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Abstract

This paper describes the first and second versions of Joy Christian’s
model for the singlet correlations, working through the mathematical
core of two of Christian’s shortest, least technical, and most accessible
works. The aim of the paper is to show that from the start, the model
depended both on a conceptual error and on an algebraic error. For
this purpose we start by giving an introduction to geometric algebra
using the fact that the basic geometric algebra of 3D geometry is
actually isomorphic to the algebra of the complex two-by-two matrices
over the real numbers. Thus the reader who is already familiar with
the Pauli spin matrices will find him- or herself in a completely familiar
environment. This helps avoid the kind of beginner’s errors which
plague Christian’s opus, and gives rapid access to (and understanding
of) the so-called bivector algebra: the even subalgebra of C`3,0(R),
itself isomorphic to the quaternions.

Getting the basic facts of geometric algebra out front and crystal
clear helps demystify Christian’s project and hopefully is useful in its
own right. We will see how Christian apparently realised, if only at
a subconscious level, that there was a major gap in his first, 2007,
paper, and attempted to patch this in 2011, making things, however,
only worse.

Apart from providing a quick-start guide to geometric algebra,
and a hopefully very accessible post-mortem analysis of Christian’s
project, the purpose of the paper is to discuss the psychology and
sociology of Bell deniers: how can very clever people make such el-
ementary mistakes, and persist so long in maintaining their illusion
that they have created a major breakthrough?
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1 Introduction

In 2007, Joy Christian surprised the world with his announcement that Bell’s
theorem was incorrect, because, according to Christian, Bell had unnecessar-
ily restricted the co-domain of the measurement outcomes to be the tradi-
tional real numbers. Christian’s first publication on arXiv spawned a host
of rebuttals and these in turn spawned rebuttals of rebuttals by Christian.
Moreover, Christian also published many sequels to his first paper, most of
which became chapters of his book, of which a second edition came out in
2014.

His original paper Christian (2007) took the Clifford algebra C`3,0(R) as
outcome space. This is “the” basic geometric algebra for the geometry of R3,
but geometric algebra goes far beyond this. Its roots are indeed with Clifford
in the nineteenth century but the emphasis on geometry and the discovery
of new geometric features is due to the pioneering work of David Hestenes
who likes to promote geometric algebra as the language of physics, due to
its seamless combination of algebra and geometry. The reader is referred to
the standard texts Doran and Lasenby (2003) and Dorst, Fontijne and Mann
(2007); the former focussing on applications in physics, the latter on appli-
cations in computer science, especially computer graphics. The wikipedia
pages on geometric algebra, and on Clifford algebra, are two splendid mines
of information, but the connections between the two sometimes hard to de-
code.

It seems that many of Christian’s critics were not familiar enough with
geometric algebra in order to work through Christian’s papers in detail. Thus
the criticism of his work was often based on general structural features of the
model. One of the few authors who did go to the trouble to work through the
mathematical details was Florin Moldoveanu. But this led to new problems:
the mathematical details of many of Christian’s papers seem to be different:
the target is a moving target. So Christian claimed again and again that
the critics had simply misunderstood him; he came up with more and more
elaborate versions of his theory, whereby he also claimed to have countered
all the objections which had been raised.

It seems to this author that it is better to focus on the shortest and most
self-contained presentations by Christian since these are the ones which a
newcomer has the best chance of actually “understanding” in the sense of
being able to work through the mathematics, from beginning to end. In this
way he or she can also get a feeling for whether the accompanying words (the
English text) actually reflect the mathematics. Because of unfamiliarity with
technical aspects and the sheer volume of knowledge which is encapsulated
under the heading “geometric algebra”, readers tend to follow the words, and
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just believe that the author is competent enough that the formulas match the
words. If one criticises the words, Christian will respond with more words,
and also with more mathematics, claiming that the mathematics show that
the verbal criticism was unfounded. This leads to a never ending cycle of
rebuttals and counter rebuttals. Of course, in the end everyone loses patience,
but still: the ghost has not yet been laid to rest.

