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ABSTRACT. This short note presents the structures of lattices and continuous geometries in
the energy spectrum of a quantum bound state. Quantum logic, in von Neumann’s original
sense, is used to construct these structures. Finally, a quantum logical understanding of the
emergence of discreteness is suggested.

1. INTRODUCTION

Bound states appear almost everywhere in quantum physics. The standard treatment
is solving the Schrödinger equation to get the discrete and nondegenerate spectrum. See,
for example, the classic discussions in §3.1.6 and §3.2.10 of [1]. A heuristic explaination
of the discreteness of the spectrum, which is also frequently adopted in explaining the
Casimir effect, is the trunction of possible modes enforced by the boundary conditions.
However, we hope to find a deeper understanding of this emergence of discreteness with
respect to the underlying mathematical structrues (e.g. the Hilbert space, lattices, etc.).

Here we present an alternative understanding of this discreteness from the perspective
of quantum logic in the original sense of Birkhoff and von Neumann[2]. The main idea
is very simple: in the seminal work of Birkhoff and von Neumann[2], the lattice structure
of the propositional calculus in a Hilbert space is shown to be a projective geometry, in
which the failure of the modularity for quantum theory leads von Neumann’s preference
to the continuous projective geometry[3], and finally, to the type II1 factor von Neumann
algebra[4]. These concepts will be expanded in the next section. And an excellent account
of this history can be found in [5]. For our current concern of bound states, one needs
first to identify the lattice structure in the energy spectrum of a bound state and then
examines other properties on this lattice. In fact, as will be shown below in the simple
example of 1-dimensional finite potential well, the subspaces of eigen-energies of a bound
state admits a Hilbert lattice, on which one can define a continuous geometry. Then the
relationship with all kinds of mathematical structures of quantum mechanics becomes
clearer. We suggest that the discreteness is just a manifestation of the noncommutativity
of the observable algebra via the quantum logical constructions.

2. PRELIMINARIES

Let us start with some necessary definitions in [2].

Definition 2.1. A lattice L is a partially ordered set, any two elements of which have a
unique infimum and a unique supremum. To be more explicit, denote the partial order
as <, then for any two element x, y ∈ L there correspond
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(1) an infimum(meet) x ∧ y such that x ∧ y < x, x ∧ y < y and (z < x) ∧ (z < y) →
z < x ∧ y;

(2) a supremum(join) x ∨ y such that x < x ∨ y, y < x ∨ y and (x < w) ∧ (y < w) →
x ∨ y < w.

Remark 2.2. The partial order can be any logical implication or simply the subset inclusion
⊂ in which case the set intersection ∩ and the union ∪ play the roles of meet and join
respectively. In terms of these set-theoretical notations, one calls a lattice complete if all
its subsets are sublattices. And a lattice is bounded if it has a maximum and a minimum
subset.

To obtain a Boolean algebra, one further needs the complementation,

Definition 2.3. The complementation of an element a of a lattice L is an operation ¬ such
that

(1) ¬(¬a) = 0;
(2) a ∧ ¬a = ∅, a ∨ ¬a = L, or simply (a < ¬a)→ (a = ∅);
(3) (a < b)→ (¬b < ¬a).

A bounded lattice is called an orthocomplemented lattice if it has the complementation
and the orthogonality, i.e. a⊥b iff (a < ¬b) ∨ (a = ¬b) or simply a 6 ¬b.

A Boolean algebra has the distributive property,

(1) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

This is correct in classical mechanics but not in quantum mechanics. Even if one aban-
dons the Boolean algebra, there is still one identity that might be missing in quantum
mechanics, that is, the modularity,

(2) a < c→ a ∨ (b ∧ c) = (a ∨ b) ∧ c.

The modularity can be weakened to the orthomodularity[6],

(3) a < c→ a ∨ (¬a ∧ c) = c,

which is the starting point of the abstract quantum logic.
In connection with quantum mechanics, an immediate example is the lattice structure

in a Hilbert space H. Indeed, one has the Hilbert lattice P(H), the set of closed linear
subspaces of H. The partial oerder of P(H) is the subset inclusion ⊆ or the subspace
projections, and hence the other operations can be defined set-theoretically. For the prop-
erties of P(H) one can refer [6]. Concerning the modularity in P(H), one has especially

Proposition 2.4. If the Hilbert space H is finite dimensional, then P(H) is modular. If the
dimension is infinite, P(H) is not mudular but orthomodular.

Since in quantum mechanics the pertinent Hilbert space might be finitie-dimensional,
e.g. the 2-dimensional Hilbert space for qubits, one sees that this is not an essential differ-
ence between the classical and the quantum. The reason that Birkhoff and von Neumann
insist on the existence of modularity in quantum logic is the existence of an ”a prior-
i thermo-dynamic weight of state”[3]. For the exact meaning of this vague statement, see
below or [5].

