of K would have ei-
ther a sine or a cosine everywhere eiδ appears. Parity
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violation must therefore be associated with the topolog-
ical defect in the Euler formula [4]. Note K makes use
of that defect four times, and not two, as might be intu-
itively associated with parity.

Consider the sixteen dynamical avenues embedded in
g±AB . By defining δ as a multiplex, each distinct pairing
of elements from gµ and gν can define a unique operation,
K being just one familiar example.

g±AB =


−c2 0 0 0 g0

±e
iδ1

0 1 0 0 g1
±e

iδ2

0 0 1 0 g2
±e

iδ3

0 0 0 1 g3
±e

iδ4

g±0 e
iδ5 g±1 e

iδ6 g±2 e
iδ7 g±3 e

iδ8 Φ

 (69)

This structure is clearer than ψ̄ψ because we
are already dealing with four different 4-vectors
{gµ+, g

µ
−, g

+
ν , g

−
ν }. Just as the surfaces of constant cur-

vature in the cosmological unit cell connected Kaluza’s
cylinder condition [3], we find a similarly natural connec-
tion to the sixteen component Clifford algebra.

KALUZA KLEIN COMPACTIFICATION

One of the apparent failures of Kaluza theory is that
the field equations deduced from Kaluza’s 5D formulation
imply the electromagnetic field strength tensor Fµν is
zero everywhere [15].

Fµν = (∂µAν − ∂νAµ)

=


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (70)

Fµν is topologically equivalent to the tensor product
of a vector and a dual vector so we are presented with an
intuitive resolution. Use a pair of |gµ±〉 and 〈g±ν | so that
the field equations are satisfied, and then use the other
pair to define a field with non-zero strength.

The TOIC ansatz for cosmological arrangement puts
the origin of ξ4 in H so its value at the origin of Σ± is
±∞ [3]. This implies that the 5D origin of ξA±, usually
just a point, is a vector connecting the center of ξµ± with
that of ξ4. The magnitude of that vector should define
the dimensional transposing parameter in the piecewise,
point-like definition of the origins in Σ±. We hypothesize
the parameter is proportional to the golden ratio so the
magnitude of the vector should be Φ. This must be the
vector Φ̂ that we were already studying.

As pointed out in reference [15], “Klein showed in 1926
that Kaluza’s cylinder condition would arise naturally if
the fifth coordinate had (1) a circular topology, in which
case physical fields would depend on it only periodically,

and could be Fourier expanded; and (2) a small enough
(“compactified”) scale in which case the energies of all
Fourier modes above the ground state could be made so
high as to be unobservable.”

Here the cylinder condition also arises naturally –
though to markedly less fanfare – when (1) the fifth co-
ordinate has golden spiral topology and (2) a topologi-
cal obstruction prevents any periodic dependence of the
field on the compactified dimension(s). Periodicity is not
implied by a spiral but spiral dynamics can still be pro-
jected onto on a circle when the longitudinal phase Φn

acts as a winding number on the unbroken U(1) topology.
Therefore, it should not be necessary to look beyond the
standard methods of KK compactification to deal with
the unobservable dimensions of the modified cosmologi-
cal model.

Each universe in figure 2a is confined to an interval of
π radians, as marked by the horizontal hashes. We will
interpret this as a constraint on the phase and not on
distance. To implement that constraint, do a conformal
rescaling of all the dynamical entities in a system so that
nothing has its transverse phase leave the interval defined
on (−π/2, π/2) radians. This is nothing but an ordinary
gauge transformation.

ψ(x) 7→ eiβ(x)ψ(x) (71)

Just throw some capriciously large numbers in there
and you can easily guarantee the satisfaction of the re-
quirement during some finite computational run.

To get to the next moment π̂1, the phase needs to ad-
vance by at least π/2 and quaternion rotation by π/2 will
give a multiplicative factor π just like what is required
for equation (72).

〈ψF ; π̂1|e−iĤt|ψI ; π̂0〉 = 1 (72)

〈ψF ; π̂0|e−iĤt|ψI ; π̂0〉 = 0 (73)

The amplitude for the particle to stay in the same mo-
ment is zero. It always has to go the next moment π̂1.
Recall (π̂)n ≡ π̂n but π0 and π1 are the only two powers
that seem relevant. This is due to the ontological gauge
constantly rescaling back to θ = 0 before the phase can
advance to the region defined as π̂1.