In order to work through the mathematics, some knowledge of the basics
of geometric algebra is needed. That is difficult for the novice to come by,
and let’s be honest: almost everyone is a novice, despite the popularising
efforts of David Hestenes and others, and the niche popularity of geometric
algebra in computer graphics. Wikipedia has a page on “Clifford algebra”
and another page on “geometric algebra” but it is hard to find out what is the
connection between the two. There are different notations around and there
is a plethora of different products: geometric product, wedge product, dot
product, outer product ... when an author like Christian writes a “dot” or a
“wedge” which product does he actually mean? The standard introductory
texts on geometric algebra start with the familiar 3D vector products (dot
product, cross product) and only come to an abstract or general definition
of geometric product after several chapters of preliminaries. The algebraic
literature jumps straight into abstract Clifford algebras, without geometry,
and wastes little time on that one particular Clifford algebra which happens
to have so many connections with the geometry of three dimensional Eu-
clidean space. (Interestingly, David Hestenes also has ardently championed
mathematical modelling as the study of stand-alone mathematical realities).

I believe that Christian’s work can only be laid to rest in peace after
one has actually checked the substance of the papers: the mathematics.
The words, or perhaps the “spiel”, should correspond to the formulas. The
mathematics should stand on its own feet as “pure” mathematics. The words
are there to help the reader get a feeling for the math, and to build a bridge
between the math and the physical world. As a mathematical statistician, the
present author is particularly aware of the distinction between mathematical
model and reality – one has to admit that a mathematical model used in
some statistical application, e.g., in psychology or economics, is really “just”
a model, in the sense of being a tiny and oversimplified representation of the
scientific phenomenon of interest. All models are wrong, but some are useful.
It seems that in physics, the distinction between model and reality is not so
commonly made. Physicists use mathematics as a language, the language of
nature, to describe reality. They do not use it as a tool for creating artificial
toy realities. For a mathematician, a mathematical model has its own reality
in the world of mathematics.

The present author already published (on arXiv) a mathematical analysis,

3



Gill (2012), of one of Christian’s shortest papers: the so-called “one page
paper”, Christian (2011), which moreover contains the substance of the first
chapter of Christian’s book. In the present paper he analyses in the same
spirit the paper Christian (2007), which was the foundation or starting shot
in Christian’s project. The present note will lay bare the same fundamental
issues which are present in all of Christian’s later works. It will show that the
model is actually not the same in every publication, but constantly changes,
so it seems as if Christian himself did become aware of short-comings in earlier
publications, and attempted to “fix them” in later ones, though without ever
explicitly saying that the earlier works had short-comings. In fact we will find
out that Christian’s (2007) model is not a model at all: the most important
feature, a definition of local measurement functions, is omitted. However
the author leaves little choice as to how to fill the gap. We will see that his
later work did consist in a failed attempt to fill the gap in the first paper,
so it is clear (to this author) that Christian was subconsciously aware of the
short-coming of the first attempt; he never explicitly admitted it.

What was also present from the start was a sign error. Though one
can say on general principles that the whole idea that Bell made a mistake
in restricting the co-domain of his measurement functions is mistaken, it
is amusing that right from the start Christian’s work was also based on
capitalising on a sign error, probably due to notational carelessness.

Why start with the shortest papers? Because if one sees that in these
short papers Christian already makes appalling elementary mathematical er-
rors and fundamental conceptual errors, there is no point at all in trying to
see if the later, longer works have some how recovered from these mistakes.
On the one hand, the conceptual errors mean that the research project it-
self is failed before it starts. However it might still have been the case that
there was interesting mathematics there, even if it did not fit to the physical
situation which the author had in mind. There might have been interesting
mathematics which even had interesting implications for physics. But if the
author cannot deal with the mathematics in a simple version of his model,
and moreover vehemently denies that any of the works contain any errors at
all, then we may safely assume that later elaborations are simply baroque
constructions in which it is even more easy to hide both conceptual errors
and mathematical errors. But I do not want to imply that the author hides
these errors deliberately. On the contrary, I want to suggest that he makes
(made) these errors accidentally, and does not see them.

