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Abstract

The problem of finding a better immunization strategy for controlling

the spreading of the epidemic with limited resources has attracted much

attention since its great theoretical significance and wide application. In this

paper, we propose a novel and successful targeted immunization strategy

based on percolation transition. Our strategy immunizes the fraction of

critical nodes which lead to the emergence of giant connected component. To

test the effectiveness of the proposed method, we conduct the experiments

on several artificial networks and real-world networks. The results show

that the proposed method outperforms the existing well-known methods

with 18% to 50% fewer immunized nodes for same degree of immunization.
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1. Introduction

Epidemic spreading and controlling in complex networks has attracted

much attention from various research fields [1, 2, 3, 4, 5, 6]. In the real

world, it is ubiquitous that there are only a few infection sources in the early

stage of the spreading process. However, it is possible that these infected

sources spread the epidemic to large area in the world within a few days if

the epidemic is ineffectively controlled [7, 8], such as the outbreak of severe

acute respiratory syndrome (SARS) and swine flu [9]. Crucial method of

controlling the epidemic spreading is to apply immunization measure, which

refers to assigning efficient protecting strategy to the most key individuals

individuals with limited resources. A feasibility and effective immunization

strategy can save thousands of human lives with low cost. Over the past

decades, many immunization strategies have been extensively investigated

[10, 11, 12]. So far, it is still an open issue.

In the complex networks, numerous strategies have been proposed to im-

munize nodes, such as random immunization strategy [13], target immuniza-

tion strategy [14, 15], acquaintance immunization strategy [16, 17], active

immunization strategy [18] and other related scenarios [16, 19, 20, 21]. It is

widely accepted that the most efficient immunization strategies are basted on

targeted strategies [22, 23, 24]. The target immunization is first to identify

the potential constrain the spreading ability of each node and then removes

the nodes from the highest ability to the lowest until the network reaches

the certain immunization fraction.

In this paper, motivated by Refs. [25, 26], we proposed a novel immu-

nization strategy. Based on percolation transition [26], the main idea of the

proposed method is to find the critical nodes, which lead to the emergence

of the giant connected component, for immunizing. To test the performance

of our proposed strategy, we conduct the experiments on Erdős-Rényi (ER)

networks [27], scale-free (SF) networks [28] and also several real-world net-

works. The results show that the proposed method has 18% to 50% improve-

ment than the degree centrality strategy, the betweenness centrality strategy

and the adaptive degree centrality strategy (for the networks studied here).

The rest of the paper is organized as follows: in Section 2, the proposed
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strategy is described; in Section 3, related experiments are conducted and

experimental results are evaluated and conclusions are presented in Section

4.

2. Method

Consider a network G(N,E) where N and E are the set of nodes and

edges, respectively. The notation di denotes the degree of node i. For a

given degree threshold dt, we classify the nodes into two categories: visible

nodes if di ≤ dt and invisible nodes if di > dt,

xi =

{
1 di ≤ dt;

0 di > dt.
(1)

eij =

{
1 xi = 1 and xj = 1, (i, j) ∈ E;

0 xi = 0 or xj = 0, (i, j) ∈ E.
(2)

where xi, eij ∈ {0, 1} are binary variables. xi equal to 1 if node i is visible and

0 otherwise. Let G∗(dt) be the subnetwork of G, which is constructed by the

visible nodes and edges of G under a given threshold dt. Let C(dt) denote the

number of nodes of the connected components and Cmax(dt), Cmax−1(dt), ...

correspond to the largest, the second-largest connected components and

so forth. In this way, the function G∗(dt) of dt is constructed, and the

critical node can be determined based on the emergence of giant connected

components as the value of dt increases (Fig. 1 and Fig. 2).

To illustrate how to determine the critical node, the network of coauthor-

ships between scientists [29] is considered. In order to clearly understand,

we obtain the experimental network (Fig. 1(a)) by extracting the largest

component and deleting {51, 52} nodes, and then removing the little iso-

lated components. C(dt) increases as dt increases (Fig. 1(b) to Fig. 1(c)).