The observer is always at t = 0 and the associated
phase ωt+δ is also zero. When transitioning back into the
π̂ basis of the cognitive frame after any computational op-
eration there must be a conformal rescaling back to zero.
To preserve the relative phase of all qubits everywhere,
this rescaling washes through all space. No matter how
much time goes by between successive comparisons of
theory to experiment, due to the above mentioned large
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numbers, the phase is guaranteed never to advance by
more than π. This is a topological obstruction in the
phase space of the phase.

Figure 2d shows that the time axis has two null end-
points and length π/2 implying the absolute value of the
phase being confined to [0, π/2) instead of (−π/2, π/2),
but no matter. A point from time is chosen to complete
the spatial topology at the origin where we have moved
a spatial null point. Where did the other two spatial null
points go? Do they form a null multiplex or is this, again,
related to uncertainty in Ĵx and Ĵy in the Ĵz eigenvector
basis? This will be an unresolved issue going forward.

What is clear is that time’s null endpoints in the origi-
nal model of topology change (figure 2a) are separated by
π. The observer is always moving toward the future so it
makes sense that the actual interval may be restricted to
π/2 because the phase between zero and −π/2 is identi-
fied with the past. This discrepancy may also be related
to the fact that SU(2) is defined on the interval between
zero and 4π rather than that between zero and 2π. If the
allowed interval is reduced by half, the associated angle
of rotation should also be reduced by half to π/4.

Consider Hawking radiation in the context of topolog-
ical obstructions. Near the horizon there is a quantum
fluctuation and one particle starts falling inward before it
annihilates with its partner. Once its trajectory pierces
the horizon, its phase space is spontaneously truncated
so that no future trajectory ever leaves the interior of the
event horizon. (In reference [16] we showed how a frac-
tal embedding of event horizons in a charged, rotating
black hole is a good descriptor for cosmological lattice
translations.)

The radius of the black hole is proportional to the mass
enclosed so it has respective radii rout and rin before and
after the particle falls behind the horizon. When is the
moment that the particle’s phase space changes? It can’t
change until the particle passes the horizon, and when it
does the black hole’s radius has already changed to rin
meaning the particle is inside by more than a differential
element of distance. Hence the moment we are examining
can no longer be the moment the radius changed. This
is an unresolved paradox.

To derive Hawking radiation, it is necessary to advance
a trajectory from rfar to rclose. When the trajectory is
very close, all the relevant information is exported to a
parameter file. The information is injected inside the
black hole and then someone starts the stopwatch run-
ning again. With one particle inside, the other escapes
as Hawking radiation despite there being no physical tra-
jectory through the horizon.

Consider the operation of exporting to a parameter file.
2̂ may create a computational state entangled with the
physical state via 2 7→ 1 + 1. Let the entanglement sym-
metry of 2̂ guarantee that the topologies of the residue
on each term are identical while they are entangled.

Starting with the most minimal representation of U(1),

consider the identity map to 2̂.

ψ 7→ 1

2
ψ2̂ (74)

ψΦ :=
1

2
eiΦ (75)

ψ2 :=
1

2
ei (76)

ψi :=
1

2
eiϕ (77)

det(ψij) =
1

8
e2iΦ (78)

This looks just like the ψ2 term in equation (13). Now
add to that a quaternion rotation by π/4.

Q̂L det(ψij)Q̂R =
1

8
eiπΦ (79)

This is supposed to be the future dual vector 〈ψ;π1|
to ψπ := eiπ so it is good that the 2 no longer appears in
the exponent. The 1/8 pre-factor may indicate that this
is only valid in the 2̂ computational basis, but not valid
for other components. The negative sign required for the
dual vector to be the complex conjugate of the vector is
missing but it can be inserted almost anywhere without
disrupting the structure of the theory.

Are these just random mathematical artifacts? What
are these operations and why should quaternion rotations
be related to anything? For a satisfying answer consider
M̂3 and its interpretation as a succession of quaternion
rotations about the different origins of {ℵ,H,Ω}.