The author’s “model” is a verbal science fantasy. For a physicist like
Christian, who only uses mathematics as an intuitive language in which to
describe physical insights, if a particular mathematical formalism does not
match his physical intuition, then the mathematics is at fault: not the intu-
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ition. For an outsider, though, that intuition was a fantasy, precisely because
it cannot be grounded in a stand-alone mathematical model.

What is the use of digging up these, by now forgotten, utterly failed
attempts to revolutionise quantum information theory and quantum compu-
tation?

First of all, because it is fun and profitable to learn something about
geometric algebra! That’s perhaps the main motivation of the author of this
paper.

Secondly, to his mind, the history of the Christian model is fascinating
from the point of view of psychology, and of sociology. On the one hand, how
could a clearly highly gifted, highly intelligent person come to believe that
he had discovered a flaw in a rather elementary piece of mathematics, which
had stood up through more than 40 years of intense interest? Challenged
again and again, but surviving all challenges till Christian came up with his
model? Which is so simple that he can summarise it in one short page?
This is the matter of individual psychology: how can a promising young
scientist come to believe that they are a genius? Make no mistake: I do
believe that Christian has always honestly believed in the correctness of his
discovery, though at one level (subconscious) it seems to me that he has early
on realised that he wasn’t quite there yet. Something did not quite fit, more
work was needed.

On the other hand, at the sociological level, how could Christian’s theory
have been taken seriously by quite a few serious researchers for quite a long
time, if the flaws in it are as simple and devastating as I will try to explain?

I shall return to some kind of “post-mortem” at the end of this paper.
First it is necessary to “remind” the reader of some basic theory of geometric
algebra. What is the Clifford algebra C`3,0(R) and what does it have to
do with Euclidean (three-dimensional) geometry? After we have some basic
familiarity with this wonderful field, we will be able to follow Christian all
the way through the essential mathematics of his original model, and thereby
clearly see that it really was dead from the start.

Which raises the sociological question: why was this not obvious to ev-
eryone, from the start, as well?

2 Geometric Algebra

I will first of all take a side-step and discuss the real algebra of the two-by-two
complex matrices. We can add such matrices and obtain a new one; we can
multiply two such matrices and obtain a new one. The zero matrix acts as
a zero and the identity matrix acts as a unit. We can multiply a two-by-two
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complex matrix by a real. In this role, we talk about scalar multiplication.
We can therefore take real linear combinations. Matrix multiplication is
associative so we have a real unital associative algebra. Unital just means:
with a unit; real means that the scalars in scalar multiplication are reals, and
therefore, as a vector space (i.e., restricting attention to addition and scalar
multiplication), our algebra is a vector space over the real numbers.

The four complex number entries in a two-by-two complex matrix can
be separated into their real and imaginary parts. In this way, each two-by-
two complex matrix can be expressed as a real linear combination of eight
“basis” matrices: the matrices having either +1 or i in just one position, and
zeros in the other three positions. Obviously, if a real linear combination of
those 8 matrices is zero, then all eight coefficients are zero. The vector-space
dimension of our space is therefore eight.

I will now specify an alternative vector-space basis of our space. Define
the Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

and the identity

I =

(
1 0
0 1

)

and define

1 = I, e1 = σx, e2 = σy, e3 = σz, β1 = iσx, β2 = iσy, β3 = iσz, M = iI.

It is not difficult to check that this eight-tuple is also a vector space basis.
Note the following:

e21 = e22 = e23 = 1,

e1e2 = −e2e1 = −β3, e2e3 = −e3e2 = −β2, e3e1 = −e1e3 = −β1,

e1e2e3 = M.