In Fig. 1(d), the critical node 223 becomes visible and connects the largest

and the second-largest connected components when dt = 14. The details

of Cmax and Cmax−1 of dt are showed in Fig. 2 where the critical node is

that connecting the largest connected component with the maximal second-

largest connected component. We also obtain the other critical nodes until
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Figure 1: Critical node of the network. (a) A representation of all nodes. The size of a

node is proportional to its degree: node 4 holds the largest degree. (b) A representation

of visible nodes when dt = 7. The largest and second-largest connected component are

clarified by purple and green, respectively. (c) A representation of visible nodes when

dt = 13. (d) The critical node (red) is obtained when dt = 14.
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Figure 2: The number of nodes of the largest (LCC) and second-largest (SLCC) connected

component Cmax (black square) and Cmax−1 (red circle) versus the degree threshold dt.

Each circle or square represents that a node becomes visible. The critical node (node 223

but not node 26 and node 4) is the node which connects LCC with the maximal SLCC.

to reach the predetermine by repeating this process on the largest connected

component of the network after the critical node removal.

3. Results

To test the effectiveness of the proposed strategy (PS), we plot F (the

fraction of the size of the largest cluster that can be infected) versus q (the

fraction of immunized nodes) for several artificial networks (including Erdős-

Rényi (ER) networks [27] and scale-free(SF) networks [28] in Fig. 3) and

empirical networks from different fields in Fig. 4: the electrical power grid of

the western United States (Power Grid) [30, 31], a trust network of mutual

signing based on the pretty good privacy algorithm (PGP network)[32, 33],

collaboration network of arxiv condensed matter (ca-CondMat) [34, 35], and

email communication network from Enron (email-Enron) [36, 37, 38]. The

detailed information of the networks is showed in Table 1. Note that we

here remove 58 self-loop edges from the source data of ca-CondMat.

We compare the efficiency of the PS to the degree centrality strategy

(DCS), the betweenness centrality strategy (BCS) and the adaptive degree

centrality strategy (ADCS). In the ADCS we immunize a node by recal-

culating the importance of every node after the immunized node removal.
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Figure 3: The fraction F of the size of the largest cluster that can be infected versus the

fraction of immunized nodes q for DCS, BCS, ADCS and PS for (a) ER network with

N = 104 and < k >= 3.50, (b) BA network with N = 104, degree exponent α = 2.6

and < k >= 4.0. We also show the error bars in F , which are derived from simulating

realization.

Table 1: Some statistical properties of the real-world networks: network size (n), edge

number (m), average degree < k >, maximum degree kmax, degree heterogeneity (H =<

k2 > / < k >2), degree assortativity (r), clustering coefficient (< C >).

Network n m < k > kmax H r < C >

Power Grid 4941 6594 2.6691 19 1.4504 0.0035 0.0801

PGP 10680 24316 4.5536 205 4.1465 0.2382 0.2659

ca-CondMat 23133 93439 8.0784 279 2.7305 0.1340 0.6334

email-Enron 36692 183831 10.0202 1383 13.9796 -0.1108 0.4970

For both of ER and BA networks, the PS exhibits notable advantage of

less nodes to be immunized compared to the other strategies. Regarding to

threshold point qc, where F approaches 0 (F < 0.0005), the PS shows over

50% improvement than the DCS and BCS, 18% in ER network and 26% in

BA network than ADCS. For the real-world networks, the PS also shows a

larger improvement, over 50%, against both DCS and BCS, and gives an

advantage of over 30% compared to ADCS.

To further evaluate the performance of the proposed strategy, the susceptible-
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Figure 4: The fraction F of the size of the largest cluster versus the fraction of immunized

nodes q for DCS, BCS, ADCS and PS for (a) the Power Grid network, (b) the PGP

network, (c) the ca-CondMat network, (d) the email-Enron network.

