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Theorem of the keplerian kinematics
Hervé Le Cornec, France, herve.le.cornec@free.fr

Abstract : Any mobile having a velocity which is the addition of a rotation
velocity and a translation velocity, both with a constant modulus, will follow a
trajectory that respects the three laws of Kepler. This article demonstrate this
theorem and discuss it. An important result is to forecast the  mathematical
structure of the Newton's acceleration of attraction, not any more as a prior, but
as a consequence,  the subsequent centripetal  acceleration due to the rotation
velocity.

 1 Introduction
Since the work of Kepler we know that, at a first approximation, the trajectories
of  all  celestial  satellites  are  following  three  peculiar  laws[1].  These  laws  are
kinematic ones, they do not refer to any physical consideration, as the mass for
instance. We can then  expect to forecast them only from the kinematics. 

This is what we are going to achieve here by the mean of a kinematic theorem
that applies to all keplerian mobiles. We will not postulate any physical reason to
explain the existence of this theorem in the real world, but just demonstrate its
validity from a mathematical point of view. 

We will see however that this theorem forecasts the Newton's attraction law as a
consequence,  but  not  any  more  as  a  mandatory  foundation  of  the  keplerian
motion. 

 2 Theorem of the keplerian kinematics

 2.1 Statement 
Let us state the following theorem :

Theorem 1 : Any mobile having a velocity which is the addition of a rotation
velocity and a translation velocity, both with a constant modulus, will follow a
trajectory that respect the three laws of Kepler.

At  a  mathematical  point  of  view  the  velocity  described  by  this  theorem  is
written as follows :
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v=vR+v T

with vR=ω∧r , ‖vR‖=vR=ω r=cste and ‖v T‖=v T=cste
(1)

where vR is  the  rotation  velocity, vT is  the  translation  velocity, ω is  the
frequency of rotation and r is the vector radius.

 2.2 Proof
To prove the validity of this theorem we have to demonstrate that the relation
(1) forecasts the three laws. This is what we are going to achieve but we need
first to define the momentum and the acceleration for this type of motion.

 2.2.1 Momentum and acceleration 

We define the vector L as follows :

L=r∧v (2)

We call  it  “kinematic momentum” as a reference to the well  known physical
“kinetic momentum”[2] M=m r∧v , where m is the mass of the mobile. Note
that the kinematic momentum L is collinear to the frequency of rotation, but
it is mass independent.

Concerning the acceleration γ , as far as the translation velocity is a constant,
there is no translation acceleration, and the derivative of the relation  (1) with
respect to time is γ=ω̇∧r+ω∧v . Because ω r=cste this expression becomes

γ=−ω
r2

∧[r∧(r∧v)] and finally :

γ=−
LvR

r3 r (3)

This expression shows that the acceleration and the vector radius are collinear.
This fact forces the kinematic momentum to be constant because its derivative
with respect to time, L̇=r∧γ , is then null. We can note that this expression
of  the  acceleration  is  also  consistent  with  the mathematical  structure  of  the
acceleration of the Newton's attraction[1]. We will discuss this property later on.

 2.2.2 First law of Kepler

The vector multiplication of the rotation velocity and the kinematic momentum
leads to :

vR∧L=vR
2 (1+

vR . vT

vR
2 )r (4)



3

Thus the modulus of this last expression is

L
v R

=(1+
vT

vR

cos θ)r or p=(1+ecosθ) r (5)

This last equation is the one of a conic if p=L/vR is the parameter of the orbit,
e=vT /vR is its eccentricity and θ is the angle between the directions of vT

and vR , i.e. the true anomaly. Because L, vT and vR are constant p and e
are also constant. The relation (5) therefore agrees with the first law of Kepler
stating that the trajectory must be a conic[1].