These relations show us that the two-by-two complex matrices, thought of
as an algebra over the reals, are isomorphic to C`3,0(R), or if you prefer, form
a representation of this algebra. By definition, C`3,0(R), is the associative
unital algebra over the reals generated from 1, e1, e2 and e3, with three of
e1, e2 and e3 squaring to 1 and none of them squaring to −1, which is the
meaning of the “3” and the “0” : three squares are positive, zero are negative.
Moreover, the three basis elements e1, e2 and e3 anti-commute. The largest
possible algebra over the real numbers which can be created with these rules
has vector space dimension 23+0 = 8 and as a real vector space, a basis can
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be taken to be 1, e1, e2, e3, e1e2 = −β3, e1e3 = β2, e2e3 = −β1, e1e2e3 = M .
The algebra is associative (like all Clifford algebras), but not commutative.

This description does not quite tell you the “official” definition of Clifford
algebra in general, but is sufficient for our purposes. We are interested in
just one particular Clifford algebra, C`3,0(R), which is the Clifford algebra
of three dimensional real geometry. It is called the (or a) geometric algebra
and the product is called the geometric product, for reasons which will soon
become clear.

I wrote 1 for the identity matrix and will later also write 0 for the zero
matrix, as one step towards actually indentifying these with the scalars 1
and 0. However, for the time being, we should remember that we are not
(at the outset) talking about numbers, but about elements of a complex
matrix algebra over the reals. Complex matrices can be added, multiplied,
and multiplied by scalars (reals).

Within this algebra, various famous and familiar structures are embedded.
To start with something famous, we can identify the quaternions. Look

at just the four elements 1, β1, β2, β3. Consider all real linear combinations
of these four. Notice that

β21 = β22 = β23 = −1,

β1β2 = −β2β1 = −β3,

β2β3 = −β3β2 = −β1,

β3β1 = −β1β3 = −β2.

This is close to the conventional multiplication table of the quaternionic roots
of minus one: the only thing that is wrong is the last minus sign in each of the
last three rows. However, the sign can be fixed in many ways: for instance, by
taking an odd permutation of (β1, β2, β3), or an odd number of sign changes
of elements of (β1, β2, β3). In particular, changing the signs of all three does
the job. But also the triple e1e2 = −β3, e1e3 = β2, e2e3 = −β1 (the order is
crucial) does the job too. Notice that we reversed the order of the three βjs,
which is an odd permutation, and changed two signs, an even number. We
ended up with e1e2, e1e3, e2e3 in the conventional lexicographic ordering.

Switching some signs or permuting the order does not change the algebra
generated by 1, β1, β2, β3. These four elements do generate a sub-algebra of
C`3,0(R) which is isomorphic to the quaternions. The quaternion sub-algebra
is called the “even sub-algebra” of our Clifford algebra since it is built from
just the products of even numbers of e1, e2 and e3.

Obviously, M commutes with everything, and obviously M2 = −1. Also
Me1 = β1, Me2 = β2, Me3 = β3 and, in duality with this, e1 = −Mβ1,
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e2 = −Mβ2, e3 = −Mβ3. Thus any element of C`3,0(R) can be expressed
in the form p + Mq where p and q are quaternions, M commutes with the
quaternions, and M is itself another square root of minus one. However
one must be careful with parametrisation and be aware of “left-handed” and
“right-handed” ways to define and work with the quaternions.

Notice that (1 − ei)(1 + ei) = 0 (the zero two-by-two matrix). So the
algebra C`3,0(R) possesses zero divisors (in fact, very many!), and hence not
all of its elements have inverses.

The real reason for calling this algebra a geometric algebra comes from
locating real 3D space within it, and also recognising geometric operations
and further geometric structures with the algebra. To start with, look at the
linear span of e1, e2 and e3. This can be identified with R3: from now on,
real 3D vectors are real linear combinations of e1, e2 and e3. So let us look
at two elements a, b of R3, thus simultaneously elements of the linear span
of e1, e2 and e3. In the latter incarnation (i.e., as elements of C`3,0(R)), we
can multiply them; what do we find? The answer is easily seen to be the
following:

ab = (a · b) 1 +M (a× b).