“The flow of time proceeds as a quantum
clockwork. With the application of the evo-
lution operator M̂ , the observer’s connection
to Hi is released and reconnected to ℵi+1. M̂
is applied again breaking the connection to
Ωi. That end of the observer function is re-
connected to Hi+1 then a third application
of M̂ restores the original arrangement with
a connection between Hi+1 and Ωi+1.” [5]

TORSION

Operating under the assumption, as we have been,
that string theory is right, there must be a torsion field
complementing the gravitational and scalar fields derived
in references [5] and [3]. Since torsion is just the anti-
symmetric part of the affine connection, there is no mod-
ification required to include that third-rank tensor in the
TOIC. Simply require that the cosmological lattice points
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are defined where the strength of the torsion field is zero.
Since geometry with torsion has an inherent handedness,
and the torsion only exists in Σ±, but not H, it is per-
fectly applicable to the set of left-handed rotary opera-
tions that define H as a geon.

More aptly, torsion complements the TOIC’s underly-
ing principle of radical conservation of momentum. Since
the goal is to connect the quantum and gravitational sec-
tors, it must be noted that general relativity without tor-
sion does not conserve angular momentum globally. The
orbital momentum is conserved, but to conserve angular
momentum including spin, i.e. all of the angular momen-
tum, torsion is required [17].

This connection to the quantum world arises from a
unique property of torsion that sets it apart from the
gravitational and electromagnetic fields. Where they
have scalar Coulomb and kilogram sources, the torsion
field has vector sources. The source vectors could be
spin vectors, the ontological vectors, the vectors that sep-
arate the π̂-sites, the various arrows of time, or possibly
the four new vectors ~g±µ and ~g±ν . In reference [17], the
source of torsion is identified as the tangent vector to a
string. In that case, the sources are the wave vectors
shown in figure 2a, each tangent to a string of length π.

Furthermore, the torsion in a theory can enter directly
as the field or indirectly as the potential. This means
the torsion can be the hyperstructure encoded on the
point density functions for each of the theory’s various
continua.

Consider the following general description of torsion
from reference [18].

“Suppose we have two vectors A and B. They
are in a plane (of course), originally with the
bases touching. Here is a little thought ex-
periment you may do. Parallel transport A
along B and mark where the tip of A is. Call
this trip one. Now go back and set the vectors
as they were, but this time parallel transport
B along A and mark the point where the tip
of B is. Call this trip two. Is this the same
point? In Euclidean geometry it is, and it is
also the same point in Riemannian geometry,
but in the richer non-Riemannian geometry
(a poor name, but it means non-Riemannian
and non-Euclidean) it is not the same point.
In fact, the difference between these points is
proportional to the torsion.”

In light of that last part, torsion has direct application
to the arrow of time. Let A and B be the vectors con-
necting the origin of H with those in Σ±. Since parallel
transport along one and then the other will lead to dif-
ferent endpoints depending on the ordering, trajectories
through the torsion field in the space between adjacent
moments are not symmetric under chirological time con-
jugation.

A standard method of comprehension is to consider
the tensor transformation law. Hamiltonian physics rep-
resents a baseline, rank-two tensor field and we want to
add a source and sink of information through a multi-
plectic expansion to rank-three. In that regard, torsion
is the only reasonable candidate for integration with the
existing theory so there is an a priori requirement for it
without making reference to string theory. Transforma-
tions of the torsion tensor go as follows.

Sµ
′

ν′ρ′ =
∂xµ

′

∂xµ
∂xν

∂xν′

∂xρ

∂xρ′
Sµνρ (80)

The O(3,1) structure is apparent and it is easy to apply
the logic from equations (2) and (3) to define a four-fold
multiplex.

Sµ
′

ν′ρ′ =

(
∂xµ

′

∂xµ
∂xν

∂xν′

∂xρ

∂xρ′

)
Ŝµνρ (81)

Sµ
′

ν′ρ′ =

(
∂xµ

′

∂xµ
∂xν

∂xν′ S
µ
νρ

)
∂̂xρ

∂xρ′
(82)

Sµ
′

ν′ρ′ =

(
∂xµ

′

∂xµ
∂xρ

∂xρ′
Sµνρ

)
∂̂xν

∂xν′ (83)

Sµ
′

ν′ρ′ =

(
∂xν

∂xν′

∂xρ

∂xρ′
Sµνρ

)
∂̂xµ′

∂xµ
(84)

Tensor transformations imply covariant derivatives
and it is no surprise that αMCM = 21π1 + Φ3π3 looks
like it the returned value of a covariant derivative. (The
exponents are written to demonstrate α’s O(3,1) charac-
ter.)