7



0 100 200 300 400
0

0.025

0.05

0.075

0.1

Time steps

P
i a

n
d

 P
r

 

 

0 100 200
0

0.5
1

1.5
2

2.5
x 10

−3

 

 

P
i
(ADCS)

P
r
(ADCS)

P
i
(PS)

P
r
(PS)

(a) BA

0 100 200 300
0

0.05

0.1

0.15

Time steps

P
i a

n
d

 P
r

0 100 200
0

0.5

1

1.5

2
x 10

−3

(b) PGP network

0 100 200 300
0

0.05

0.1

0.15

0.2

Time steps

P
i a

n
d

 P
r

0 100 200
0

0.75

1.5

2.25

3
x 10

−3

(c) ca-CondMat

0 100 200 300
0

0.01

0.02

0.03

0.04

Time steps

P
i a

n
d

 P
r

0 100 200
0

0.25

0.5

0.75

1
x 10

−3

(d) email-Enron

Figure 5: Infected fraction Pi and Recovered fraction Pr of time steps for the SIR simu-

lation. Comparison between the PS and ADCS for (a) immunizing a fraction q = 0.11 of

the nodes in the BA network with α = 2.6, N = 104 and < k >= 4 , (b) immunizing a

fraction q = 0.045 of the nodes in the PGP network, (c) immunizing a fraction q = 0.12 of

the nodes in the ca-CondMat network, (d) immunizing a fraction q = 0.075 of the nodes

in the email-Enron network. 104 independent simulation for each network.
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Figure 6: The threshold qc of average mode degree < k > for the DCS, BCS, ADCS and

PS for (a) ER networks with N = 104, (b) BA networks with N = 104 and α = 2.6.

infectious-recovery (SIR) epidemic spreading model [39, 40, 41, 42] is used

to evaluate the immunization effectiveness on the BA network, the PGP net-

work, the ca-CondMat network and the email-Enron network. In the SIR

model, each node belongs to one state of the susceptible state, the infected

state and the recovered state. At the initial stage, the immunized nodes are

removed from the network, including the incident links. We set one node

that is randomly selected from the remaining network or networks (may be

some disconnected subnetworks after immunized) to be infected to inves-

tigate the transmissibility of this node, and the others to be susceptible.

At each time step, the infected nodes infect its susceptible neighbors with

infection probability λ, and they recover with probability η. The recovered

nodes are removed from the network. This process is repeated until there

is no infected node in the network. The simulation results are shown in

Fig. 5. 104 independent simulation and λ = 0.4 and η = 0.05 are used for

each network. For all of the networks studied here, the recovered fraction

is significantly (42 to 77 times) lower when using the PS compared to the

ADCS with the same fraction of immunization doses.

Finally, in Fig. 6, we investigate the threshold qc of the network pa-

rameters of ER and BA networks for different immunization strategies. The

threshold qc is defined as the fraction of nodes immunized or removed for
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which F approaches 0 (F < 0.0005). In all networks tested here, the pro-

posed strategy exhibits obviously effectiveness of lower qc compared to the

other immunization strategies. Although qc increases with increasing the

average degree < k >, the curves of PS are far below curves of DCS, BCS

and ADCS.

4. Conclusion

In this paper, we have developed and applied a novel method as an ef-

ficient network immunization strategy based on the percolation transition.

The proposed strategy chooses the immunization fraction of nodes by re-

peatedly looking for the critical node, which leads to the emergence of the

giant connected component as the degree threshold increases, in the largest

connected network. To test the performance of the proposed method, we

conduct the experiments on several artificial and real-world networks.

The results show that the proposed method is more effective in assorta-

tively mixed networks where high degree nodes tend to connect to other high

degree nodes, which is a common feature for many real networks [16, 43]. In

the disassortative networks, high degree nodes mostly have neighbors with

a small number of connections. Our strategy identifies the critical node

only based on the largest and the second-largest connected components. It

is expected that the proposed strategy will immunize or remove some low

degree nodes, which is the critical node of two components, at the early

stage. However, those components are also connected by some high degree

nodes. The immunization threshold qc is fast reached after those low degree

nodes removal. To summarize, our strategy holds the advantage of 18% to

50% compared to the degree centrality strategy, the betweenness centrality

strategy and the adaptive degree centrality strategy.
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