 2.2.3 Second law of Kepler

The  second  law,  or  area  law,  derives  from  the  constancy  of  the  kinematic
momentum. As explained by L. Landau and E. Lifchitz[3], the momentum can
also  be  written as  a  function  of  the  position  and the  derivative  of  the  true
anomaly with respect to time :

L=r2θ̇ (6)

The right side of this last equation being the double of the areal velocity, and the
momentum being a constant, the areal velocity must also be a constant. This is
the second law of Kepler[1].

 2.2.4 Third law of Kepler

The  integration  with  respect  to  time  of  the  relation  (6) ,  over  a  complete
revolution, gives

LT=∫
0

2π

r2dθ (7)

For the case where the trajectory is an ellipse, the right side of this equation is
worth 2π a b , where a is the major semi axis and b the minor one. Knowing
then that a=p /(1−e2) and b=p /√1−e

2 , it is easy to finally get the following
relation :

L vR=4π2a3/T2 (8)

Because L and vR are constant this last expression agrees with the third law of
Kepler stating that the square of the period of revolution is proportional to the
cube of the major semi axis[1].
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 3 Discussion
We demonstrated that the theorem 1 forecasts the three laws of Kepler. So far
the only way to explain them was the Newton's postulate of attraction, and of
course the Einstein's general relativity, which resumes to the Newton's law for
slow velocities, regarding the speed of light. When we first state the Newton's
postulate as the reason of the keplerian motion, it is possible to demonstrate the
existence of the relation (1). Consequently the literature has already noticed that
the relation (1) exists[4-10] but the authors present it always as a consequence of
the Newton's law, not as a prior. 

The kinematic point of view presented here inverses this assumption, making the
Newton's acceleration a consequence, the derivative with rapport to time, of the
relation (1). This acceleration is only the subsequent centripetal acceleration due
to the rotation velocity. Therefore from the kinematic point of view, regarding
the equation (3), the Newton's postulate of attraction is reduced to set up the
only following assumption :

L vR=GM (9)

where G is the constant of gravitation and M the attracting mass. Usually the
most remarkable part of the Newton's postulate is considered to be the “inverse
square law”, i.e. the dependency of the acceleration toward the inverse square of
the  distance to  the attracting  mass.  However  for  the  kinematics  this  inverse
square characteristic is only a geometrical consequence of the theorem 1, so it is
not a postulate any more but a kinematic trivial result. Nonetheless the other
part  of  the  Newton's  assumption  consists  to  state  that  the  coefficient  of
proportionality should be GM , instead of the strictly expected Lv R , and this
represents indeed a postulate with regards to the kinematics. 

At this  point  we may wonder if  the Newton's  assumption is  true for  for  all
masses, at all scales, while the theorem 1, and thus the equation (3), are always
true for  all  masses  at  all  scales.  About  the  mass,  note  that  remarkably  the
kinematic  approach  is  consistent  with  the  Galileo's  principle  of  equivalence
stating that the motion in a gravitational field is mass independent. Indeed the
theorem 1  is also mass independent.

Of  course  the  theorem  1  alone  does  not  explain  all  the  subtleties  of  the
gravitation  (precession,  nutation,  many  body  problem,  …).  It  is  only  a
fundamental brick describing the simple pure keplerian motion. It is exactly at
the same position as the Newton's law of attraction before the invention of the
Lagrangian mechanics. The theorem 1 should be a new starting point to have a
new  look  at  the  gravitation.  For  instance  if  the  translation  velocity vT is
replaced by  a  rotation  velocity vT=ωT∧rT ,  the  precession  appears.  So  this
theorem has to be investigated moreover in order to get all that the kinematics
can give us.
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Even if the theorem 1 proposes a new vision of the gravitation, it is not a physics
theory. Sure it is not a postulate, but the fundamental reason why nature chooses
to set it up, in the real world, is still a remaining question, that will certainly
need a physics postulate to be answered. Any way, whatever this postulate could
be, the physicist can not ignore the kinematics, therefore he has to take the
theorem 1, and its consequences, into account.
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