Equations (81-84) are adapted to quaternions as fol-
lows.

v01 ≡ Ŝµνρ (85)

~v ≡ ∂̂xµ′

∂xµ
+
∂̂xν

∂xν′ +
∂̂xρ

∂xρ′
(86)

These final representations may seem like unnatural
invocations, but the physical characteristics of torsion are
so well-suited to the related qualitative principles that
they should not be discarded prematurely.

QFT

TOIC quantum cosmology treats the universe as a field
excitation in a path integral framework. Note the iden-
tity map to 2̂ (such as might be associated with the cre-
ation of a computational state) appears as the kinetic
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energy term in the action that allows us to compute the
motion.

〈qF |e−iĤt|qI〉 =

∫
Dq(t′)ei

∫ t
0
dt′ 1

2mq̇
2

(87)

Lorentz invariance is based on orientation with respect
to the arrow of time, but now there is a fractal qual-
ity on ∂t where new group operations decompose ampli-
tudes in time, move them through a certain algorithm,
and reassemble them at other points in spacetime where
a physicist has an opportunity to measure something.
Should one desire to compute infinitely complex equa-
tions of motion, the connection between the time deriva-
tive and the multiplex must be clarified. Can we define a
gradient ∇ξ : {∂π, ∂Φ, ∂2, ∂i} that replaces 1̂ in equation
(13)? Is 2̂ involved in the derivative or is 2̂ only related
to the prefactor 1/2 that pops up almost everywhere in
physics? Is 2̂ related – perhaps – not to one thing, but
to two? None of these important questions are treated
here. Instead, we detail how the TOIC path integral
differs from the Feynman path integral. Consider the
difference between equations (73) and (88).

Z(0) = 〈0|e−iĤt|0〉 = 1 (88)

The probability for the particle to stay in the ground
state in the absence of a source is 100% in the classical
formulation but here that amplitude is zero. The state in
one moment is distinct from the identical state in other
moments, and it is forbidden to remain in an unchanging
moment.

The TOIC also requires revision to the path integral
measure Dq.

∫
Dq(t) ≡ lim

N→∞

(
−im
2πδt

)N
2

(
N−1∏
k=1

∫
dqk

)
(89)

We need to add one term dqℵ to the product operator
to account for the expanded topology R ⊗ ℵ and this
brings the upper bound on k to a more natural looking
N . The factor related to the square root of i is vexing
but not unexpected due to the unresolved interpretive
mysteries related to the complex amplitude. If it were
possible to define a better computation proportional to
the square of i1/2, that would resolve the problem by
making i always appear in integer powers.

Even better, if it appeared to the fourth power, that
would remove the imaginary component of the measure’s
prefactor altogether. This is very easy to achieve with
the determinant of a matrix whose four diagonal compo-
nents represent the ontological basis. Problem solved. If
the determinant of that matrix has a phase shifted term

associated with î, it will be possible to write the measure
as follows.

∫
D′q(t) ≡ lim

N→ℵ0

N∏
k=1

[( m

2πδt

)2
∫
dqk

]
(90)

This is more than a superficial modification because
D′q cannot be derived from the usual expansion of

〈qF |e−iĤt|qI〉 by butterfly operators.

〈qF |e−iHt|qI〉 =

(
N−1∏
k=1

∫
dqk

)
〈qF |e−iδHt|qN−1〉 . . .

. . . 〈q1|e−iδHt|qI〉 (91)

When the extra term dqℵ is added, it appears as an
unpaired term at both ends, in perfect keeping with the
over-arching principles of the TOIC.

〈qF ;π1|e−iHt|qI ;π0〉 =

=

(
N∏
k=1

∫
dqk

)
|qℵ〉〈qF |e−iδHt|qN−1〉 . . .

. . . 〈q1|e−iδHt|qI〉〈qℵ| (92)

The classical path integral is discarded. Instead, we
are saying the formulation in equation (90) is the correct
framework in which to model multiplexed wavepackets
with different arrows of time in the past, present, and
future.

DEVELOPMENTS AT LARGE

The goal is to use math to engineer longitudinal physics
which can be used to predict the outcome of experiments
in the future. In addition to the developments in nuclear
fusion detailed in reference [6], some other recent devel-
opments in empiricism seem equally connected to present
matters.

Time reversal symmetry violation In reference [7]
we hypothesized that due to discrepancies between the
past and future, it might be possible to measure varia-
tions in the fine structure constant by varying the delay
in an appropriate experiment. Just months after our pre-
diction, BaBar’s dataset was reanalyzed for correlations
with delay. They did find one and published their fan-
tastic results in reference [19].