The modularity can be recovered if one considers the continuous geometry of von
Neumann[3]. The following definition is the version of Birkhoff[7].
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Definition 2.5. An irreducible complemented modular lattice L is a continuous geometry if
it has a metric completion by the distance function

|x− y| = δ(x ∨ y)− δ(x ∧ y), ∀ x, y ∈ L,

where

δ(x) =
d[x]− d[0]
d[1]− d[0]

is the normed dimension function defined in terms of the commom geometrical dimen-
sion d[x].

Remark 2.6. The metric topology determined by this distance function can be constructed
without essential difficulties. While the irreducibility means that if ∀a ∈ L its complemen-
tation is unique, then a = ∅ or a = L. Besides, Kaplansky[8] showed that a continuous
geometry only needs to be an orthocomplemented modular lattice.

An incisive observation of von Neumann on continuous geometries is the following
proposition, the ingenious proof of which is outlined in [3] and detailed in [9]. Consider
the lattice L = Ln of all linear subspaces of any (n− 1)-dimensional projective geometry
Pn−1 and the set-theoretical sum L∞ of all Ln’s. As can be readily checked, they are both
continuous geometries (in the axiomatic sense of [3], Ln is in fact discrete though). Then
one has

Proposition 2.7. The ranges of the dimension function δ(Ln) and δ(L∞) are {0, 1
n , 2

n , ..., 1} ⊂ R

and [0, 1] ⊂ R respectively.

A further step is the projective lattice structure in a von Neumann algebraM, namely,
the von Neumann lattice P(M). This is defined in analogue to the Hilbert lattice P(H)
with the Hilbert spaceH replaced by the von Neumann algebraM. But the properties of
P(M) are different from P(H) in many aspects, for which one can refer [6].

An important proprty ofP(M) is that the order type of the equivalence classesP(M)∼
can be characterized by the range of the dimension function δ. Here the equivalence ∼
is in the sense that ∀ projections A, B ∈ P(M), A ∼ B if ∃ a partial isometry α such
that α(A⊥) = ∅ and α(A) = B. This property leads to the famous classification of factor
von Neumann algebra[4]. For usual concerns in quantum mechanics, the Hilbert spaces
belongs to the type I factor von Neumann algebra with the range of δ being {0, 1, 2, ...(∞)}.
While the type II1 factor, von Neumann’s favorate one, corresponds to the case in which
the range of δ is [0, 1]. One has the following result, for the proof of which one can refer
[10].

Proposition 2.8. There exists a subspace lattice of a type II1 factorM isomorphic to the contin-
uous geometry L∞.

Another inportant property ofP(M) is that the dimension function δ onP(M) defines
a unique finite trace τ onM, with which the ”a priori thermo-dynamic weight of state” is re-
alized as this trace on an infinite-dimensional Hilbert space in the sense of the ’statistical
ansatz’[11, 5] that the ’relative’ probability arise from the a prioiri ensamble as relative fre-
quency. In this respect, for quantum mechanics with infinite-dimensional Hilbert space,
the lattice of the observable algebra is just the von Neuman lattice with the type II1 factor
algebra.
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Remark 2.9. This kind of frequency interpretation of probability is flawed and abandoned
by von Neumann himself later[12]. It is indeed the probability theory on noncommutative
spaces, or simply quantum probability, takes over. The last proposal of von Nuemann on
this subject is

”a formal mechanism, in which logics and probability theory arise simulta-
neously and are derived simultaneously.” (quoted in [12])

Recent works of Holik et.al.[13] shows that it is indeed possible to find such a logical
theory of quantum probability.

3. LATTICES IN THE ENERGY SPECTRUM OF A BOUND STATE

Now let us come back to our main objective: to find lattice structures in the energy
spectrum of a bound state. For a bound state its eigen-energies are of course bounded no
matter whether the state is quantum or classical. Hence one can expect a bounded lattice.

As a first step, let us see an example of bound states in classical mechanics.

Example 3.1 (Holik et.al.[13]). Consider a classical harmonic oscillator or a ball confined
in an elliptical potential well, with energy Ec. Then ”Ec = E0” corresponds to an ellipse
in the phase space Γ, and ”Ec < E0” correspond to the ellipse and its interior which is
of course continuous and infinte-dimensional. One can readily see that the propositional
calculus in this case can be represented by the subsets of the phase space Γ. Consequently,
one can define a lattice P(Γ) in the phase space Γ by set-theoretical operations. P(Γ) is a
complete bounded lattice.

Similarly, in the quantum case the phase space is a Hilbert space H. Thus one can
obtain a Hilbert lattice P(H). Let us check the operations:

• partial ordering: ∀ energy eigen-subspacesH1,H2 ⊆ H,H1 6 H2 if E1 6 E2;
• meet: H1 ∧ H2 ≡ Hi with energy= min{E1, E2}, or set-theoretical intersection ∩

of energy eigen-subspaces since by definition all intersections=∅;
• join: H1 ∨H2 ≡ Hi with energy= max{E1, E2} but note that set-theoretical union
∪ of energy eigen-subspaces is not closed;
• complementation: set-theoretical orthocomplementation of subspaces ⊥.

Thus, one indeed obtains a Hilbert lattice for quantum bound states. Now let us see some
examples first.

