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The output probability between two vertices vS and vR for an adjacency matrix A at

time t is given by:

P (t) = |〈vS|e−iAt|vR〉|2 (1)

We know the time evolution operator can be expressed as

e−iAt =
D∑
n=1

e−iλnt|vn〉〈vn| (2)

where λn and vn are eigenvalues and eigenvectors of A respectively and D is the dimension

of the matrix. So we can rewrite the equation for output probability as

P (t) = |
D∑
n=1

e−iλnt〈vS|vn〉〈vn|vR〉|2 (3)

We will call the product of the inner products 〈vS|vn〉〈vn|vR〉 = En. So our equation for

output probability now reads:

P (t) = |
D∑
n=1

e−iλntEn|2 (4)

So the eigenvalues are responsible for the phase of En at time t. It turns out that for the

system of APST networks I determined previously, only a small subsection of the summation

is responsible for high output probability. For instance, lets consider the output probability

through time for a modified path of diameter 740, with attached stars of size 100 (Thanos).
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We can see that the output probability through time is negligibly different if we use all 941

terms of the summation (Figure 1), or only 6 (Figure 2).

Figure 1: Here we can see the output probability P (t) across Thanos using the entire summation of the evolution operator,
for a total of 941 terms.

Figure 2: Here we can see the output probability P (t) across Thanos using only 6 essential terms of the summation. We can
see that it is almost indistinguishable from the entire summation. If a single term out of the essential 6 is not included, P (t)
effectivly vanishes.

Before going into the reason this is occurring, lets consider a smaller example of another

modified path with a diameter of 86 and attached stars of size 10 (Tony). Again looking at

P (t) across the diameter, we can see the effect of the essential 6 terms in the summation

(Figures 3 and 4).
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Figure 3: Here we can see the output probability P (t) across Tony using the entire summation of the evolution operator, for
a total of 107 terms.

Figure 4: Here we can see the output probability P (t) across Tony using only the essential 6 terms. Again, removing a single
term causes P (t) to vanish.

Of course, we can see that by using the summation of the entire system, Figure 3 is

actually more distorted and does not behave as geometrically as using only the essential

terms. The point is that there are six terms in each case of these networks, which push P (t)

to APST values. The reason is due to the large value of En for the essential six terms, in

combination of the fact that the phase of these terms (Eigenvalues) are close. For example,

consider a graphical representation of the different En terms for Tony.
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Figure 5: Here we can see the different values of En for Tony. Due to a convienent numbering system, we can see a sharp
peak where three values are much larger than anywhere else. These are the essential values. Of course, close inspection can beg
the question if there are actually five essential values (two additional points at the bottom of the peak), but we will see that
this is not the case.

We can see that there are three values of n for which En is disproportionately large.

(These values have multiplicity 2 for a total of 6 essential En terms). So in terms of the

summation given by Equation 4, these values pack the punch. Furthermore, it is also im-

perative than the phases (Eigenvalues) of the essential En are close or they can cancel each

other out. Of course, this is just the case:

Figure 6: This blue points in this figure show the identicle representation of the different En values for Tony as above.
Additionally, each red point directly above a blue point represents the corresponding λn which controls the phase of the En

below.
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From Figure 6, it becomes abundantly clear why these network are able to achieve APST.

The eigenvalues plateau for the essential En values, meaning that the phases can add con-

structively! (Note the interesting exponential trend before the plateau and the linear trend

afterwards). APST is fundamentally achieved because the eigenvalues of the essential En

are close values. This hold true for all cases of these networks.

I have previously shown that the peak output probability increases as the size of a network

increases. Furthermore, I have also shown the eigenvalues corresponding to essential En

converge as the networks grow as well. Now we can see that these two results walk hand in

hand. As the eigenvalues of the essential En converge to a single value, complete constructive

phase addition is made possible.

Lastly, it turns out that the essential En and λn for different networks are actually very

close in value. That is, the essential values of En and λn for one network are very close to

that of another. The is illustrated on the last page.

At first, it seems that a potential setback could be that though the essential eigenvalues

converge, leading to higher peak probability, they also seem to be increasing. This would

imply that the frequency of oscillation also increases making the time window to retrieve

a state smaller. However, through the analysis of much larger networks, I have found that

essential eigenvalues are converging to ±1.
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Diameter = 86, Star = 10

-0.120258 ã
H0.+0.964652 äL t

-0.120258 ã
H0.-0.964652 äL t

0.228153 ã
H0.+0.951752 äL t

0.228153 ã
H0.-0.951752 äL t

-0.121276 ã
H0.+0.939162 äL t

-0.121276 ã
H0.-0.939162 äL t

Diameter = 158, Star = 20

-0.122871 ã
H0.+0.980199 äL t

-0.122871 ã
H0.-0.980199 äL t

0.23883 ã
H0.+0.975379 äL t

0.23883 ã
H0.-0.975379 äL t

-0.123084 ã
H0.+0.970594 äL t

-0.123084 ã
H0.-0.970594 äL t

Diameter = 233, Star = 30

0.119259 ã
H0.+0.986245 äL t

-0.119259 ã
H0.-0.986245 äL t

-0.242426 ã
H0.+0.983498 äL t

0.242426 ã
H0.-0.983498 äL t

0.128069 ã
H0.+0.98094 äL t

-0.128069 ã
H0.-0.98094 äL t

Diameter = 452, Star = 60

-0.119401 ã
H0.+0.9927 äL t

-0.119401 ã
H0.-0.9927 äL t

0.246202 ã
H0.+0.991705 äL t

0.246202 ã
H0.-0.991705 äL t

-0.129295 ã
H0.+0.990786 äL t

-0.129295 ã
H0.-0.990786 äL t
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