Recall the genius of the Hamiltonian formulation: once
any two dynamical variables are known, everything is
known (pretty much). Therefore a function defined on
the plane spanned by two such variables, such as those
in figure 4, can be used to deduce the fine structure con-
stant. Since the four fitting functions in figure 4 are
different, the value for α does depend on the delay.
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FIG. 4. Four independent T-violating symmetries from ref-
erence [19]. “The decays of entangled neutral B mesons into
definite flavor states (B0 or B̄0), and J/ψK0

L or cc̄K0
S final

states (referred to as B+ or B−),allow comparisons between
the probabilities of four pairs of T -conjugated transitions, for
example, B̄0 → B− and B− → B̄0, as a function of the time
difference between the two B decays.”

Negative frequency resonant radiation The
physical basis of the MCM is that momentum should
always be conserved. That led to the inescapable conclu-
sion that there must be a cosmological component un-
folding in negative time. Reference [20] describes the
discovery of negative frequency optical modes and figure
5 shows the new peak. Since frequency is inverse time,
this must be the same physical principle at work. Con-
sider what the discoverers point out in reference [21].

“The momentum conservation law that gov-
erns the scattering process predicts that light
may resonantly scatter into two output modes
[resonant radiation] and [negative frequency
resonant radiation]. In the laboratory refer-
ence frame, both of these modes will have pos-
itive frequencies while in the reference frame
comoving with the scatterer, RR is positive
and NRR is negative valued.”

The main result of reference [21] was that a relativis-
tic inhomogeneity (RI) propagating in an optical medium
will output more photons than are input as a result of the
interactions between the positive and negative frequency
modes. They even go so far as to describe the RI as “the
analogue of an event horizon.” This system seems quite
similar to the shear plane H that is our cosmological in-
homogeneity. In fact, if more photons come out than go
in, that suggests increasing information and their equa-
tion for the process may be a perturbative analogue of
Φ− ϕ = 1.

|RR|2 − |NRR|2 = 1 (93)

FIG. 5. The mode labeled λN in figure 5a is a newly discov-
ered negative frequency mode, as shown in figure 5b. Figure
excerpted from reference [20]

THE END

Where chiros “originally” is a Greek word meaning
God’s time, here it can be understood as the computa-
tional time and the following elephant in the room gives
a congruence for orthogonality in the transverse and lon-
gitudinal phases.

Φ ≈ 1.62 (94)
π

2
≈ 1.57 (95)

∆ℵ ≈ 3% (96)

π

2
∼= iΦ (97)

In the regime of physicists in real life, it is possible to
use the following meso-scale equation.

2Φ = π (98)

It’s true that the relative magnitude of the part that
is wrong is very large, but so what? The magnitude of
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the error always ends up being arbitrary anyway; that
is physics’ divergence from mathematics. Physical equa-
tions always become approximations so the equals sign
normally means “almost equal” and that is what it still
means in equation (98).

In machine precision, it is impossible to simulate the
complete spectrum of the Cantor flux of the information
current [4]. It will be precisely in those tails that are
cropped that one finds the ultra-high energy qubits with
which it is supremely easy to initiate acceleration, jerk,
etc, on the scale of the dynamics. By adding a term at
infinity, it is always possible to calculate spline functions
which can be sampled to give a fair representation of the
unbounded spectrum of information. With only a pair
of points in the past and present à la old physics, it is
impossible to calculate a cubic spline.

The initial connection of the MCM to general relativity
arose in the map from frequency to angular frequency [5]
so consider the following novelty.

1̂ ≡ 1f = (e2πi)f = e2πif = eiω (99)

U(1) states are vectors in Hilbert space that look like
eiω, so it does seem like a logical connection that any
generic state can be written as a unit vector. Comparing
to the identities in equation (56), we see that every single
object at every level of the theory can be represented as
unity though a judicious choice of gauge.

To finish with an interesting calculation, let ô be a
quaternion rotation operator related to π. Let λ be a
coupling constant in the future dual to the fine struc-
ture constant α in the past, where all measurements were
made. Let the phases in the past and future go as iϕ and
iΦ respectively. We want to create a discontinuity in the
present by utilizing an asymmetry between the Φ-based
quaternion rotations on the left and right. All the re-
quired physics is encapsulated in the following equation.

ψ′ = (iΦλ̂)(ôLψôR)(iϕα̂) = Φiλoψoϕiα (100)
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