Example 3.2. Consider the 1-dimensional finite square potential well in quantum me-
chanics with U2 < E < U1 < U3 < ∞ (U2 at [a, b]). Following §3.1.6 of [1], one can write
the connection condition at the boundary as

nπ − ξKL = sin−1 ξ + sin−1(ξ cos γ),

where

K =
√

U1 −U2, L = b− a, cos γ =

√
U1 −U2

U3 −U2
(0 < γ <

π

2
), ξ =

√
E−U2

U1 −U2
.

Solutions exist iff
KL > (n− 1)π + γ,
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hence one obtains a discrete and finite energy spectrum, the maximum of which corre-
sponds to the maximal integer in 1+ (KL− γ)/π. From this discreteness one gets a finite
Hilbert lattice P(E). And hence P(E) is modular.

Moreover, for an eigen-state with energy En, the number of zeros of the wave function
is n − 1 that equals the number of excited energy levels. If one identifies the energy
eigen-subspaces with the number of zeros, or simply nodes, of the eigen wave funtions,
the result is actully a continuous geometry. Let us elaborate on this point. Firstly since
P(E) is a finite modular lattice and the complementations of the eigen-subspaces are
obvious orthocomplementations, by Kaplansky’s theorem[8] one arrives at a continuous
geometry. In this finite case, the spectrum has to be discrete to ensure the finiteness of
H. Secondly, to be more explicit, let us check the projective properties: when identifying
the quantum number n with the node number (n− 1), one in fact constructs a projective
geometry in the following sense. The eigen subspaces [H1 : ... : Hn] form a right-ratio,
with which one can define the projective equivalence, i.e. [H1 : ... : Hn] ∼ [G1 : ... : Gn]
if ∃Hj ∈ F such that Hi = Hj ∨ Gi. One can take Hj = H1 = G1 = ground state,
which gives a (n− 1)-dimensional projective geometry Pn−1(E). Intuitively, a state with
energy E in the bounded region is an eigenstate iff the logarithmic derivatives of the two
aymptotic boundary solutions are equal f− = f+[1], which gives a visual picture of the
projective identification. The linear subspaces of Pn−1(E) are defined by the constraints
of linear independence

αk1H1 + ... + αknHn = 0, k = 1, ...m.

Since the ”points”(m = 1 or of dimension 1/n) in these linear subspaces are in a 1-1 corre-
spondence with the right-ratios, one can inductively see that the number (n− 1) of nodes
characterizing the energy levels shows the same structure as the geometric dimension
from 0 to n − 1 (or 1/n to 1). Hence one obtains a discrete geometry similar to Ln, in
other words, a successful ”coördinatization”[14]. In this respect, the discreteness of the
spectrum corresponds to the discrete range of the dimension function. Since the energy
spectrum of a bound state can be countably infinite-dimensional, the second argument is
still valid for the continuous geometry L∞ while the Kaplansky theorem does not apply
here.

From this example one sees that beyond the usual Hilbert space structure, there are
also lattices and continuous geometry entering in this simple 1-diemnsional quantum
mechanical system in quite noval ways. One can even expect a type II1 factor von Neu-
mann algebra, since the continuous geometry L∞ is isomorphic to some subspace lattice
of a type II1 factor algebra. This seems magical right now, so let us explain this magic a
little bit:

In the operational approach to physics(see e.g. [15]), the observable algebra is a C∗-
algebra. Based on this observation one can develop the whole mathematical structures
underlying quantum mechanics:

C∗ -algebra GNS−−−→ Hilbert space B&vN−−−→ Hilbert latticeymeasurable

ylattice gas, vN?
y(∗)

von Neumann algebra M&vN−−−−→ type II1 factor vN,L∞−−−→ continuous geometry
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The (∗) in the above diagram denotes our construction in the previous text. One can see
that in some special cases, especially when the quantum system has infinite but discrete
spectrum, the Hilbert space can actually admits a type II1 factor von Neumann algebra.
This might corroborate the unpublished work (cited in [12]) of von Neumann that the
type II1 factor von Neumann algebra can be constructed from the infinite-dimensional
Hilbert space.

In the light of this understanding, we conclude that the discreteness in the spectrum
of a quantum bound state can be understood as originating from the noncommutativity
of the observable algebra for either the reason of solving the Schrödinger equations or
the reason that the generic quantum mechanics admits a continuous geometry or a type
II1 factor von Neumann algebra. The proof of the latter is still lacking, and the example
of bound states in this note is too special to be illuminating. However, again from von
Neumann’s last proposal, the logical quantum probability, as is recently illustrated in [13],
suggests a new paradigm to understand Nature, to wit, from discrete logics to continuous
mechanics, and from probability to stochastic behaviors and then to certain observations.

Remark 3.3. Most researchers today seem to ignore von Neumann’s insights. In fact, many
modern models share similar features with von Neumann’s veteran theory. Cf. the causal
set approach to quantum gravity[16] and the celluar automaton interpretation of quan-
tum mechancs[17].
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