Here, a · b stands for the (ordinary) inner product of two real (three di-
mensional) vectors, hence a real number, or a scalar; a × b stands for the
(ordinary) cross product of two real three dimensional vectors, hence a real
vector. As such, it is a real linear combination of e1, e2 and e3. Multiplying
by M gives us the same real linear combination of β1, β2, β3.

Thus the geometric algebra C`3,0(R) contains as a linear subspace the real
vectors of R3; the geometric product of two such elements encodes both their
vector dot product and their vector cross product. The dot product and
the cross product of real vectors can both be recovered from the geometric
product, since these parts of the geometric product live in parts of the eight
dimensional real linear space C`3,0(R) spanned by disjoint sets of basis ele-
ments. The real linear subspace generated by β1, β2, β3 is called the set of
bivectors, just as the real linear subspace generated by e1, e2, e3 is identified
with the set of vectors. The real linear subspace generated by the single
element 1 is identified with the real numbers or scalars and in particular, we
identify the scalar 1 and the element 1, the scalar 0 and the element 0. The
real linear subspace generated by the single element M is called the set of
trivectors, also known as pseudo-scalars.

So we have seen that C`3,0(R) is a beautiful object, containing within itself
the quaternions, the complex numbers, the two-by-two complex matrices,
three dimensional real vectors; and its product, sometimes called “geometric
product”, contains within it both the inner and outer product of real vectors.
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Moreover, everything comes in dual pairs: the vectors and the bivectors;
the quaternions and the product of the quaternions with M , the scalars
and the pseudo-scalars. Every element of the algebra can be split into four
components: scalar, vector, bivector and pseudo-scalar. The algebra is called
graded. The parts we just named constitute the zeroth, first, second and third
grades of the algebra. The product of elements of grades r and s belong to
the grade r + s modulo 4.

The fact that C`3,0(R) has as a representation the algebra of complex
two-by-two matrices over the reals seems little noticed in the literature on
geometric algebra. In the theory of Clifford algebra, it is just one tiny piece
in the theory of classification of Clifford algebras in general. It seems to
this author that this representation should help very much to “anchor” the
theory for those coming from quantum theory and quantum foundations. The
standard textbook on geometric algebra for physicists, Doran and Lasenby
(2003), has two chapters on quantum mechanics, one of which is devoted
specifically to quantum entanglement, using geometric algebra. However the
reason why this works – the representation just mentioned – is not brought
out explicitly.

2.1 Remarks on computation

Before continuing, I would like to make some remarks on computation. In
order to test formulas, or in order to simulate models, it is convenient to have
access to computer languages which can “do” computer algebra.

First of all, the fact that C`3,0(R) can be identified with the two-by-two
complex matrices means that one can implement geometric algebra as soon
as one can “do” complex matrices. One needs to figure out how to get
the eight coordinates out of the matrix. There are easy formulas but the
result would be clumsy and involve a lot of programming at a low level.
The relation with the quaternions is more promising: we can represent any
element of C`3,0(R) as a pair of quaternions, and the real and the imaginary
parts of the two component quaternions immediately give us access to the
scalar and bivector, respectively trivector (also called “pseudo scalar”) and
vector parts of the element of the algebra. For those who like to programme
in the statistical language R it is good to know that there is an R package
called “onion” which implements both the quaternions and the octonions.

Here a small digression starts. There exists a huge menagerie of some-
what related mathematical objects, and sometimes notations and nomencla-
ture are confused and confusing. For instance, the octonions are another
eight dimensional algebra which however is not associative. There are weird
and wonderful and deep connections between these various objects and in

9



particular, concerning the sequence 1, 2, 4, 8, which is where a particular
construction taking us from the reals to the complex numbers to the quater-
nions and finally to the octonions stops. But this is not part of our story.
Another Clifford algebra C`0,3(R) is also related to pairs of quaternions, but
also not part of our story. End of digression.

