In this article I give the Laws of Thermobiochemistry which unify the Theory of Biology, Chemistry and Physics

First Law of Thermobiochemistry: In an isolated Thermobiochemical System the variations of Energy tend to zero as time elapses

$$dU \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty$$

where U is the Energy of the Thermobiochemical System and t the time elapsed on the Thermobiochemical System

Second Law of Thermobiochemistry: In a Thermobiochemical System the Energy is conserved

$$\frac{dU}{dt} = \frac{dQ + dW + dE + dm c^2 + \gamma dA}{Q + W + E + mc^2 + \gamma A}$$

where U is the Energy, Q the Heat, W the Mechanical Energy, E the Electromagnetic Energy, mc^2 the Mass Energy and γA the Surface Tension of the Thermobiochemical System

Third Law of Thermobiochemistry: In a Thermobiochemical System the sum of the variations of Thermomechanical Energy and Biochemical Kinetic Energy is the sum of the variations of Heat and Surface Tension

$$\frac{dPV + dBK}{PV + BK} = \frac{dQ + \gamma dA}{Q + \gamma A}$$

where PV is the Thermomechanical Energy, BK the Biochemical Kinetic Energy, Q the Heat and γA the Surface Tension of the Thermobiochemical System

Fourth Law of Thermobiochemistry: In a Thermobiochemical System the Biochemical Kinetic Energy tends zero as Heat tend to zero

$$BK \rightarrow 0 \quad \text{as} \quad Q \rightarrow 0$$

where BK is the Biochemical Kinetic Energy and Q the Heat of the Thermobiochemical System

Fifth Law of Thermobiochemistry: In a Thermobiochemical System the variations of Entropy are the variations of Heat minus the variations of Mass Energy by Heat average

$$\frac{dS}{S} = \frac{dQ - \sum n_{ij} \xi_i c^2}{Q - mc^2}$$

where S is the Entropy, Q the Heat, mc^2 the Mass Energy, n_{ij} the Stoichiometric Coefficients and ξ_i the Extents of Reaction of the Biochemical Reactions of the Thermobiochemical System

Sixth Law of Thermobiochemistry: In a Thermobiochemical System the variations of Entropy due to irreversible Thermobiochemical Processes are always positive

$$dS_i \geq 0$$

where S_i is the Entropy due to the irreversible Thermobiochemical Processes of the Thermobiochemical System

Seventh Law of Thermobiochemistry: In a Thermobiochemical System the Entropy tends to zero as Heat tends to zero

$$S \rightarrow 0 \quad \text{as} \quad Q \rightarrow 0$$

Eighth Law of Thermobiochemistry "Law of Life": In a Thermobiochemical System the sum of the variations of Organic Chemical Potential and the variations of the Biochemical Kinetic Energy are the variations of Life

$$\frac{dBP + dBK}{PV + BK} = \frac{dL}{L}$$
where BP is the Organic Chemical Potential, BK the Biochemical Kinetic Energy and L the Life of the Thermobiochemical System

Ninth Law of Thermobiochemistry "Law of Health": In a Thermobiochemical System the sum of the variations of Organic Chemical Potential, Organic Chemical Energy and Biochemical Kinetic Energy is the variation of Health

$$\frac{dBP + dBC + dBK}{BP + BC + BK} = \frac{dH}{H}$$

where BP is the Organic Chemical Potential, BC the Organic Chemical Energy, BK the Biochemical Kinetic Energy and H the Health of the Thermobiochemical System

Tenth Law of Thermobiochemistry "Law of Evolution": In a Thermobiochemical System the sum of the variations of Organic Chemical Potential and Organic Chemical Energy is the variation of Evolution

$$\frac{dBP + dBC}{BP + BC} = \frac{dE}{E}$$

where BP is the Organic Chemical Potential, BC the Organic Chemical Energy and E the Evolution of the Thermobiochemical System

Eleventh Law of Thermobiochemistry: In a Thermobiochemical System the Organic Chemical Potential tends to zero as the Biochemical Kinetic Energy tends to zero

$$BP \rightarrow 0 \text{ as } BK \rightarrow 0$$

where BP is the Organic Chemical Potential and BK the Biochemical Kinetic Energy of the Thermobiochemical System

Twelfth Law of Thermochemistry: In a Thermobiochemical System the Organic Chemical Energy tends to zero as the Biochemical Kinetic Energy tends to zero

$$BC \rightarrow 0 \text{ as } BK \rightarrow 0$$

where BC is the Organic Chemical Energy and BK the Biochemical Kinetic Energy of the Thermobiochemical System

As a consequence as the Biochemical Kinetic Energy tends to zero the Thermobiochemical System comes to extinction

References