## Derivation of Eq.(3) in Bell's historical paper fails?

Dmitri Martila (eestidima@gmail.com) Estonian Physical Society Lääne 9-51, Tartu 50605, Estonia (Dated: April 25, 2015)

## Abstract

Unfortunately the Bell's correlation formula violates the law of logic: it is not theoretically founded. Here is shown, that it hardly can be ever founded.

PACS numbers:

See formula (3) of correlation in the John S. Bell, On the Einstein Podolski Rosen paradox, Physics, 1, 195-200 (1964). See "Bell's theorem" in Wikipedia, there is "free" file.

I argue, that polarizator's non-relativistic spin-operator is

$$S_a = \vec{\sigma} \, \vec{a}$$

where  $\vec{a} = (a_x, a_y, 0) = a(\cos \alpha, \sin \alpha, 0)$  is the axis of polarizator. The  $\vec{\sigma}$  are the three Pauli matrices. The polarizator A. The incoming wave function  $\Psi$  turns to  $\psi$ , where  $S_a \psi = s_a \psi$ , where  $s_a = +1, -1$  (please check). This wave  $\psi$  arrives at B. Then the measurement is  $s_b$ in  $S_b \psi = s_b \psi$ . Please check, that  $s_b = +1, -1$ . The vector  $\psi$  is the same in both A and B.

We could write then  $S_b S_a \psi = s_a S_b \psi = s_a s_b \psi$ . And very soon by averaging we would get the formula (3).

Let us check the assumptions. The axis of A has  $\alpha = 0$ 

$$a \sigma_x \psi = s_a \psi$$
.

Then  $a \psi_y = s_a \psi_x$  and  $a \psi_x = s_a \psi_y$ . When  $s_a = 1$ , a = 1,  $\psi_x = \psi_y$  is the solution  $\psi_1$ , also solution  $\psi_2$  is  $s_a = -1$ , a = 1,  $\psi_x = -\psi_y$ .

Let us check the second assumption. The axis of B has  $\alpha = \gamma$ .

$$b\left(\sigma_x \cos \gamma + \sigma_y \sin \gamma\right)\psi_1 = s_b \psi_1$$

We have matrix

$$b(0, \cos \gamma - i \sin \gamma)$$
$$(\cos \gamma + i \sin \gamma, 0)$$

then  $b(\cos \gamma - i \sin \gamma) \psi_y = s_b \psi_x$ , where  $\psi_x = \psi_y$ . The *b* is complex valued, but Re(b) > 0if  $s_b = 1$ . Another equation  $b(\cos \gamma + i \sin \gamma) \psi_x = s_b \psi_y$ . But this says, that by rotating the polarizator we must shrink its size. That is not true, thus, the formula (3) is still not derived.