Nicest of all is to use a computer system for doing real geometric algebra,
and for this purpose I highly recommend the programme GAViewer which
accompanies the book Dorst, Fontijne and Mann (2007). It can be obtained
from the authors’ own book website http://www.geometricalgebra.net.
It not only does geometric algebra computations, it also visualises them, i.e.,
connects to the associated geometry. Moreover the book and the programme
are a nice starting point for two higher dimensional geometric algebras, of
dimension 16 and 32 respectively, which encode more geometric objects (for
instance, circles and affine subspaces), and more geometric operations, with
the help of the further dimensions of the algebra.

3 Christian’s first model

Christian (2007) takes two and a half pages of preliminaries before he starts
describing his (allegedly) local realist model for the singlet (or EPR-B) cor-
relations, obtained through the device of taking the co-domain of Bell’s mea-
surement functions to be elements of the geometric algebra C`3,0(R) rather
than the conventional (one dimensional) real line.

This insistence already reveals, to this writer’s mind, that Christian does
not know what he is talking about. Conventionally, a local hidden variables
model for the singlet correlations consists of the following ingredients. First
of all, there is a hidden variable λ which is an element of some arbitrary
space over which there is a probability distribution referred to in physicist’s
language sometimes as ρ(λ)dλ, sometimes as dρ(λ). This hidden variable
is often thought to reside in the two particles sent to the two measurement
devices in the two wings of the experiment, and therefore to come from the
source; but one can also think of λ as an assemblage of classical variables
in the source and in both particles and in both measurement devices which
together determine the outcomes of measurement at the two locations. Any
“local stochastic” hidden variables model can also be re-written as a deter-
ministic local hidden variables model. This rewriting (thinking of random
variables as simply deterministic functions of some lower level random el-
ements) might not correspond to physical intuition but as a mathematical
device it is a legitimate and powerful simplifying agent.

Secondly, we have two functions A(a, λ) and B(b, λ) which take the values
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±1 only, and which denote the measurement outcomes at Alice’s and Bob’s
locations, when Alice uses measurement setting a and Bob uses measurement
setting b. Here, a and b are 3D spatial directions conventionally represented
by unit vectors in R3. The set of unit vectors is of course also known as the
unit sphere S2.

Bell’s theorem states that there do not exist functions A and B and a
probability distribution ρ, on any space of possible λ whatever, such that

∫
A(a, λ)B(b, λ)dρ(λ) = −a · b

for all a and b in S2.
Christian claims to have a counter-example and the first step in his claim

is that Bell “unphysically” restricted the co-domain of the functions A and
B to be the real line. Now this is a curious line to take: we are supposed
to assume that A and B take values in the two-point set {−1,+1}. In fact,
the correlation between A and B in such a context is merely the probability
of getting equal (binary) outcomes minus the probability of getting different
(binary) outcomes. In other words: Bell’s theorem is about measurements
which can only take on two different values, and it is merely by convention
that we associate those values with the numbers −1 and +1. We could just
as well have called them “spin up” and “spin down”. In the language of
probability theory, we can identify λ with the element ω of an underlying
probability space, and we have two families of random variables Aa and Bb,
taking values in a two point set, without loss of generality the set {−1,+1},
and Bell’s claim is: it is impossible to have Prob(Aa = Bb) − Prob(Aa 6=
Bb) = a · b for all a and b.

However, let us bear with Christian, and allow that the functions A and
B might just as well be thought of as taking values in a geometric algebra
. . . as long as we insist that they each only take on two different values.

Christian used the symbol n to denote an arbitrary unit vector (element
of S2) and in formulas (15) and (16) makes the following bold suggestion:

An = Bn = µ · n ∼= ±1 ∈ S2

where µ · n has been previously defined to be ±Mn (I use the symbol M
instead of Christian’s I). Christian talks about the dot here standing for
a “projection” referring, presumably, to the duality between vectors and
bivectors. Christian sees µ as his local hidden variable, giving us the story
that space itself picks at random a “handedness” for the trivectorM = e1e2e3,
thought of as a directed volume element. This story is odd; after all, the
“handedness” of e1e2e3 is merely the expression of the sign of the evenness of
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the permutation 123. Of course, the multiplication rule of geometric algebra,
bringing up the cross product does again involve a handedness convention:
but this is nothing to do with physics, it is only to do with mathematical
convention, i.e., with book-keeping.

But anyway, within Christian’s “model” as we have it so far, we can just
as well define λ to be a completely random element of {−1,+1}, and then
define µ = λM . The resulting probability distribution of µ is the same; we
have merely changed some names, without changing the model.

So now we have the model

A(a, λ) = λMa, B(b, λ) = λMb

which says that the two measurement functions have outcomes in the set of
pure (unit length) bivectors. Now, those two sets are both isomorphic to
S2, and that is presumably the meaning intended by Christian when using
the congruency symbol ∼=: our measurements can be thought of as taking
values in S2. At the same time, each measurement takes on only one of two
different values (given the measurement direction) hence we can also claim
congruency with the two point set {−1,+1} = {±1}. But of course, these
are two different congruencies! And they still need to be sorted out. What
is mapped to what, exactly . . .

This is where things go badly wrong. On the one hand, the model is not
yet specified, if Christian does not tell us how, exactly, he means to map the
set of two possible values ±Ma onto {±1} and how he means to map the
set of two possible values ±Mb onto {±1}. On the other hand, Christain
proceeds blithely to compute a correlation between bivector valued outcomes
instead of between {±1} valued outcomes! No model, wrong correlation!

Let us take a look at each disaster separately. Regarding the first disaster,
there are actually only two options, since Christian already essentially told
us that the two values ±1 of (my) λ are equally likely. Without loss of
generality, his model (just for these two measurement directions) becomes
either

A(a, λ) = B(b, λ) = λ = ±1

or
−A(a, λ) = B(b, λ) = λ = ±1

and hence his correlation is either +1 or −1, respectively.
Regarding the second disaster, Christian proceeds to compute the geo-

metric product (µ · a)(µ · b) (later, he averages this over the possible values
of µ). Now as we have seen this is equal to (λMa)(λMb) = λ2M2ab =
−a ·b−M(a×b) and therefore certainly not equal to −a ·b−λM(a×b) =
−a · b− µ(a× b).
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Looking at these few lines of Christian (2007), from equation (16) to
equation (17), we see six lines of pure nonsense in the middle of a four
page paper professing to revolutionise our understanding of Bell’s theorem
and thereby revolutionise our understanding of quantum information and
quantum computation. I wonder if many of the readers of the paper actually
read those half a dozen lines carefully (and knew enough geometric algebra
to decode them)?

4 Christian’s second model

I next would like to take the reader to Christian’s one page paper, Christian
(2011), simultaneously the main material of the first chapter of his book
Christian (2014).

It seems clear to me that by 2011, Christian himself has realised that
his “model” of 2007 was incomplete. There was no definition of the the
measurement functions! So now he does come up with a model, and the
model is astoundingly simple . . . it is identical to my second model:

A(a, λ) = −B(b, λ) = λ = ±1.

However, he still needs to get the singlet correlation from this, and for that
purpose, he daringly redefines correlation, by noting the following: associated
with the unit vectors a and b are the unit bivectors (in my notation) Ma and
Mb. As purely imaginary elements of the bivector algebra or quaternions,
these are square roots of minus one, and we write

A(a, λ) = (Ma)(−λMa) = λ

A(b, λ) = (λMb)(Mb) = −λ

where λ is a “fair coin toss”, i.e., equal to ±1 with equal probabilities 1
2
.

Now the cunning device of representing these two random variables as
products of fixed bivectors and random bivectors allows Christian to make
the brilliant move of computing the Pearson bivector correlation between A
and B by dividing the mean value of the product, by the non random “scale
quantities” Ma and Mb.

Since the geometric product is non commutative, one must be careful
about the order of these operations, but I will follow Christian in what does
seem a natural choice.

Unfortunately, sinceAB = −1 with probability one, the Christian-Pearson
correlation should be −(Ma)−1(Mb)−1 = −(Ma)(Mb) = −a ·b−M(a×b),
just as before! However, just as in the 2007 paper, Christian succeeds again
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in 2010 in getting a sign wrong, so as to “erase” the unwanted bivector cross-
product term from the “correlation”. I have elsewhere analysed where he
went wrong and put forward an explanation why (ambiguous notation and
sloppy terminology). It should be noted that he also hides the sign error
somewhat deeper in complex computations, looking at the average of a large
number of realisations and using the law of large numbers, rather than just
computing the expectation “theoretically”.

As I have made clear, the model was madness from the start, whether we
would end up with the right or the wrong answer is almost quite irrelevant,
but it is amusing to see that on the one hand, Christian seems to have felt
that his 2007 model was incomplete; he came up with a “fantastic” original
solution to the quandary, but still ran aground on the same algebraic errors.

I will not discuss the other versions of Christian’s theory. He has elabo-
rated more or less the same “theory” with the same repertoire of conceptual
and algebraic errors in various papers with increasing levels of complexity.
The adjective “Byzantine” is appropriate. This work shows a remarkable
degree of dedication and persistance, and erudition too, as more and more
complex mathematical constructions are brought into play. If only (for his
own sake) the author had had the intelligence to recognise the mistakes he
had made at the outset.

5 Post-mortem

As I outlined at the beginning, apart from the fun of learning geometric alge-
bra, the fascinating aspects of the Christian story are surely the psychological
and sociological aspects. How could a promising young researcher become so
convinced that he was some kind of new Einstein? And why did anyone take
any notice at all?

Regarding the first issue, it would be improper to discuss the personality
of an author of a failed master-piece. What we can clearly see is however a
lack of mathematical discipline. A young physicist specialising in the foun-
dations of quantum mechanics can easily, it appears, lack any training in
mathematical modelling, by which I refer to the analysis of mathematical
structures inspired by structures perceived in nature, but carried out strictly
on its own terms, and carried out with mathematical rigour (strictness, dis-
cipline). There is no need to be pedantic but there is a need to be precise. It
seems that mathematical terms are used carelessly and vaguely; there is no
real appreciation of the reality of the abstract structures of the mind which
mathematics gives us.

Regarding the second issue, it seems that the same lack of familiarity with

14



mathematical discipline is to blame, and the same reliance on the words; the
formulas are seen as decoration. Anyone who could read the mathematical
formulas of the 2007 paper could see that the paper was nonsense. No prior
knowledge of geometric algebra was needed to spot the conceptual error at
the heart of the paper. But one must be prepared to take a mathematical
formula seriously. One must also share the point of view that the mathe-
matics must stand on its own feet, without the verbiage around. One can
spot the mathematical inconsistency at the heart of the 2007 paper on formal
grounds, without knowing the mathematical definitions and properties of the
various objects in those key formulas: −1 squared is equal to +1. There is
no way after multiplying twice by µ, which carries a random sign, that that
random sign persists in one part of two terms added together on the right
hand side of the equation.

The early critics of Christian (and there were many) did not spot these
obvious conceptual and algebraic errors. In 2012, many people were dumb-
founded when I pointed out in Gill (2012) that Christian’s (2011) model
started with the definition −A = B = ±1. But this was written clearly
in the first lines of the 2011 paper. On the other hand, it seemed that no-
one noticed that the “model” of 2007 was not a model at all, though the
only way open to Christian to “complete” it was to add to it the definition
−A = B = ±1. So Christian could keep active and feed a lot of interest for
quite a few years.

If only it had been a new Sokal hoax: it would have been wonderful.
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